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ABSTRACT
This paper is about the implementation of a software tool to aid
the study of chaos theory in the the context of the financial or
commodities markets. The main focus of this paper is simulating
the movement of oil prices in an attempt to identity chaos when
it exists. Models implemented represent certain economically re-
alistic aspects of the oil market. Tests for chaos (Lyapunov expo-
nent test) will be conducted on these models, an attempt will be
made to test for chaos in the movement of the price of oil dated
from 2006 to 2016. The models implemented here are nonlinear
models with the potential of exhibiting chaos for certain param-
eter values. Shocks will be introduced into the models and their
effect on the models will be noted and visualized through the use
of a time series or graphs.
An Object oriented programming language (Java) was used
in building this application, MYSQL database was used to
save the data generated by the models and the spiral soft-
ware development life-cycle was used in structuring, plan-
ning and controlling the process of building this application.

General Terms:
Lyapunov Exponent, Chaos

Keywords
Shocks, Demand & Supply, Mean Reversion, logistic Map, Non-
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1. INTRODUCTION
According to Ancient Chinese myth, the creators of the universe
(Yin and Yang) emerged from Chaos. The ancient Greeks ac-
cepted that Chaos precedes order, as written by Hesiod in his
poem which states that ?first of all chaos came to be, and then
the earth and everything stable”[20]. Although Chaos has always
existed, it was only regarded as myth, not until the emergence of
mathematical theories of chaos motion in the 20th century. At-
tempts at predicting the long-term future of certain systems (this
is where interacting parts assemble together) like the weather,
prices of commodities and size of insect population has proved
very difficult despite the presence of super computers, not be-
cause these systems are computationally complex but due to their
high sensitivity to initial conditions [11].This behavior is termed
chaotic, because for chaotic systems, no matter how much data
we accumulate about a system’s past, we cannot accurately pre-
dict its future[16]. Another example of potentially chaotic sys-
tems is the global financial system and commodities markets.
After the market crash of October 1987, new ways of analyz-
ing financial time series and applying chaos theory has become
an area of interest [18]. There are a number of factors affect-
ing the prices in any financial system including the oil market,

most importantly are the global demand and supply along with
some geopolitical factors. This paper focuses on modelling the
existence of chaos in the financial system, the oil market in par-
ticular. Several approaches exist, some of which are data driven,
for example Neutral networks or autoregressive models. Chaos
helps explain the irregular behavior of the oil market with time,
and this is done through what is called a time series.
Linear econometric models are not suitable for the capturing the
chaotic behavior of the oil market this is due to their inability to
cope with the complexity of the market and the number of vari-
ables that bring about changes in the price of the oil. Nonlinear
models can still be deterministic.
This application simulates the Oil market, tests for the presence
of chaos on real oil prices dated as far back as 2006 to March
2016. This application also simulates two different non-linear
models that represent the oil market. In addition to that, this ap-
plication also generates static and dynamic visualizations of that
show changes in price over time.

Review
The aim of this paper is to develop a simulation of the oil mar-
ket by capturing price movements in the form of a time series.
Time series data is generated by the two independent models and
saved in a database or the time series can be generated from his-
toric data (Actual price from the OPEC). An attempt to test for
chaos (Lyapunov Exponent) will be conducted on the models
as well as the actual Oil data (OPEC prices). In order to achieve
this, a Spiral software methodology alongside an Object oriented
programming language, which in this case Java, was used in the
implementation of this paper.
This application has been designed for a user who is

—An oil economics specialist.

—Not expert in maths or programming.

—A user who wishes to manipulate/research selected models
that potentially demonstrate chaotic features and be able to
quantitatively identify chaos when it occurs.

—In need of an application to display, calculate and save models
so that they can manipulate parameters while having the pro-
gram store the results for future use, allowing the user focus
on the economic principles rather than maths, graphing and
data management.

Challenges Encountered
During the course of this implementation, there were a number
of challenges encountered; steps taken to overcome encountered
challenges will be discussed in full detail in the later stages of
this report. Below we briefly summarize some of the challenges
encountered;
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(1) Model Selection: This was by far the most challenging
part of this implementation, taking into account that linear
econometric models neglect several constraints that affect
the oil market; building simulations based linear models will
not be suitable in capturing the presence of chaos. There
seems to be no consensus in the literature as to what the most
appropriate model of the oil market prices is. Models used
in this application are nonlinear and have features that ac-
curately modelled economically relevant quantities in the fi-
nancial system. They are models from the literature with po-
tential to display chaotic behaviour, while also having sound
economic reasoning.

(2) Time series: Creating a dynamic time series was paramount
in this simulation because it represented the change in price
over time. Most graphing packages in Java produce static
graphs, creating a dynamic time series was a rather difficult
challenge to overcome. JFreeChart is a free Java chart li-
brary thats supports several charts. Although it is developed
as a Java package, significant time was invested in getting fa-
miliarized with the necessary objects and methods required
in building the static and dynamic time series.

(3) Shocks: One of the most important functionalities proposed
in this application was allowing the user manipulate the
time series with the intention of introducing external shocks
to the system. These shocks represent events that occur in
the oil market, and these events give rise to spikes or sud-
den changes in average value in price of oil. Although the
time these spikes occur cannot be predicted in actual cir-
cumstances, this application could help in the study and un-
derstanding of how changes in economic parameter values
(modelled by parameters in the models) affect the movement
of the price of Oil.

2. BACKGROUND RESEARCH
This section contains additional background information on the
models and how they relate to the oil market. Furthermore, the
connection between these models and the study of chaos and its
underlying principles will be established. Finally the presence of
chaos via its tests will be discussed.
An evolving system for example, f(t) under an operator Φt, with
an initial condition X0 will not exhibit chaos if

—Φ(X0) goes to an equilibrium when t→∞
—Φ(X0) goes to an equilibrium when t→ 0

—Φ(X0) escapes to∞ as t→∞
If the preceding statements are true, then the system does not be-
have in a chaotic manner because it is predictable. If a subset of
the systems orbits is confined to a bounded region but still be-
haves in an unpredictable manner, this type of irregular motion
can be described as chaos.
In finance, Chaos is a complex phenomenon in markets that is as
a result of rapid and unsymmetrical flows of information result-
ing in non-linearity in returns. Although the models proposed do
not aim to precisely predict the future prices of oil, they model
the oil market and capture if any, the potential of the market to
exhibit chaos.
The first model simulates the price of oil as a simplified version
of a mean reversion process. The second model, uses demand
and supply stability analysis of an appropriate time-delayed dif-
ferential equation.

Model 1: Mean Reversion
Mean reversion of a price series is a possible state when price is
oscillating perhaps randomly about some unknown mean value.
That is, it is not trending [1]. This model suggests that price and
returns of a commodity like oil for example, tend to return back
to an average price after a period of time. This average could

be the average price of oil dating back to a period in the past.
Oil prices have a short term oscillation that tend to revert back
to a normal long term equilibrium level. Or in the case of a
cartelized commodity like oil, the long-run profit-maximizing
price sought by cartel managers [14]. Evidence of mean rever-
sion can be found in future markets [5], if spot prices (the im-
mediate selling price of oil rather than the future [17]) are high,
future prices decrease towards the normal long-run level, and in-
crease if spot prices are low. In the case of volatility, which is
believed to the same for both spot prices and future prices, if
the prices follow a random walk, according to data, spot prices
are more volatile than future prices. Work by Bembinder et al
(p.373-374) [6] on mean reversion in equilibrium asset prices
show that there is strong mean reversion in oil prices but it is
weak in precious metal and financial assets; thus justifying the
use of Mean Reverting model.

Pn+1 = Pn + ηPn (M − Pn) δt+ σPn
√
δtεn (1)

In 1 Pn is the price at time nδt, δt is the time increment. In the
case of this implementation, the time increment is 1, because the
price is simulated on a daily basis.
η is the reversion factor, the sensitivity with which the price re-
verts back to the long run equilibrium mean
M is the average mean price of oil (the pricing level in which the
cartel is willing to sell the product in a long term. The term

σPn
√
δtεn (2)

is the continuous time uncertainty represented by volatility. εn is
a random volatility effect sampled from a standard normal distri-
bution.
Taking into account that the objective of the proposed application
is the simulation of the oil market with special interest on the
presence of chaos even without the effect of random information,
I will be neglecting the final term in the equation because it adds
a random behavior to the proposed model. Therefore neglecting
the random effect simplifies the proposed model is follows:

Pn+1 = Pn + ηPn (M − Pn) δt (3)

Model 2: Demand and Supply
The design of this model is on the basis of demand and sup-
ply, taking into consideration factors affecting the movements in
the supply and demand curve. Factors that are likely to cause
a change in the demand curve ranges from economic crisis, in-
crease in world population, politics, natural catastrophes, wars
etc. While those affecting the demand curve could also be in-
crease in investment that is in terms of searching for new Oil
fields, ecological restrictions and so on. The supply of oil could
be assumed to be from either OPEC or non-OPEC countries, the
demand from the United States of America or Asia, or the entire
global demand and supply.
Although the proposed model does not capture all these factors,
the model attempts to capture the changes in price through the
use of the elasticity of demand and supply (a change in price
affects a change in the quantity of Oil demand and supplied) as
well as the in-elasticity (a change in price does not have an effect
on the quantity demanded or supplied). A model suggested by
[15] is

Pn+1 = Pn + δt.β
([

α1

Pn
+ α2

]
eα3n − F (Pn−N )

)
(4)

Ignoring any explicit time dependency in demand effect (i.e.
α3 = 0 so that eα3n = 1) and assuming (also suggested by
[15]) a logarithmic form for time delay supply, the model can be
rewritten as a four parameter model
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Pn+1 = Pn+
β.δt.α1

Pn
+(α2.β.δt+ α3.βδt ln 5)−β.δt.α3. lnPn−N

(5)
Where; following [15] we set the fifth parameter α3, equal to
best fit value from historic data

α3 =
110

3
(6)

The model can be simplified as

Pn+1 = Pn + βδt
[
α

1

Pn
+ α2 −

110

3
ln
(
Pn−N

5

)]
(7)

where the remaining four parameters α1, α2, β and N can be
given economic interpretations
α1 elastic demand parameter.
α2 static demand parameter.
β sensitivity parameter.
N is the significant time delay in supply due to the time frame
and cost implications of exploration, infrastructure and extrac-
tion process.

Model 3: Logistic Map
Although the logistic map does not necessarily relate to the aims
and objectives of this paper, the history of the logistic map is
well grounded in literature and using it could of serve as a way
of testing the accuracy this application. For example, in litera-
ture, certain values of r in the equation below produce Chaos
and therefore a known Lyapunov exponent [7]. This value can
then be compared to the Lyapunov exponent generated in this
application to test its percentage accuracy.

Xn+1 = r.Xn(1−Xn) (8)

This nonlinear model exhibits a range of behaviors as the value
of r is varied. the Logistic map exhibits chaos for value of r =
3.65.

Fig. 1. Logistic Map where r = 3.65.

Testing For Chaos
Chaos theory is the study of unstable aperiodic behavior of deter-
ministic nonlinear dynamical systems [8]. A system where none
of the variables describing its state undergo a regular repetition
of values is said to possess an aperiodic behavior, such systems
manifest the effects of changes in its variables, this characteristic
makes it difficult to predict over a long period of time intervals.
The oil market has several variables that affect its current and fu-
ture state, these variables like that of an aperiodic system do not

Table 1. N * mmax Dimension Embedding Matrix.
P0 P1 P2 · · · Pmmax
P1 P2 P3 · · · Pmmax+1

P2 P3

...
...

P3

...
...

...
...

...
...

...
...

...
...

PN−mmax PN
...

...
...

pN
...

...

undergo a regular repetition of values. Studying chaotic behav-
ior has the potential of explaining price fluctuations that appear
to be random in the oil market. There are a number of methods
that can be applied in detecting the presence of chaos in a time
series, methods such as the Kolmogorov entropy, the Correlation
Dimension and the Lyapunov exponent [2] [12].
The Kolmogorov entropy and the Correlation Dimension work
well in theory but for this paper, only the Lyapunov exponent
will be implemented.

Lyapunov Exponent
The Lyapunov exponents of a phase space are the average expo-
nential rates of divergence or convergence of nearby orbits [4].
The ability to predict the state of chaotic systems is lost as or-
bits that initially have identical states diverge exponentially to
a point where their orbits behave quite differently. A system is
termed chaotic if it contains at least one positive Lyapunov expo-
nent, the time scale in which the system becomes unpredictable
reflects the magnitude of the Lyapunov exponent.

Calculating The Lyapunov Exponent
In this paper, a numerical method for estimating the largest Lya-
punov exponent was implemented. This is done by averaging the
natural log of the growth the distance between nearest neigh-
bor rows in the embedded matrix derived from the time series of
length N. The method can use average growth over a selectable
number of time steps.

Pi = {P0, P1, ....., PN , PN+1, PN+imax} (9)

imax is the maximum number of time-steps over which to calcu-
late the growth, N+imax is the number of iterations required to
stop the algorithm from crashing. mmax is the maximum embed-
ding dimension used to construct the embedding dimension.

Xn,m = P(n+m) m = 0, ....,mmax n = 0, ...N+mmax−m

the method works by calculating the “distance” between rows

d (n, j,m) =

√√√√p=m∑
p=0

(Xn,p −Xj,p)2 (10)

The algorithm below was used in identifying the “nearest neigh-
bor” of each row:
(m=0; m ≤ mmax; m++) (i=0; i ≤ N-mmax; i++)
Calculate the distances d(n,j,m) for all j ε 0, ....,(N-mmax) except
j = i SetNN(n,m) =jmin wherejmin is the row index such
that d(n,jmin,m) is the minimum of all distances calculated for a
given row n and embedding dimension m Algorithm for calcu-
lating Nearest Neighbor So NN(n,m) is the index of the nearest
neighbor row to the nth row ( for a given m)
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The Lyapunov estimate (c.f equation(9) in Rosenstein et al.[19])
for embedding m and step size i is

L (i,m) =
1

∆t.i

1

N −m− i

p=N−m−i∑
p=0

ln

(
d (p+ i,NN (p,m) + i,m)

d (p,NN (p,m) ,m)

)
(11)

This averages, over all rows, the growth in the distance between
the row and its nearest neighbor.

The Correlation Dimension
Calculating the Correlation Dimension is used in detecting the
presence of chaos in experimental data. Using Grassberger and
Procaccia method [1983a, 1983b], a correlation integral C(r) is
constructed such that it is equal to the probability that two arbi-
trary points on the orbit in a state space are closer together than
r [21]. The correlation integral is computed by finding the dif-
ference δr between any pair of N data points. The formula for
calculating the correlation dimension is

D2 = lim
∆r→0

lim
r→0

lim
N→∞

(
d log(C)

d log(r)

)
(12)

Apart from exceptional cases like the Lorenz model and the
Henon map, the computed value of D2 converges very slowly
[10]. Grassberger and Procaccia addressed the problems identi-
fied with slow convergence and proposed a solution of embed-
ding the data in a higher dimension, although their proposed so-
lution was helpful, it did not solve the problem [21].
Due to this difficulty, there lacks any credible numerical calcu-
lations of the correlation dimension [21]. So it is not practical to
implement this method in this paper.

3. MODELING SHOCKS
A shock in the oil market with respect to price is caused by a
fluctuation brought about by a sudden change in the demand side
or supply side of the oil market. This sudden change in price
could be as a result of several events either man made or natural,
examples of such events and their corresponding effects on the
price oil are.
Following the Yom Kippur war in 1974-1975 the US and global
economy fell into recession this lead to a three time increase
in the price of oil [13]. A shock in oil price also affected the
global economy in 1980-1981 and this was caused by the Iranian
revolution [13]. In 1973-1974, Nigeria encountered her first oil
shock that resulted in a 600% increase in the value of Nigerias
export [3].
At any given time, shocks are likely to happen, in the above mod-
els, shocks are caused by step changes in the parameter values,
where price jumps in response to parameter shocks. Although
this is a different approach to the initial proposed approach where
shocks are implemented with the use of a slider to introduce a
price jump in the system. After reflection, it was felt that imple-
menting shocks through jumps in parameter values offers a more
natural and realistic way of implementing shocks on the system.
Shocks in Model 1 will be replicated when parameters M and
σ undergo occasional jumps in values, while Model 2 will en-
counter shocks when where are step changes in elastic supply
parameter α1, inelastic demand parameter α2 and sensitivity pa-
rameter β.

4. EVALUATION & TESTING
In this section, an evaluation of the application with respect to
the objectives will be carried out, tests will also be conducted on
the accuracy on the Lyapunov exponent (test for chaos) as well
as any system inconsistencies.
This application has undergone a series of tests by comparing
values generated from independent model. The numerical values

Table 2. Empirical Calculation of the Lyapunov
Exponent

Number of iteration Xn λ = log
∣∣ df

dx(n)

∣∣
1 0.360000 0.113329
2 0.921600 1.215743
3 0.289014 0.523479
4 0.821939 0.946049
5 0.585421 -0.380727
6 0.970813 1.326148
7 0.113339 1.129234
8 0.401974 -0.243079
9 0.961563 1.306306
10 0.147837 1.035782

generated by each of the models in this application were also
compared to the independent values provided, to test the accu-
racy of the values generated by the models. The data generated
by the Logistic Map model was tested for Chaos using the Lya-
punov exponent for different values of r, the results of the tests
were compared against known experimental values to test the
percentage accuracy and error. The data generated by the other
two models were also tested and evaluated across different pa-
rameter values using Lyapunov exponent to determine if any, the
presence of chaos.
A break down of the experiments conducted on the various mod-
els is presented in the next section.

Experimental Analysis
This is an analysis of the tests conducted on all three models and
the results obtained. The parameter values of each model will be
varied and a Lyapunov exponent test for chaos will be conducted
on each set of data generated by the models. The time series
generated by each model will also be generated along side the
percentage error.

Lyapunov Test
In order to estimate the accuracy of the Lyapunov exponent im-
plemented in this application, the Lyapunov exponent of the Lo-
gistic map (Model 3) implemented in this application is going
to be compared to that of known values derived for published
materials. The Lyapunov exponent of an equation f(x(n)) is the
average absolute value of natural logarithm of its derivatives [9].

λ = log

∣∣∣∣ df

dx (n)

∣∣∣∣ (13)

Therefore for the logistic map at r = 4.0 and Xn = 0.1, the
empirical calculation of the Lyapunov exponent is:

Xn+1 = 4Xn (1−Xn)

Taking the derivative of the right-hand side of the equation

4− 8Xn

The following table shows the logarithm for 10 iterations.
Average = 0.697226
Therefore the value for the Lyapunov Exponent = 0.697226.
Using my application( using the equation 11), the value for the
Lyapunov Exponent of the Logistic map at r= 4.0 and Xn = 0.1
is equal to 0.692218
Percentage error = -0.7%
Based on the value of the percentage error, it is fair to say that
the Lyapunov exponent implemented in this application has an
accuracy better than 99%.
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Model 1: Mean Reversion Model
The Mean Reversion Model represented by the equation 3, can
be rewritten as

Pn+1 − Pn
∆t

= ηPn (M − Pn) (14)

With the new non-linear equation it could be said that the change
in price over a certain period of time ∆t is sensitive to the differ-
ence between the mean price and the actual price. This sensitivity
is known as reversion factor(η). In theory, a change in the value
of η (reversion factor) will cause a change in the state of en-
tire system. The experiments below were conducted with several
values for η at 200 iterations.
A system with a positive Lyapunov exponent(λ) can be regarded
as a system exhibiting chaotic properties, according to the table
above, model 1 has the potential of exhibiting chaos for values of
η = 0.025, 0.0235, 0.022. therefore when the reversion factor(η)
is 0.025, the rate at which the price of Oil will diverge(λ) is ap-
proximately 0.067334 and so on. For values of λ < 0, the oil
market is stable and eventually reverts back to the mean price or
in general terms the system reverts back to a fixed point.
The time series for some of the above points are shown in figures
2 - 4

Fig. 2. Time Series Exhibiting Chaotic Behavior λ > 0

Fig. 3. Time Series where λ could not be calculated

Fig. 4. Time Series for λ < 0

Model 2: Demand and Supply Model
The demand and supply model in equation 4 can be represented
in terms of demand and supply components of the model.

Pn+1 = Pn + β.∆t (Dem− Sup) (15)

where Dem and Sup are the demand and supply components
respectively, although the equation 15 above makes the models
seem linear, this is not the case.

Pn+1 − Pn
∆t

= β (Dem− Sup) (16)

According to the equation 16 a change in price of Oil over a
period of time ∆t is proportional to a change in the difference
between demand and supply components. In order words the dif-
ference between demand and supply will affect price of oil over
a period of time ∆t and this rate of change is the sensitivity(β
). Varying the sensitivity of the model leads to changes in the
state of the system, at certain values of β the system is can either
stable, unstable or even chaotic.
Tests were conducted with different values of β on two differ-
ent computers each with a different specification, it was noticed
that accuracy issues began setting in at about 10−13. These ac-
curacy issues where inevitable due to the limited accuracy of
floating point storage. In chaotic time series, rounding errors be-
come magnified, and this is likely to result in different Lyapunov
values in different machines or implementations. The Lyapunov
values obtained will always be approximate as this observation
is supported in literature. The table 4 below is a subset of the
data generated on one of those computers. According to the table
above, the model experiences Chaos for values of sensitivity(β)
equals to 2.4 and 2.3 . At these values, the rate of divergence(λ)
is approximately equal to 0.601171 and 0.472365 respectively.
The time series observed at certain values of β

Test for Chaos On Actual Oil Data
A test of Chaos was conducted on the OPEC data for Oil prices
from 2006 to March, 2016 . The value of the Lyapunov exponent
obtained was not a number (NaN i.e not finite), according to the
time series above, oil data does not follow a consistent trend over
its entire length. In order to properly test for chaos using the Lya-
punov exponent test, the oil price would have to be de-trended,
and the resulting time series (Price- Trend) can then be analyzed.
Although the real Oil data does not follow a consistent trend over
its entire length, analyzing smaller regions that do not follow the
trend might prove helpful. The trend could be linear P = a+ bt,
or could follow an exponential growth P = a exp (b.t) which
would best be fitted by taking logs, ln (P ) = ln (a) + bt.

5
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Table 3. Lyapunov Exponents for Model 1 at 200 iterations
Initial Price Mean Price Reversion Factor(η) Lyapunov Exponent (λ )
130 120 0.03 NaN
130 120 0.025 0.067334
130 120 0.0235 0.29925
130 120 0.022 0.275378
130 120 0.02 NaN
130 120 0.0167 -0.022095
130 120 0.0 NaN
130 120 1 NaN
130 120 2 NaN
130 120 3 NaN

Table 4. Lyapunov Exponents for Model 2 at 200 iterations
Initial Price Elastic Demand Static Demand Sensitivity(β) Lyapunov Exponent(λ)
110.06 900 60 2.4 0.601171
110.06 900 60 2.3 0.472365
110.06 900 60 2.0 -0.027288
110.06 900 60 1.5 -0.114167
110.06 900 60 1.0 NaN
110.06 900 60 0.5 NaN
110.06 900 60 0.3 NaN
110.06 900 60 0.1 -0.127636

Fig. 5. Time Series Exhibiting Chaotic Behavior at β = 2.4 and λ > 0

Fig. 6. Time Series Exhibiting a Stable Behavior at β = 2.0 and λ < 0

Shocks
In testing the effect of shocks on the application, parameters of
each model was subjected to a change, and the effect was taken
into account.

Fig. 7. Time Series Exhibiting an Unstable Behavior at β = 1.0 and
where a sensible value for λ could not be calculated

Fig. 8. Time Series for OPEC oil prices from 2006 - 2016

Model one
Subjecting Model one to a shock was achieved by increasing the
initial value for mean price parameter of oil by 3%, and the effect
is shown in the table below: According to the table 5 above, the
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Table 5. Model One Parameter Producing
Chaos

Price Before Shock Price After Shock
130.00000 130.0
97.50000 109.80582
152.34375 146.56992
29.15954 64.85391
95.38120 157.32754
154.08546 28.53453
22.78360 94.37553
78.15710 161.31909
159.91509 13.62954
0.33944 50.00931

Table 6. Model Two Parameter Producing Chaos
Price Before Shock(η) After Shock Price
110.060000 110.060000
6.144021 6.708259
463.680702 437.754619
224.135368 203.467884
50.667022 39.401429
34.219715 57.418967
70.507458 26.698961
14.696391 103.281914
202.622116 6.562023
38.644203 446.550065

effect of a 3% increase in mean price is significant from the 3rd
row of the table where there is a significant difference in the price
without the influence of a shock and that with the introduction of
a shock. The corresponding time series is shown below. The blue

Fig. 9. Time Series for Model one with a 3% increase in mean price

lines represent the new price as a result of the shock and the red
lines is the normal price without the introduction of any shock.

Model Two
Subjecting model two to a shock means either increasing or de-
creasing any of its parameters, the experiment results obtained
were from an increase in the value of the Elastic Demand pa-
rameter, and the extent to which this shock was encountered was
recorded in the table below. The table below is for a 3% increase
in the elastic demand. The table above is a subset of the entire
data generated.According to the table 6 above, the effect of a 3%
increase in elastic demand caused a drastic change in the system.
Effect of this change can be seen from the 3rd row where the
difference between both prices is significantly high. the figure

Fig. 10. Time Series for Model Two with a 3% Increase in Elastic De-
mand

above is the time series illustrating the introduction of a shock
on the model, blue lines represent the new prices as a result of
the shock and the red line the normal price without any shock.
Finally, due to the nature of this application, any user interested
in using this application will be a client looking for a bespoke
application (custom application). If the client’s aims and objec-
tives are satisfied. In the course of this implementation, several
changes were made in order to satisfy the aims and objective of
this paper, most of which are described in the design evolution,
although it is not included in this paper.

5. CONCLUSION AND REFLECTIONS
The aim of this paper was to develop a computer model of
chaotic systems with special interest in the financial market and
specifically, the oil market. This application was built to enable a
client, to manipulate or research on selected models that affected
the movement of the price of oil.
In the course of this implementation, three models were success-
fully built namely; the Mean reversion model, the Demand &
Supply model and the Logistic Map model. Data generated by
these models were saved in a database and used to test the ex-
istence of chaos using the Lyapunov exponent test. The Logistic
map was used to test the value and percentage accuracy of the
Lyapunov exponent implemented in this application. According
to the article by Lorcan Mac Manus titled “Oil Price Cycle and
Sensitivity Model”, model two is described to have an unstable
behavior [15], while tests conducted using the application has
shown that the model two exhibits genuinely chaotic behavior
with a positive Lyapunov exponent. Shocks were implemented
by changing the parameter values of the mean reversion model
and the demand & supply model. A dynamic time series and
static time series was used to visualize changes in the models
simulated. This application was implemented using a spiral soft-
ware methodology along side an object oriented programming
language (Java).
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