
International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 10, May 2016 - www.ijais.org

Design and Development of a Diabetes Management
App on Android

T.J. Anande
University of Agriculture, Makurdi

Department of Electrical and Electronics Engineering
Benue State, Nigeria

S. Al-Shehri
Swansea University,Bay Campus, Swansea

Department of Electrical and Electronics Engineering
SA1 8EN, United Kingdom

T.K. Genger
University of Agriculture, Makurdi

Department of Electrical and Electronics Engineering
Benue State, Nigeria

ABSTRACT
Many individuals diagnosed with diabetes find themselves in
the need to rethink their common daily routines, and alter their
lifestyle and habits. Computing technology, especially ubiqui-
tous computing applications, can help individuals maintain a
high level of awareness of their health, reflect on and learn from
their past experiences, and generally improve their diabetes man-
agement practices. However, to be successful, these applications
require continuous engagement from their users and must be
able to adapt to the changing environments of use, their users’
changing health and their growing understanding of their dis-
ease. In this work we designed the graphic user interface (GUI)
of an android smartphone with features such as patient’s glu-
cose level, time information is received, patient’s location with
the aid of global positioning system (GPS), like colour code,
voice recorder and facial expression for the different glucose
levels. This system also utilizes Google sheet to manage Per-
sonal Health Records (PHRs), which not only bridges the gaps
between patients and different health care providers but enabling
accesses to patients’ PHRs anywhere and anytime by taking ad-
vantage of the universal accessibility of Google sheet. The sys-
tem further integrates with GPS, Google Search and Google Map
functionalities to facilitate the user to find all hospitals near to
his/her current location.

General Terms:
Android, Diabetes

Keywords
Glucose level, APP, Location, Smartphone, Sugar level

1. INTRODUCTION
Diabetes is one of the most widely spread chronic diseases in
the world. It is especially common among the elderly: nearly
one-third of those aged 65 and older have the disease. It is sug-
gested in a publication of the Department of Health and Human
Services in the UK that in order to keep glucose at a healthy
level, people with diabetes need to keep a balance between three
important aspects: diet, exercise and diabetes medicine in daily
routine [4][5][3]. Therefore, continuous self-monitoring of the
blood glucose (blood sugar), daily diet, physical activity and
medicine intake are crucial for the management of diabetes. In
this mini-project, we design on an android phone a Graphic User
Interface (GUI) for personalized and effective self-monitoring
and managing diabetes. The system monitors the blood glucose
levels, provides patient’s location with the aid of global position-

ing system (GPS), and the time information is received. Also,
we have added other features like colour code, voice recorder
and facial expression for the different glucose levels. It is impor-
tant for patients to monitor their own health conditions, to re-
ceive warning and guidance to adjust their behavior during their
daily routine and to be able to stay connected with their physi-
cians at all time. Also, the system is to integrate mobile-based
and smart home-based health monitoring systems with Google
sheet, breaking down the wall between the patient, patient’s fam-
ily members and different health care providers such that they
can now provide collaborative care for the patient. Wireless sen-
sor networks (WSNs) and smart phone technology has opened up
new opportunities in health monitoring system. The integration
of the existing specialized medical technologies with cell phone
and wireless sensor networks is a very promising application in
home monitoring, medical care, emergency care and disaster re-
sponse. In the emergency situations, the most important thing is
to provide a rapid and accurate assistance to patients with lim-
ited resources. And the real-time and continuous triage informa-
tion must be distributed to health care providers. Light weight
and no-intrusive biomedical sensors are easy to be deployed for
continuously monitoring the vital signs of a patient and deliver
the data to the first responders[2][6][1]. For example, a wireless
infrastructure for emergency response. Glucose sensing for the
control of diabetes is a high-volume market for biosensors.

Background Theory
This presents the story of behind android and its excellent ap-
plications. Android is a Linux based Operating System (OS)
that was created basically for touch-screen mobiles devices in-
cluding Smartphone and tablet PCs. It was initially developed
by Android Incorporated, financially supported by Google, who
later bought the company in August 2005. Android OS first went
public in 2007 along with the founding of the Open Handset Al-
liance, a consortium of 86 software, hardware and telecommuni-
cations companies. This created a new era for the mobile phone
industry. Their target in creating Android was to enhance the ad-
vancement of open standards for mobile phones. However, the
first Android-powered phone was released in October 2008. By
December 2010, Android had toppled Symbian as the world’s
leading Smartphone platform. Today, over 500 million devices
run on Android OS. Today, Android has gone beyond Smart-
phone and Tablet PCs; it now runs on Televisions, Smart books,
Cameras, etc. With so much to offer, Google has used Android to
give mobile communication an entire new face. Its User Interface
uses touch inputs like swiping, tapping, pinching, and reverse
pinching (these loosely correspond to real-world actions) to ma-
nipulate on-screen objects. It’s increasing selection of third-party
applications allow users to browse, download and upload appli-

7



International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 10, May 2016 - www.ijais.org

cations published by Google or third-party developers, provided
they comply with Google’s compatibility requirements. It also
manages memory by keeping power consumption low; this is
achieved whenever Android application is no longer in use, be-
cause the system will automatically suspend it in memory.

Benefits of Android
—Android Smartphone multitask; that is, they are capable of

running many applications almost at the same time.
—Notifications are easily accessible and available on the blink-

ing LED indicator on the Home Screen
—Android is available on diverse phones including Samsung,

Nokia, Motorola, Sony Ericsson, HTC, etc. It is not restricted
to one manufacturer.

Android Disadvantages
Despite Android’s endless benefits, they come at some cost.

—Android requires continuous and consistent Internet connec-
tivity. Meaning the user must always subscribe to stay con-
nected.

—While Android phone applications come easily and freely,
they always come with adverts which always display either
at the top or bottom of the application.

—There are various security issues for the users of Google An-
droid. Where Android identities are not secured things like
thefts and hacks are possible. Issues like identity thefts and
drunken dialing are common embarrassing situations.

—Its open security free business model lacking security keys and
code-signing certificates allows any application to install and
run, which is perhaps the biggest drawback. The magnitude of
possible malware and junk ware allows the phone to be used
as a tool for advertisers.

—Serious security fallout can allow for untraceable spyware.
Phones can be hacked and in the result of that data can go
into the wrong hands.

—Albeit Android uses Linux as its advantage. Google does not
support the Linux distribution. Neither does it support the
complete set of standard GNU libraries.

—The Android platform cannot be run from a SD card.
—Android only reuses Java language syntax.
—The Java type app and system cannot be installed

2. DIABETES APP DESIGN
The design sketches for the Glucose Level is fairly simple, with
only one screen. In that screen, it is displayed

—the last time you received information about your glucose
level,

—the measured glucose level (with some animation to under-
stand the right meaning of the level you have) and

—your current location, which what you can know who you
were by the time the glucose level information was received.

There’s also a button with which you can refresh the clock and
your current location.

Your Primitives
To enable us realized this design, we will used the following
primitives:

—One virtual screen
—A method to display the time.
—A method to display the glucose level
—A method to display the current location
—A button to refresh the clock and the current location.

2.1 Getting Started
A new project was created titled, DiabetesManagement.

(1) The Title property of Screen1 was changed to DiabetesMan-
agement.

(2) The Icon property of Screen1 was set with the picture you
have chosen previously.

First, we will place a title on the application:

(1) Place a Label component into the Screen1.
(2) Set the Width property to Fill Parent. Change the FontSize

property to 22.0.
(3) Change the text and write GLUCOSE LEVEL on. Set the

TextAlignment to the center and check FontBold property.
(4) Drag and drop a label below the previous one. Rename it

lblSeparation and change the Width property to Fill parent.

Now we are going to build the three main functions of the ap-
plication: the timer, the glucose level. We will explain each one
of this function separately. For the glucose level, we have added
some extra animations.

2.2 The Timer
What we are going to achieve with this function is to display on
the application screen what time you received your glucose level
information. In that way, you can always know when the last time
you had a check over your diabetes took place. For the screen
design we will use two HorizontalArrangment components. The
first of it will be to show a picture and to display the week day
when you got your glucose level. The second one, it will appear
the exact time (with the format hh:mmdd-Month-yyyy). For the
first HorizontalArrangement:

(1) Drag and drop a HorizontalArrangement and place it below
the GLUCOSE LEVEL title. Rename it HorArrangTimer1.

(2) Drag and drop an Image component and place it into the
HorizontalArrangement. Change the Width property to Fill
Parent.

(3) Change the image name to imgClock. Now, you can upload
the picture you want. We have chosen a sand clock picture
to indicate the timer. Make sure that the picture has the right
size.

(4) Drag and drop a VerticalArrangement and place it to the
right of the imgClock. Rename it VerArrangTimer1.

(5) Drag and drop a label, place it into the VerArragTimer1. Re-
name it lblLastInfoReceived.

(6) Check the FontItalic property and change the text property
to Last information received:.

(7) Drag and drop another label below the previous one and re-
name it to lblWeekDay.

(8) Check the FontItalic property, change the FontSize into 18.0.
Change the TextAlignment to center. Change the Width
property to Fill Parent.

For the second HorizontalArrangement:

(1) Drag and drop a HorizontalArrangement and place it below
the previous one. Rename it HorArragTimer2. Change the
Width property to Fill parent.

Now, we are going to include other two Horizontal Arrangement
components into the previous one, to show the time on the right
format.

(1) Drag and drop a HorizontalArrangement and place it into the
HowArragTimer2 arrangement. Rename it HorArrangHour.
Change the AlighHorizontal to Center and the Width to Fill
parent.

8



International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 10, May 2016 - www.ijais.org

(2) Drag and drop a label and place it into the HorArrangHour.
Rename it lblHours. Clear the text label.

(3) Drag and drop a label component and place it on the right
of the lblHours label. Rename it lblColon. Change the text
property to :.

(4) Drag and drop a label on the right of the lblColon label.
Rename it lblMinutes. Clear the text label.

(5) Drag and drop a label on the right of the lblMinutes label.
Rename it lblMinutes2. Clear the text label.

(6) Drag and drop a HorizontalArrangement and place it on the
right of the HorArrangHour arrangement. Rename it HorAr-
rangDate. Change the Width to Fill parent.

(7) Drag and drop five labels and place them into the Ho-
rArrangDate arrangement. Place the label horizontally. Re-
name them lblDay, lblFirstSlash, lblMonth, lblSeconSlash
and lblYear, respectively. For the lblFirstSlash and lblSec-
onSlash labels, change the text property to /. For the other
three labels, clear the texts.

With the previous step we will display the time on the right for-
mat, showing the week date, the time and the date. To use a clock:

(1) Drag and drop a Clock component from the basic palette.
This is non-visible component and it will appear below the
screen.

To design the glucose level display, it is necessary to separate the
time arrangements of the glucose level one. To do that, we will
insert an empty label:

(1) Drag and drop a label below the HorArrangTimer2 arrange-
ment. Rename it lblSeparation1 and change the Width to Fill
parent.

To display the glucose level, we only need a label to display the
glucose level measure. But, we think it’s better to add more ani-
mation to make easy to understand what the glucose level is and
what it means.

(1) Drag and drop a label and place it below the lblSeparation1.
Rename it lblCurrentGlucose.

(2) Change the FontSize property to 20.0 and change the text
property to Your current Glucose Level is:.

(3) Drag and drop a horizontal arrangement component and
place it below the lblCurrentGlucose label. Rename it Ho-
rArrangGlucose.

(4) Drag and drop two Image components and place it into
the previous arrangement. Rename them imgFaceSad and
imgFaceHappy respectively. Change the Visible property of
both of them to hidden. In one of the images we will upload
a happy face picture. On the other, we will upload a sad face
picture. Make sure that the pictures have the right size. The
images will appear depending on the glucose level. If it is
good, the happy face will appear. In other case, the sad face
will be shown.

(5) Drag and drop a Vertical Arrangement and place it on
the right of the two images. Rename it VerArrangGlucose.
Change the Width property to Fill parent.

(6) Drag and drop a label and place it into the VerArrangGlu-
cose arrangement. Rename it lblConcentration. Check the
FontBold property and change the FontSize to 35.0. Change
the TextAlignment to the center and the Width to Fill parent.
Clear the text label.

(7) Drag and drop another label below the previous one and re-
name it lblColour. Change the Width property to Fill parent.
Clear the text label.

With the previous steps we will show the glucose level with a
more understand format. To do it more understandable, we are
going to add some sound to remember us if the glucose level is
low, good, or high:

(1) Drag and drop three sound components. Rename them
SoundLow, SoundGood and SoundHigh.

(2) Upload three different sounds for each case. For example,
we recorded ourselves by saying ”Your glucose level is
low/good/high”, respectively.

Finally, we are going to design the display for the current loca-
tion. We will insert a picture and show the current location. To
design the glucose level display, it is necessary to separate the
time arrangements of the glucose level one. To do that, we will
insert an empty label:

(1) Drag and drop a label below the HorArrangGlucose arrange-
ment. Rename it lblSeparation2 and change the Width to Fill
parent. Clear the text label.

(2) Drag and drop a Horizontal Arrangement below the lblSepa-
ration2 arrangement. Rename it HorArrangGPS. Change the
Width property to Fill parent.

(3) Drag and drop an Image component and place it in the Ho-
rArrangGPS. Rename it imgGPS. Upload a picture to indi-
cate that the location information will appear. Again, make
sure that the picture has the right size.

(4) Drag and drop a Vertical Arrangement on the right of
the imgGPS and rename it VerArrangLocation. Change the
Width property to Fill parent.

(5) Drag and drop a label into the VerArrangLocation. Check
the FontBold and change the FontSize to 16.0. Change the
text to Current Location:. Change the Width property to Fill
parent.

(6) Drag and drop another label below the previous one and re-
name it lblAddress. Clear the Text label.

To show the current location we need a location sensor. It’s a
non-visible component:

(1) Drag and drop a LocationSensor. It will appear near the
Clock component.

Once we have our three basic functions, we are going to add a
button that will refresh the current time and location.

(1) Drag and drop a button and place it below the HorArrang-
GPS arrangement. Rename it btnReconnect. Change the text
to Reconnect.

Now move on to building the blocks and procedures for your
application. As soon as the application starts, there’s no current
information. Nevertheless, the label must show what information
will appear when we press the Reconnect bottom.

(1) Typeblock the Screen1.Initialize event handler.
(2) Typeblock the lblWeekDay.Text [to] block and snap it into

the Screen1.Initialize event handler. Set it with a text block.
Change the text to Week day.

(3) Typeblock the lblHours.Text [to] block and snap it below the
lblWeekDay.Text block. Set it with a text block. Change the
text to Hour.

(4) Typeblock the lblMinutes.Text [to] block and snap it below
the lblHours.Text block. Set it with a text block. Change the
text to Minutes.

(5) Typeblock the lblDay.Text [to] block and snap it below the
lblMinutes.Text block. Set it with a text block. Change the
text to Day.

(6) Typeblock the lblMonth.Text [to] block and snap it below
the lblMinute.Text block. Set it with a text block. Change
the text to Month.

(7) Typeblock the lblYear.Text [to] block and snap it below the
lblMonth.Text block. Set it with a text block. Change the
text to Year.

9



International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 10, May 2016 - www.ijais.org

(8) Typeblock the lblAddress.Text [to] block and snap it below
the lblYear.Text block. Set it with a text block. Change the
text to Your current address will be shown.

(9) Typeblock the lblConcentration.Text [to] block and snap it
below the lblAddress.Text block. Set it with a text block.
Change the text to Unknown.

(10) Typeblock the lblColour.BackgroundColor [to] block and
snap it below the lblConcentration.Text block. Set it
with a Gray color block. That’s everything for the
Screen1.Initialize event. Yours should resemble Figure 1.

Fig. 1. Screen1.Initialize event.

To give the user control over the application, we use the Re-
connect bottom. The reconnect bottom allows you to refresh the
date, the location and the glucose level.

(1) Typeblock the btnReconnect.Click event handler.

To show the current time, we will use a clock method called Now
method. This returns the time as an instant.

(1) Typeblock an lblWeekDay.Text [to] block and snap
it inside the btnReconnect.Click event. Set it with a
Clock1.WeekdayName [instant] block. Set it with a
Clock1.Now block.

(2) TypeblockalblHours.Text [to] block and snap it below the
lblWeekDay.Text block. Set it with a Clock1.Hour [instant]
block. Set it a Clock1.Now block.

(3) Typeblock an IfEelse block and snap it below the lbl-
Hours.Text block.

(4) Typeblock a less than comparison operator and snap it into
the test socket on the IfElse block.

(5) Typeblock a Clock1.Minute [instant] block and snap it into
the first socket on the comparison operator. Set it with a
Clock1.Now block.

(6) Typeblock a numeral 10 number block and snap it into the
second socket on the less comparator.

(7) TypeblockalblMinutes.Text [to] block and snap it into the
then-do socket on the IfElse block. Set it with a numeral 0
number block.

(8) TypeblockalblMinutes.Text [to] block and snap it into the
else-do socket on the IfElse block. Set it with a text block.
Clear the text.

(9) Typeblocka lblMinutes2.Text [to] block and snap it below
the IfElse block. Set it with a Clock1.Minute [instant] block.
Set it with Clock1.Now block.

(10) TypeblockalblDay.Text [to] block and snap it below the
lblMinutes2.Text block. Set it with a Clock1.DayOfMonth
[instant] block. Set it with a Clock1.Now block.

(11) TypeblockalblMonth.Text [to] and snap it below the lbl-
Day.Text block. Set it with a Clock1.MonthName [instant]
block. Set it with a Clock1.Now block.

(12) TypeblockalblYear.Text [to] and snap it below the
lblMonth.Text block. Set it with a Clock1.Year [instant]
block. Set it with a Clock1.Now block.

With the above steps, we will refresh the time each time we click
on the Reconnect bottom. The Screen1.Initialize event should
resemble Figure 2.

Fig. 2. btnReconnect.Click

For the glucose level, by the time Reconnect bottom is clicked, a
random number will be generated. Depending on the number, the
glucose level will be low (if the number is less than 70), good (if
the glucose level is between 70 and 140) or high (if the glucose
level is higher than 140). The glucose level will be generated
between 20 and 190. In each case, a different picture will be
shown: a happy face if the glucose level is good or, in other cases,
a sad face will appear. In each case, a colored label will appear:
yellow if the glucose level is low; green, if the glucose level is
good and red if the glucose level is high. And finally, we will add
the sound ”Your glucose level is low/good/high” in each case,
respectively.

(1) TypeblockalblConcentration.Text [to] block and snap it into
the Screen1.Initialize event, below the time blocks. Set it
with a random integer math block. Set a numeral 20 number
and snap it into the from socket of random integer. Set a
numeral 190 number and snap it into the to socket of the
random integer.

(2) Typeblock an IfElse block and snap it below the lblConcen-
tration.Text block. Set a greater than comparison and snap it
into the test socket on the IfElse block.

(3) Typeblockalbl.Concentration.Text value and snap it into the
first socket on the comparison operator.

(4) Typeblock a numeral 140 number block and snap it into the
second socket on the comparison operator.

(5) TypeblockaimgFaceSad.Visible [to] block and snap it into
the then-do socket on the IfElse block. Set it with a true
block.

10



International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 10, May 2016 - www.ijais.org

(6) TypeblockaimgFaceHappy.Visible [to] block and snap it be-
low the imgFaceSad block. Set it with a false block.

(7) TypeblockalblColour.BackgroundColor [to] block and snap
it below the imgFaceHappy block. Set it with a Red color
block.

(8) Typeblock a SoundHigh.Play block and snap it below the
lblColour.BackgroundColor block.

(9) TypeblockaIfElse block and snap it into the else-do socket
of the previous IfElse block.

(10) Typeblock a less or equal than comparator and snap it into
the test socket of the new IfElse block.

(11) TypeblockalblConcentration.Text block and snap it into the
first socket of the less or equal than block.

(12) Typeblock a numeral 70 number block and snap it into the
second socket on the comparison block.

(13) Typeblock an imgFaceSad.Visible [to] block and snap it
into the then-do socket of the second IfElse block. Set it with
a true block.

(14) Typeblock an imgFaceHappy.Visible [to] block and snap it
below the imgFaceSad block. Set it with a false block.

(15) TypeblockalblColour.BackgroundColor [to] block and
snap it below the imgFaceHappy.Visible block. Set it with
a Yellow color block.

(16) Typeblock a SoundLow.Play and snap it below the lbl-
Colour.Background block.

(17) IfElse block. Set it with a false block.
(18) Typeblock another imgFaceHappy.Visible [to] block and

snap it below the imgFaceSad.Visible block. Set it with a
true block.

(19) TypeblockalblColour.BackgroundColor [to] block and
snap it below the imgFaceHappy.Visible block. Set it with
a Green color block.

(20) Typeblock a SoundGood.Play block and snap it below the
lblColour.BackgroundColor block.

Now, we have already added all the block to show the glucose
level with all the animations. The block editor must be like the
Figure 3:
Finally, for the GPS, what we need to do is:

(1) TypeblockalblAddress.Text [to] block and snap it be-
low the first IfElse block. Set it with a LocationSen-
sor1.CurrentAddress block.

It will be like in the Figure 4:

3. CONCLUSION
This report presents a personal diabetes monitoring system
which integrates smart home technologies and Google sheet to
facilitate the management of diabetes conditions. The system
further integrates with GPS, Google search and Google map
functionalities to facilitate the user to find all hospitals near to
his/her current location. In this min-project, we use smart phone
with Android platform to collect live streaming data packages.
The whole system runs for a reasonable time collecting glucose
concentration, time information is received, patient location for
effective monitoring. From the experiment, we find the system
is robust. And collecting data, displaying data on the cell phone
and pushing data into Google sheet are all done effectively. It is
simple enough for the end users, especially for the elderly users
to use in their daily exercise. This diabetes monitoring system
not only assist with the tasks of diabetes management, but also
improves the medicine and food safety by taking full advantage
of features in existing subsystems in smart home and related cut-
ting edge technologies.

Fig. 3. Block Editor

Fig. 4. Block Editor

4. REFERENCES
[1] Stefan Brahler. Analysis of the android architecture. Karl-

sruhe institute for technology, 7, 2010.
[2] Georgios Kambourakis, Eleni Klaoudatou, and Stefanos

Gritzalis. Securing medical sensor environments: the code-
blue framework case. In Availability, Reliability and Secu-
rity, 2007. ARES 2007. The Second International Conference
on, pages 637–643. IEEE, 2007.

[3] David Malan, Thaddeus Fulford-Jones, Matt Welsh, and
Steve Moulton. Codeblue: An ad hoc sensor network infras-
tructure for emergency medical care. In International work-
shop on wearable and implantable body sensor networks,
volume 5, 2004.

[4] US Department of Health and Human Services. New
survey results show huge burden of diabetes. Available at
http://www.nih.gov/news-events/news-releases/
new-survey-results-show-huge-burden-diabetes
(2016/03/20).

[5] US Department of Health and Human Services. Take
charge of your diabetes. Available at http://www.cdc.
gov/diabetes/pubs/pdf/tctd.pdf (2016/03/24).

[6] Huang Xuguang. An introduction to android. Database Lab.
Inha University, 2, 2009.

11

http:// www.nih.gov/news-events/news-releases/new-survey-results-show-huge-burden-diabetes
http:// www.nih.gov/news-events/news-releases/new-survey-results-show-huge-burden-diabetes
http:// www.cdc.gov/diabetes/pubs/pdf/tctd.pdf
http:// www.cdc.gov/diabetes/pubs/pdf/tctd.pdf

	Introduction
	Diabetes APP Design
	Getting Started
	The Timer

	Conclusion
	References

