CFP last date
15 May 2024
Call for Paper
June Edition
IJAIS solicits high quality original research papers for the upcoming June edition of the journal. The last date of research paper submission is 15 May 2024

Submit your paper
Know more
Reseach Article

Numerical Modeling of the Role of Reverse Parameter in a range of Population Inversions of Differential rate Equations of Tm-doped Material

by Wedad Albalawi, Ali Albalawi
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Number 11
Year of Publication: 2018
Authors: Wedad Albalawi, Ali Albalawi
10.5120/ijais2018451740

Wedad Albalawi, Ali Albalawi . Numerical Modeling of the Role of Reverse Parameter in a range of Population Inversions of Differential rate Equations of Tm-doped Material. International Journal of Applied Information Systems. 12, 11 ( Feb 2018), 16-19. DOI=10.5120/ijais2018451740

@article{ 10.5120/ijais2018451740,
author = { Wedad Albalawi, Ali Albalawi },
title = { Numerical Modeling of the Role of Reverse Parameter in a range of Population Inversions of Differential rate Equations of Tm-doped Material },
journal = { International Journal of Applied Information Systems },
issue_date = { Feb 2018 },
volume = { 12 },
number = { 11 },
month = { Feb },
year = { 2018 },
issn = { 2249-0868 },
pages = { 16-19 },
numpages = {9},
url = { https://www.ijais.org/archives/volume12/number11/1021-2018451740/ },
doi = { 10.5120/ijais2018451740 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T19:08:45.184908+05:30
%A Wedad Albalawi
%A Ali Albalawi
%T Numerical Modeling of the Role of Reverse Parameter in a range of Population Inversions of Differential rate Equations of Tm-doped Material
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 12
%N 11
%P 16-19
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper numerical investigates the impact of reverse cross relaxation parameter on the pump efficiency using differential geometry of rate equations of thulium-doped (Tm-doped) tellurite material by examine certain reverse cross-relaxation processes, relating to series of population inversions. The primary aim of this research is to obtain a set of data that assists in predicting material performance in relation to a number of instances of the reverse cross-relaxation parameter to determine the optimum value of reverse cross- relaxation parameter. It is pointed out that a deep examination of the reverse cross-relaxation process (3F4,3F4,?3H6,3H4) was not available with the available data. The study demonstrates that reverse cross-relaxation may influence the pump efficiency of Tm-doped tellurite material. Therefore the research provides a set of parameters enabling evaluation of the reverse cross-relaxation process, thus illustrating how this process affects pump efficiency during a range of population inversions within differential geometry principle (0-50% in this study). The findings indicate that appropriate measurements of reverse cross-relaxation parameter may have a considerable effect on simulations for laser and amplifier devices. Moreover, the research shows that measurements of reverse cross-relaxation parameter for different glass types can facilitate identification of an appropriate host for various applications.

References
  1. Hanna, D., Jauncey, I., Percival, R., Perry, I., & Smart, R. (1988). Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electronics Letters, 24, 1222.
  2. Jackson, S. D., & Lauto, A. (2002). Diode-pumped fiber lasers: A new clinical tool. Lasers in surgery and Medicine, 30(3), 184-190.
  3. Allain, J., Monerie, M., & Poignant, H. (1989). Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µmin thulium-doped fluorozirconate fibre. Electronics Letters, 25(24), 1660-1662.
  4. Scholle, K., Lamrini, S., Koopmann, P., & Fuhrberg, P. (2010). 2 µm laser sources and their possible applications Frontiers in Guided Wave Optics and Optoelectronics: InTech.
  5. Dobler, J. T., Braun, M., Nagel, J., Temyanko, V. L., Zaccheo, T. S., Harrison, F. W., . . . Kooi, S. A. (2013). Applications of fiber lasers for remote sensing of atmospheric greenhouse gases. Paper presented at the Proc. SPIE.
  6. Godard, A. (2007). Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8(10), 1100-1128.
  7. Jha, A., Shen, S., & Naftaly, M. (2000). Structural origin of spectral broadening of 1.5-µm emission in Er 3+-doped tellurite glasses. Physical Review B, 62(10), 6215.
  8. Yamamoto, T., Miyajima, Y., & Komukai, T. (1994). 1.9 µm m Tm-doped silica fibre laser pumped at 1.57 µm. Electronics Letters, 30(3), 220-221.
  9. Huang, Q., Wang, Q., Chang, J., Zhang, X., Liu, Z., & Yu, G. (2010). Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass. Laser Physics, 20(4), 865-870.
  10. Richards, B., Tsang, Y., Binks, D., Lousteau, J., & Jha, A. (2008). Efficient~ 2 µm Tm3+-doped tellurite fiber laser. Optics letters, 33(4), 402-404.
  11. Peterka, P., Faure, B., Blanc, W., Karasek, M., & Dussardier, B. (2004). Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Optical and Quantum Electronics, 36(1), 201-212.
  12. Jackson, S. D., & King, T. A. (1999). Theoretical modeling of Tm-doped silica fiber lasers. Journal of lightwave technology, 17(5), 948.
  13. Evans, C. A., Ikonic, Z., Richards, B., Harrison, P., & Jha, A. (2009). Theoretical Modeling of a~2 µm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation. Lightwave Technology, Journal of, 27(18), 4026-4032.
  14. Taher, M., Gebavi, H., Taccheo, S., Milanese, D., & Balda, R. (2011). Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses. Optics Express, 19(27), 26269-26274.
  15. Cornacchia, F., Sani, E., Toncelli, A., Tonelli, M., Marano, M., Taccheo, S., . . . Laporta, P. (2002). Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis. Applied Physics B: Lasers and Optics, 75(8), 817-822.
  16. Simpson, D. A., Baxter, G. W., Collins, S. F., Gibbs, W., Blanc, W., Dussardier, B., & Monnom, G. (2006). Energy transfer up-conversion in Tm3+-doped silica fiber. Journal of non-crystalline solids, 352(2), 136-141.
  17. Gebavi, H., Milanese, D., Balda, R., Chaussedent, S., Ferrari, M., Fernandez, J., & Ferraris, M. (2010). Spectroscopy and optical characterization of thulium doped TZN glasses. Journal of Physics D: Applied Physics, 43(13), 135104.
  18. Albalawi, A., Varas, S., Chiasera, A., Gebavi, H., Albalawi, W., Blanc, W., . . . Taccheo, S. (2017). Determination of reverse cross-relaxation process constant in Tm-doped glass by 3H 4 fluorescence decay tail fitting. Optical Materials Express, 7(10), 3760-3768.
  19. Albalawi, A., Varas, S., Chiasera, A., Gebavi, H., Balda, R., Ferrari, M., & Taccheo, s. (2017). Numerical investigation of reverse cross-relaxation process in Tm-doped glass by fitting 3H4 fluorescence decay tail. Paper presented at the Advanced Solid State Lasers (ASSL),, Nagoya, Japan.
  20. Kushida, T. (1973). Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation. Journal of the physical society of Japan, 34(5), 1318-1326.
  21. Walsh, B. M., Barnes, N. P., Petros, M., Yu, J., & Singh, U. N. (2004). Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4. Journal of Applied Physics, 95(7), 3255-3271.
  22. McCumber, D. (1964). Einstein relations connecting broadband emission and absorption spectra. Physical Review, 136(4A), A954-A957.
  23. Millar, C., Mallinson, S. R., Ainslie, B., & Craig, S. (1988). Photochromic behaviour of thulium-doped silica optical fibres. Electronics Letters, 24(10), 590-591.
  24. Broer, M., Krol, D., & DiGiovanni, D. (1993). Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber. Optics letters, 18(10), 799-801.
  25. Taccheo, S., Gebavi, H., Monteville, A., Le Goffic, O., Landais, D., Mechin, D., . . . Milanese, D. (2011). Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation. Optics Express, 19(20), 19340-19345.
  26. Jetschke, S., Unger, S., Schwuchow, A., Leich, M., Fiebrandt, J., Jäger, M., & Kirchhof, J. (2013). Evidence of Tm impact in low-photodarkening Yb-doped fibers. Optics Express, 21(6), 7590-7598.
  27. Lupi, J.-F., Vermillac, M., Blanc, W., Mady, F., Benabdesselam, M., Dussardier, B., & Neuville, D. R. (2016). Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 µm: quantitative effect of lanthanum, cerium, and thulium. Optics letters, 41(12), 2771-2774.
  28. Fagundes-Peters, D., De Camargo, A., & Nunes, L. A. d. O. (2006). Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass. Applied Physics B: Lasers and Optics, 85(1), 101-104.
Index Terms

Computer Science
Information Sciences

Keywords

Differential rate equations Thulium-doped material Pumping efficiency Pump power Reverse cross relaxation parameter Cross-relaxation process Population inversion