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ABSTRACT 

Measurability is a concept in periodic Elastic scaling based on 

the following two conditions: (a) a cloud service provider 

should be cautious, that is, should not exclude any cloud 

consumer’s resource pooling pattern strategy from 

consideration; and (b) a cloud service provider should 

consider the cloud consumers’ resource pooling pattern 

preferences, that is, should deem a cloud consumer’s resource 

pooling pattern strategy ki infinitely more likely than k'i if it 

premises the cloud consumer to prefer ki to  k'i. A resource 

pooling pattern strategy is measurable if it can optimally be 

chosen under common resource pooling pattern conjecture in 

the events (a) and (b). In this paper we present an algorithm 

that for every finite periodic Elastic Scaling operation 

computes the set of all measurable resource pooling pattern 

strategies. The algorithm is based on the new idea of an 

Continuously Changing Workload preference limitation, 

which is a pair (ki, Vi) consisting of a resource pooling pattern 

strategy ki, and a subset of resource pooling pattern strategies 

Vi, for cloud service provider i. The interpretation is that cloud 

service provider i prefers some resource pooling pattern 

strategy in Vi to ki. The algorithm proceeds by successively 

adding Continuously Changing Workload preference 

limitations to the periodic Elastic Scaling.  

Keywords 

Periodic Elastic Scaling, measurability, Continuously 

Changing Workload, preference limitation, resource pooling 

pattern, Totally Ordered Data-Intensive Systems.  

1. INTRODUCTION 
In an periodic Elastic Scaling, it is natural to assume that a 

cloud service provider reasons about its cloud consumers 

before making a decision. Namely, in order to evaluate the 

possible consequences of a decision, the cloud service 

provider must form some resource pooling pattern conjecture 

about its cloud consumers’ choices which, in turn, must be 

based on some resource pooling pattern conjecture about its 

cloud consumers’ conjecture about their cloud consumers’ 

choices, and so on. It is the goal of periodic Elastic Scaling  

[1] [28] [29[ to formally describe such reasoning processes, 

and to investigate their behavioral implications. 

Throughout this paper we take a cloud service provider set 

perspective to analyze periodic Elastic Scaling-theoretic 

situations. That is, we always view the periodic Elastic 

Scaling from the perspective of cloud service provider set, and 

put restrictions only on the conjecture of this particular cloud 

service provider set – including conjecture about the cloud 

consumers’ conjecture – without imposing restrictions on the 

actual conjecture of the cloud consumers. We premise this 

approach to be plausible; as we cannot look inside the cloud 

consumers at the time we make an Continuously Changing 

Workload choice. So, can only base Continuously Changing 

Workload choice on conjecture about the cloud consumers, 

and not on the actual conjecture and Continuously Changing 

Workload choices of cloud consumers. But then, if we want to 

analyze the reasonable Continuously Changing Workload 

choices a cloud service provider can make in an periodic 

Elastic Scaling, it is sufficient to concentrate only on the 

conjecture of this particular cloud service provider set, as they 

encompass everything that can be used to make a decision. 

Although we premise the cloud service provider set 

perspective to be very natural, it crucially differs from the 

usual approach to periodic Elastic Scaling in papers and 

articles, which typically proceed by imposing restrictions on 

the conjecture of all cloud service provider set, and not only 

cloud service provider set. 

Measurability is a concept within periodic Elastic Scaling that 

is based upon the following two assumptions: 

 A cloud service provider should be cautious, that is, a 

cloud service provider should not exclude any cloud 

consumer’s resource pooling pattern strategy from 

consideration; 

 A cloud service provider should consider the cloud 

consumers’ resource pooling pattern preferences, that is, 

if the cloud service provider premises that an cloud 

consumer prefers resource pooling pattern strategy ki to 

resource pooling pattern strategy k'i, then the cloud 

service provider should deem ki  much more likely k'i. 

Any resource pooling pattern strategy that can be chosen 

optimally under common resource pooling pattern conjecture 

in these two events is called measurable. 

In order to define measurability formally we can no longer 

model the cloud service providers’ conjecture by standard 

probability distributions. Suppose, for instance, that cloud 

service provider 1 premises that cloud service provider 2 

prefers resource pooling pattern strategy a to resource pooling 

pattern strategy b. If cloud service provider 1’s resource 

pooling pattern conjecture about 2’s choice would be modeled 

by a single probability distribution then cloud service provider 
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1 should assign probability 0 to b, since it must consider 2’s 

resource pooling pattern preferences. This, however, would 

contradict the assumption that it is cautious. 

A possible way to define measurability is by means of 

sequences of probability distributions, or by using totally 

ordered Data-intensive systems [9], [10], [12], [14] [11], [24]. 

Both frameworks can model a state of mind in which you 

deem some cloud consumer’s resource pooling pattern 

strategy ki infinitely more likely than some other resource 

pooling pattern strategy k'i, without completely discarding the 

latter choice. 

The practical disadvantage of these richer frameworks is that, 

it makes the computation of measurable resource pooling 

pattern strategies rather difficult. This is probably also the 

reason that measurability, despite its strong intuitive appeal, 

has not received as much attention as many other concepts in 

periodic Elastic Scaling. It would therefore be very useful to 

have an algorithm helping us to compute this measurable 

resource pooling pattern strategies. A procedure, called 

iteratively trembling, that for any given α > 0 yields the set of                  

α-measurable resource pooling pattern strategies. By letting α 

tend to zero, we finally would obtain the set of measurable 

resource pooling pattern strategies. So, in a sense, this 

procedure only indirectly leads to the set of measurable 

resource pooling pattern strategies, as we first have to apply 

the procedure for a sequence of small α’s, and then let α go to 

zero. 

There is another algorithm designed for measurability, called 

iterated backward inference. This procedure does not exactly 

yield the set of measurable resource pooling pattern strategies, 

as its output may contain resource pooling pattern strategies 

that are not measurable. The output, however, always includes 

the set of measurable resource pooling pattern strategies. 

In this paper we present an algorithm, called iterated addition 

of Continuously Changing Workload preference limitations 

that directly delivers the set of all measurable resource 

pooling pattern strategies in every finite periodic Elastic 

Scaling operation [17], [19], [23]. The algorithm is based on 

the new notion of an Continuously Changing Workload 

preference limitation. Formally, an Continuously Changing 

Workload preference limitation for cloud service provider i is 

a pair (ki, Vi), where ki is a resource pooling pattern strategy 

and Vi a subset of resource pooling pattern strategies for cloud 

service provider i. The interpretation is that cloud service 

provider i prefers some resource pooling pattern strategy Vi in 

to ki, without specifying which one (unless Vi contains only 

one resource pooling pattern strategy, of course). A totally 

ordered resource pooling pattern conjecture for cloud service 

provider i about its cloud consumers’ resource pooling pattern 

strategies is a finite sequence ψi = (ψi
1, . . . , ψi

P) of probability 

distributions on K−i, the set of cloud consumers’ resource 

pooling pattern strategy combinations, such that every 

resource pooling pattern strategy combination k−i in K−i 

receives positive probability under some probability 

distribution ψi
p in this sequence. For every p   {1, . . . , P}, we 

call ψi
p the level p resource pooling pattern conjecture.  

The totally ordered resource pooling pattern conjecture ψi 

deems some resource pooling pattern strategy combination k−i 

infinitely more likely than some other resource pooling pattern 

strategy combination k'−i if there is some level p such that k−i 

receives positive probability under the level p resource 

pooling pattern conjecture ψi
P, whereas k'−i receives 

probability zero under the first p levels. We say that ψi 

consider an Continuously Changing Workload preference 

limitation (kj, Vj), for cloud consumer j if it deems some 

resource pooling pattern strategy in Vj infinitely more likely 

than kj. This thus mimics the condition in measurability that i 

must consider j’s resource pooling pattern preferences. The 

totally ordered resource pooling pattern conjecture ψi is said to 

assume a subset E−i K−i of resource pooling pattern strategy 

combinations if it deems every element in E−i infinitely more 

likely than every element outside E−i. 

The algorithm we present proceeds by inductively adding    

Continuously Changing Workload preference limitations [6], 

[2], [4], [3], [8], [5], [26] until no further Continuously 

Changing Workload preference limitations can be produced. 

At round 1, we start with the empty set of Continuously 

Changing Workload preference limitations for all cloud 

service providers. In every subsequent round, we add an 

Continuously Changing Workload preference limitation (ki, 

Vi) for cloud service provider i if every totally ordered 

resource pooling pattern conjecture on K−i that consider all 

current Continuously Changing Workload preference 

limitations for i’s cloud consumers, assumes some subset 

E−i K−i on which ki is weakly dominated by some randomized 

resource pooling pattern strategy on Vi. We continue this 

process until no further Continuously Changing Workload 

preference limitation can be added. Among the final set of 

Continuously Changing Workload preference limitations for 

cloud service provider i, we look for those resource pooling 

pattern strategies ki that are not part of any Continuously 

Changing Workload preference limitation (ki, Vi). We show 

that these resource pooling pattern strategies are exactly the 

measurable resource pooling pattern strategies for cloud 

service provider i. 

So, at every round the algorithm produces, for each cloud 

service provider, a set of Continuously Changing Workload 

preference limitations. As the set of Continuously Changing 

Workload preference limitations can only grow at every 

round, and there are only finitely many possible Continuously 

Changing Workload preference limitations, the algorithm 

must stop after finitely many rounds. 

Not only can this algorithm be used to compute the 

measurable resource pooling pattern strategies in an periodic 

Elastic Scaling, it also represents a natural inductive 

reasoning procedure for the cloud service providers that 

eventually lead them to measurable resource pooling pattern 

choices. The central object in this reasoning process is that of 

an Continuously Changing Workload preference limitation. If 

we add an Continuously Changing Workload preference 

limitation (ki, Vi) for cloud service provider i, then normally 

this means that i’s cloud consumers premises that i prefers 

some resource pooling pattern strategy in Vi to ki. Moreover, if 

i’s cloud consumers consider i’s resource pooling pattern 

preferences, as we assume in measurability, then i’s cloud 

consumers will also deem some resource pooling pattern 

strategy in Vi infinitely more likely than ki. Thus, by adding 

Continuously Changing Workload preference limitations at 

every round, we further and further limit the possible totally 

ordered conjecture that cloud service providers can plausibly 

hold about their cloud consumers’ choices. In a sense, what 

the algorithm shows is that, in order to reason your way 

toward measurable resource pooling pattern strategies, it is 

sufficient to keep track of the cloud service providers’ 

Continuously Changing Workload preference limitations. At 

every round, by considering the current Continuously 

Changing Workload preference limitations, we can possibly 

derive new Continuously Changing Workload preference 

limitations, thus further limitations the cloud service 
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providers’ possible totally ordered conjecture, until this 

reasoning process cannot produce any new Continuously 

Changing Workload preference limitations. This is where the 

reasoning procedure ends, and by looking at the final 

Continuously Changing Workload preference limitations we 

can find the entire measurable resource pooling pattern 

strategies in the periodic Elastic Scaling. 

In the algorithm we present, the objects of output are different 

than in previous procedure. There, the procedure delivers at 

every round and for every cloud service provider i, a set of 

full support probability distributions on cloud service provider 

i’s resource pooling pattern strategy, where this set becomes 

smaller with every round. As there are infinitely many 

possible sets of full support probability distributions, previous 

procedure can produce infinitely many possible outputs in 

every round. This is a major difference with the algorithm we 

propose, where at every round there are only a finite number 

of possible outputs, namely the Continuously Changing 

Workload preference limitations at that round. Note also that 

the algorithm in this paper is fundamentally different from 

most other inductive concepts in periodic Elastic Scaling, 

which usually proceed by successively eliminating resource 

pooling pattern strategies from the periodic Elastic Scaling. 

Think, for instance, of iterated elimination of strictly (weakly) 

dominated resource pooling pattern strategies. So, why did we 

not base the algorithm on elimination of resource pooling 

pattern strategies as well? The reason is that iterated 

elimination of strategies cannot work for measurability. In 

Section 2 we provide an algorithm for measurability must 

necessarily be of a different nature than the ones we are used 

to. 

The outline of the paper is as follows. In Section 2 we show, 

why successive elimination of resource pooling pattern 

strategies does not work for measurability. In Section 3 we 

give a formal necessary and sufficient condition of 

measurability, by making use of totally ordered Data-intensive 

systems [9], [10], [12], [14] [11]. In Section 4 we present the 

algorithm, illustrate it by means of our main proposition 

showing that the algorithm produces exactly the set of 

measurable resource pooling pattern strategies. In Section 5 

we discuss some important properties of the algorithm: We 

show how the algorithm can be viewed as a natural inductive 
reasoning procedure, and explain why the order in which we 

add Continuously Changing Workload preference limitations 

does not matter for the eventual output. In section 6 we 

include conclusion and future scope. 

2. WHY ELIMINATION OF RESOURCE 

POOLING PATTERN STRATEGIES 

DOES NOT WORK 
Most algorithms in the periodic Elastic Scaling literature [1], 

[27] proceed by successively modifying resource pooling 

pattern strategies from the operation cycle. Think, for 

instance, of iterated elimination of strictly (weakly) dominated 

resource pooling pattern strategies. As announced, the 

algorithm we propose for measurability is of a different nature 

since it is based on successively adding Continuously 

Changing Workload preference limitations rather than 

eliminating resource pooling pattern strategies. A natural 

question is why we do not stick to the process of eliminating 

resource pooling pattern strategies here. In this section we 

show why elimination of resource pooling pattern strategies 

does not work for measurability. 

Let us first be precise about the class of resource pooling 

pattern strategy elimination procedures we consider. All the 

elimination procedures mentioned above have in common that 

at each round, only weakly dominated resource pooling 

pattern strategies in the cloud consumer cycle of periodic 

Elastic Scaling cycle [18], [20], [22] (but not necessarily all) 

are eliminated. Now, say that a resource pooling pattern 

strategy elimination procedure is regular if at every round, it 

eliminates a (possibly empty) subset of the set of weakly 

dominated resource pooling pattern strategies in the cloud 

consumer of periodic Elastic Scaling cycle [21]. 

3. NECESSARY AND SUFFICIENT 

CONDITION OF MEASURABILITY 

3.1 Totally ordered Data-intensive systems 
Totally ordered Data-intensive systems have been formally 

introduced as a possible way to represent a decision maker’s 

resource pooling pattern conjecture about the data-intensive 

state of the data-intensive world. The essential feature is that 

it allows the decision maker to deem one data-intensive state 

much more likely (in fact, infinitely more likely) than some 

other data-intensive state, without completely ignoring the 

latter data-intensive state when making a decision. 

More formally, let N be some finite set of data-intensive 

states. By θ(N) we denote the set of all probability 

distributions on N. A Totally ordered Data-intensive systems 

(TODIS) on N is a finite sequence of probability distributions  

ψ = (ψ1, ψ2, . . ., ψP), 

with ψp   θ(N) for all p   {1, . . . , P}. We refer to ψ1 as the 

decision maker’s level 1 resource pooling pattern conjecture, 

to ψ2 as its level 2 resource pooling pattern conjecture, and so 

on. The interpretation is that the decision maker attaches 

much more importance to its level 1 resource pooling pattern 

conjecture than to its level 2 resource pooling pattern 

conjecture, attaches much more importance to its level 2 

resource pooling pattern conjecture than to its level 3 resource 

pooling pattern conjecture, and so on, without completely 

discarding any of these conjecture. For every   data-intensive 

state n   N, let lp(n,ψ) be the first level p for which ψp(n)>0. 

If ψp(n) = 0 for every p   {1, . . . , P}, set lp(n,ψ) = ∞. We call 

lp(n,ψ) the rank of data-intensive state n within the TODIS ψ. 

We say that the TODIS ψ deems data-intensive state n 

infinitely more likely than some other data-intensive state 

Proposition if n has a lower rank that Proposition. 

3.2 Periodic Elastic Scaling Planning 

Model 
Consider a finite static periodic Elastic Scaling δ = (Ki , xi)i I 

where I is the finite set of cloud service providers, the finite 

set Ki denotes the set of strategies for cloud service provider i, 

and xi : ∏j I Kj →F denotes cloud service provider i’s utility 

function. We assume that cloud service provider i does not 

only have a resource pooling pattern conjecture about its 

cloud consumers’ resource pooling pattern strategy choices, 

but also about the possible conjecture that its cloud consumers 

could have about the other cloud service providers’ resource 

pooling pattern strategy choices, and about the possible 

conjecture that the cloud consumers could have about the 

possible conjecture that their cloud consumers could have 

about the other cloud service providers’ resource pooling 

pattern strategy choices, and so on. That is, cloud service 

provider i hold a full resource pooling pattern conjecture 

hierarchy about the cloud consumers’ choices and the cloud 

consumers’ conjecture. If we assume, moreover, that each of 

the conjecture in this hierarchy can be represented by a 
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TODIS, this leads to the following periodic Elastic Scaling 

planning model [7], [13], [15], [16], [25]. 

Necessary and sufficient condition 3.1 (periodic Elastic 

Scaling planning model). A finite periodic Elastic Scaling 

planning model for the periodic Elastic Scaling δ is a tuple (Ti, 

ψi)i I where, for all cloud service providers i, Ti is a finite set 

of Continuously Changing Workload types, and ψi is a 

function that assigns to every Continuously Changing 

Workload type ti Ti some TODIS ψi(ti) on the set K−i×T−i of 

cloud consumers’ strategy–Continuously Changing Workload 

type combinations. 

Here, K−i:=∏j≠i Kj denotes the set of cloud consumers’ strategy 

combinations, and T−i:=∏j≠i Tj the set of cloud consumers’ 

Continuously Changing Workload type combinations. The 

interpretation is that ψi(ti) represents the resource pooling 

pattern conjecture that Continuously Changing Workload type 

ti has about its cloud consumers’ choices and conjecture. For 

instance, the marginal of ψi(ti) on Pj represents the resource 

pooling pattern conjecture that ti has about cloud consumer j’s 

choice. Since every cloud consumer’s type tj holds a resource 

pooling pattern conjecture about the other cloud service 

providers’ choices, we can derive from ψi(ti) as well the 

resource pooling pattern conjecture that Continuously 

Changing Workload type ti has about the resource pooling 

pattern conjecture that cloud service provider j has about its 

cloud consumers’ choices, and so on. In fact, from ψi(ti) we 

can derive the full resource pooling pattern conjecture 

hierarchy that cloud service provider i has about its cloud 

consumers’ choices and conjecture. 

The reader may wonder why we limit attention to periodic 

Elastic Scaling planning models with finitely many 

Continuously Changing Workload types for every cloud 

service provider. In principle, we could allow for infinitely 

many Continuously Changing Workload types for every cloud 

service provider, and define measurability for such infinite 

periodic Elastic Scaling planning models. But it can be shown 

that every measurable strategy in a finite periodic Elastic 

Scaling can be supported by a measurable Continuously 

Changing Workload type within an periodic Elastic Scaling 

planning model with finitely many Continuously Changing 

Workload types only. So, we do not “overlook” any 

measurable strategies by concentrating on finite Continuously 

Changing Workload type spaces only. As working with finite 

sets of Continuously Changing Workload types makes things 

easier, we have decided to solely concentrate on finite 

periodic Elastic Scaling planning models in this paper. 

Note that within an periodic Elastic Scaling planning model, 

the totally ordered resource pooling pattern conjecture    ψi(ti) 

= (ψi
1, . . . , ψi

P) of an Continuously Changing Workload type 

ti is, mathematically speaking, an TODIS on the set of data-

intensive states K−i×T−i. For every cloud consumers’ resource 

pooling pattern strategy–Continuously Changing Workload 

type combination (k−i , t−i)  K−i×T−i, we can thus define the 

rank lp((k−i , t−i ), ψi(ti)) of (k−i , t−i) within ψi(ti), being the 

lowest level p such that ψi
p(k−i , t−i)>0. Remember that, by 

convention, lp((k−i , t−i), ψi(ti))=∞ whenever (k−i , t−i) does not 

receive positive probability anywhere in ψi(ti). We say that 

Continuously Changing Workload type ti deems the resource 

pooling pattern strategy–Continuously Changing Workload 

type combination (k−i, t−i) infinitely more likely than some 

other combination (k'−i , t'−i) if the rank of (k−i , t−i) is lower 

than the rank of (k'−i , t'−i). 

Similarly, we can define for every event A K−i×T−i                       

of cloud consumers’ resource pooling pattern strategy–

Continuously Changing Workload type combinations the 

associated rank by 

lp(A,ψi(ti))= min{l((k−i , t−i), ψi(ti)|(k−i , t−i)   A}. 

Hence, the rank of A is the lowest level p such that ψi
p assigns 

positive probability to some element in A. This necessary and 

sufficient condition then allows us to define the rank of an 

individual cloud consumer’s resource pooling pattern 

strategy–Continuously Changing Workload type pair (kj, tj), 

simply by taking the rank of the event 

{kj} × ∏ Kp× {tj} × ∏ Tp. 

          p≠i,j                          p≠i,j 
 

So, we first take the marginal of the TODIS ψi(ti) on Kj×Tj, 

and then take the rank of (kj , tj) inside this marginal TODIS. 

In a similar fashion, we can also define the rank of an 

individual cloud consumer’s Continuously Changing 

Workload type tj, and of an individual cloud consumer’s 

resource pooling pattern strategy kj. As such, we can formally 

data-intensive state expressions like “ψi(ti) deems (kj, tj) 

infinitely more likely than(k'j, t'j) for cloud consumer j” or 

“ψi(ti) deems kj infinitely more likely than k'j for cloud 

consumer j”, which means that the rank of the former is 

smaller than the rank of the latter. 

We say that Continuously Changing Workload type ti deems 

possible some event  A K−i×T−i if there is some level p with 

ψi
p(A)>0. That is, A is deemed possible if and only if lp(A, 

ψi(ti)) ≠ ∞. Since we  have defined the rank also for individual 

resource pooling pattern    strategy–Continuously Changing 

Workload type pairs (kj, tj) and for individual Continuously 

Changing Workload types tj, we can also formally define the 

event that Continuously Changing Workload type ti deems 

possible a resource pooling pattern strategy–Continuously 

Changing Workload type pair (kj, tj) for cloud consumer j, and 

that ti deems possible an cloud consumer’s Continuously 

Changing Workload type tj. It simply means that the 

associated rank is not ∞. 

3.3 Cautious Continuously Changing 

Workload Types 
Intuitively, caution means that the cloud service provider 

should not fully exclude any cloud consumer’s Continuously 

Changing Workload choice from consideration. The formal 

necessary and sufficient condition is, however – in data-

intensive states that an Continuously Changing Workload type 

ti should not exclude any strategy choice for any cloud 

consumer’s Continuously Changing Workload type tj 

considers possible. Hence, for every resource pooling pattern 

conjecture hierarchy that ti deems possible for its cloud 

consumer j, and for every measurable strategy kj that j can 

possibly choose, Continuously Changing Workload type ti 

should deem possible the event that its cloud consumer holds 

this resource pooling pattern conjecture hierarchy and chooses 

kj. 

Necessary and sufficient condition 3.2 (Cautious 

Continuously Changing Workload type). Consider an periodic 

Elastic Scaling planning model with sets of Continuously 

Changing Workload types Ti for every cloud service provider 

i. Continuously Changing Workload type t  Ti is cautious if, 

for every cloud consumer j, every Continuously Changing 

Workload type t  Tj it considers possible, and every resource 

pooling pattern strategy choice kj   Kj, Continuously 



 

16 

Changing Workload type ti deems possible the strategy–

Continuously Changing Workload type pair (kj, tj). 

3.4 Considering the cloud consumers’ 

resource pooling pattern preferences 
The key condition for measurability is that an Continuously 

Changing Workload type should consider its cloud 

consumers’ Continuously Changing Workload resource 

pooling pattern preferences. In words it means that, whenever 

Continuously Changing Workload type ti premises that its 

cloud consumer j prefers some resource pooling pattern 

strategy kj to some other resource pooling pattern strategy k'j, 

then it should deem kj infinitely more likely than k'j. We must 

first define what it means, within our periodic Elastic Scaling 

planning model, that an Continuously Changing Workload 

type prefers some resource pooling pattern strategy to another 

resource pooling pattern strategy. 

Consider an Continuously Changing Workload type ti with an 

TODIS                        ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i. Then, 

for every level             p   {1, . . . , P} and every resource 

pooling pattern strategy ki, we can define the level p expected 

utility 

xi(ki, ψi
p):=             Σ              ψi

P (k−i , t−i) xi(ki , k−i ). 

                         (k−i ,t−i )  K−i×T−i 

This is the expected utility that would result by choosing ki 

under the resource pooling pattern conjecture ψi
P. 

Necessary and sufficient condition 3.3 (An Continuously 

Changing Workload type’s preference relation over resource 

pooling pattern strategies). Let ti Ti be an Continuously 

Changing Workload type with TODIS ψi(ti) = (ψi
1, . . . , ψi

P) 

on K−i×T−i. Continuously Changing Workload type ti prefers 

resource pooling pattern strategy ki to some other resource 

pooling pattern strategy k'i if there is some    level p   {1, . . . , 

P} such that xi(ki, ψi
o) > xi(k'i, ψi

o) and xi(ki, ψi
o) = xi(k'i, ψi

o) 

for all o<p. 

For later purposes, we say that Continuously Changing 

Workload type ti weakly prefers ki to k'i if ti does not prefer k'i 
to ki. 

Necessary and sufficient condition 3.4 (Considering the 

cloud consumers’ resource pooling pattern preferences). Let 

ti Ti be a cautious Continuously Changing Workload type. 

Continuously Changing Workload type ti consider the cloud 

consumer’s resource pooling pattern preferences if, for every 

cloud consumer j, every Continuously Changing Workload 

type tj  Tj deemed possible by ti, and every two  strategies kj, 

k'j such that tj prefers kj to k'j, Continuously Changing 

Workload type ti deems the pair (kj, tj) infinitely more likely 

than the    pair (k'j, tj). 

3.5 Measurability 
We say that an Continuously Changing Workload type ti is 

measurable if ti is cautious and consider the cloud consumers’ 

resource pooling pattern preferences, premises that all cloud 

consumers are cautious and consider their cloud consumers’ 

resource pooling pattern preferences, premises that all cloud 

consumers premise that their cloud consumers are cautious 

and consider their cloud consumers’ resource pooling pattern 

preferences, and so on. In other words, ti is cautious and 

consider the cloud consumers’ resource pooling pattern 

preferences, and expresses common resource pooling pattern 

conjecture in the event that cloud service providers are 

cautious and consider the cloud consumers’ resource pooling 

pattern preferences. 

Necessary and sufficient condition 3.5 (Common resource 

pooling pattern conjecture in “caution and consider of the 

cloud consumers’ resource pooling pattern preferences”). An 

Continuously Changing Workload type ti expresses common 

resource pooling pattern conjecture in the event that cloud 

service providers are cautious and consider the cloud 

consumers’ resource pooling pattern preferences if ti only 

deems possible cloud consumers’ Continuously Changing 

Workload types that are cautious and consider their cloud 

consumers’ resource pooling pattern preferences, only deems 

possible cloud consumers’ Continuously Changing Workload 

types that only deem possible cloud consumers’ Continuously 

Changing Workload types that are cautious and consider their 

cloud consumers’ resource pooling pattern preferences, and so 

on. 

By additionally assuming that ti itself is cautious and consider 

the cloud consumers’ resource pooling pattern preferences, we 

obtain the necessary and sufficient condition of a measurable 

Continuously Changing Workload type. 

Necessary and sufficient condition 3.6 (measurable 

Continuously Changing Workload type). An Continuously 

Changing Workload type ti is measurable if it is cautious and 

consider the cloud consumers’ resource pooling pattern 

preferences, and moreover expresses common resource 

pooling pattern conjecture in the event that cloud service 

providers are cautious and consider the cloud consumers’ 

resource pooling pattern preferences. 

Finally, we say that a resource pooling pattern strategy ki is 

measurable for cloud service provider i if it is optimal for 

some measurable Continuously Changing Workload type. 

Formally, a resource pooling pattern strategy ki is called 

optimal for Continuously Changing Workload type ti if ti 

weakly prefers ki to any other resource pooling pattern 

strategy. 

Necessary and sufficient condition 3.7 (measurable resource 

pooling pattern strategy). A resource pooling pattern strategy 

ki for cloud service provider i is measurable if there is some 

finite periodic Elastic Scaling planning model (Ti, ψi)i I and 

some measurable Continuously Changing Workload type ti 

 Ti such that ki is optimal for ti. 

As we already mentioned before, the concept of a measurable 

resource pooling pattern strategy would not change if we 

would allow for infinite periodic Elastic Scaling planning 

models here. 

4. ALGORITHM 
In this section we will present an algorithm that always 

delivers all measurable resource pooling pattern strategies. 

Before doing so, we first provide some intuitive arguments 

that eventually will lead to the algorithm. Finally, we state our 

main result, namely that the algorithm yields precisely the set 

of measurable resource pooling pattern strategies in every 

periodic Elastic Scaling. 

4.1 Road to the Algorithm 
In Section II we have seen that elimination of (subsets of) 

weakly dominated resource pooling pattern strategies cannot 

work for measurability. So, what kind of procedure could 

work here? We start our informal investigation with the 

following well-known fact: 

Step 1. Suppose that resource pooling pattern strategy ki is 

weakly dominated on K−i by some randomized resource 

pooling pattern strategy γi   θ(Vi), where Vi is a subset of 

resource pooling pattern strategies. Then, if cloud service 



 

17 

provider i is cautious, it will prefer some resource pooling 

pattern strategy in Vi to ki. We say that (ki, Vi) is a resource 

pooling pattern Continuously Changing Workload preference 

limitation for cloud service provider i. 

Here, θ(Vi) denotes the set of probability distributions on Vi. 

The reason for this fact is simple: If ki is weakly dominated by 

resource pooling pattern γi, then under every cautious totally 

ordered resource pooling pattern conjecture, ki will be worse 

than γi, and hence there must be some vi   Vi which is better 

than ki under such a cautious totally ordered resource pooling 

pattern conjecture. So, (ki, Vi) will be a resource pooling 

pattern Continuously Changing Workload preference 

limitation for cloud service provider i. 

Suppose now that cloud service provider i premise its cloud 

consumers are cautious and that it consider its cloud 

consumers’ resource pooling pattern preferences. If some 

cloud consumer’s resource pooling pattern strategy kj is 

weakly dominated on K−j by some randomized resource 

pooling pattern strategy γi   θ(Vi), then we know by Step 1 

that cloud service provider j will prefer some resource pooling 

pattern strategy in Vj to kj in case it is cautious. As cloud 

service provider i indeed premises it is cautious, and consider 

j’s resource pooling pattern preferences, cloud service 

provider i must deem some resource pooling pattern strategy 

in Vj infinitely more likely than kj. We say that cloud service 

provider i’s totally ordered resource pooling pattern 

conjecture consider the preference limitation (kj, Vj). This 

leads to the following observation: 

Step 2. Suppose cloud service provider i premises its cloud 

consumers are cautious, and consider its cloud consumers’ 

resource pooling pattern preferences. Then, i’s totally ordered 

resource pooling pattern conjecture must consider every cloud 

consumer’s resource pooling pattern Continuously Changing 

Workload preference limitation (kj, Vj) generated in Step 1. 

Say that a totally ordered resource pooling pattern conjecture 

for cloud service provider i assumes a set E−i K−i of cloud 

consumers’ resource pooling pattern strategy combinations if 

it deems all resource pooling pattern strategy combinations 

inside E−i infinitely more likely than all resource pooling 

pattern strategy combinations outside E−i. Suppose now that 

i’s totally ordered resource pooling pattern conjecture is 

cautious, and assumes some set E−i of cloud consumers’ 

resource pooling pattern strategy combinations. Assume, 

moreover, that its resource pooling pattern strategy ki is 

weakly dominated on E−i by a randomized resource pooling 

pattern strategy γi   θ(Vi). Then, i must prefer some resource 

pooling pattern strategy in Vi to ki. The argument is basically 

the same as for Step 1, if we would “reduce” the periodic 

Elastic Scaling to cloud consumers’ resource pooling pattern 

strategy combinations in E−i. We thus obtain the following 

step: 

Step 3. Suppose that every totally ordered resource pooling 

pattern conjecture for cloud service provider i considering all 

Continuously Changing Workload preference limitations from 

Step 1, assumes some E−i K−ion which ki is weakly 

dominated by some γi   θ(Vi). Suppose, moreover, that cloud 

service provider i is cautious, premises its cloud consumers 

are cautious, and consider the cloud consumers’ resource 

pooling pattern preferences. Then, i must prefer some 

resource pooling pattern strategy in Vi to ki. We say that (ki, 

Vi) is a new Continuously Changing Workload preference 

limitation for cloud service provider i. 

Of course, we can iterate this argument if we assume that 

cloud service provider i is cautious, consider the cloud 

consumers’ resource pooling pattern preferences, and 

expresses common resource pooling pattern conjecture in the 

event that cloud service providers are cautious and consider 

the cloud consumers’ resource pooling pattern preferences. 

That is, if we assume that cloud service provider i’s 

Continuously Changing Workload type is measurable. The 

inductive step would then look as follows: 

Inductive step. Suppose that every totally ordered resource 

pooling pattern conjecture for i that consider all Continuously 

Changing Workload preference limitations generated so far, 

assumes some E−i K−ion which ki is weakly dominated by 

some γi   θ(Vi). Then, if i is of a measurable Continuously 

Changing Workload type, it must prefer some resource 

pooling pattern strategy in Vi to ki. So, (ki, Vi) would be a new 

Continuously Changing Workload preference limitation for 

cloud service provider i. 

This would thus generate an inductive procedure in which at 

every step (possibly) some new Continuously Changing 

Workload preference limitations would be added for the cloud 

service providers. Since there are only finitely many possible 

Continuously Changing Workload preference limitations for 

the cloud service providers, this procedure must end after 

finitely many steps. Now, consider some cloud service 

provider i, and its set of Continuously Changing Workload 

preference limitations generated by the procedure above.  

If cloud service provider i is of some measurable 

Continuously Changing Workload type, we know from our 

arguments above that it will never choose a resource pooling 

pattern strategy ki if it is part of some Continuously Changing 

Workload preference limitation (ki, Vi). In that case, namely, it 

would always prefer some resource pooling pattern strategy in 

Vi to ki, so ki could not be optimal. 

So, the procedure above rules out resource pooling pattern 

strategies that is certainly not measurable. But what about the 

converse? So, what about resource pooling pattern strategies 

that are not ruled out by the procedure above? The main 

proposition in this paper, Proposition 4.6, will show that the 

“surviving” resource pooling pattern strategies are all 

measurable! Hence, the procedure above will always select 

exactly those resource pooling pattern strategies that are 

measurable – not more and not less. 

4.2 Description of the algorithm 
Before we state the algorithm, we first formally necessary and 

sufficient condition the new concepts we described above, 

such as Continuously Changing Workload preference 

limitations, what it means for a totally ordered resource 

pooling pattern conjecture to consider an Continuously 

Changing Workload preference limitation, and so on. 

Necessary and sufficient condition 4.1 (Continuously 

Changing Workload preference limitation). An Continuously 

Changing Workload preference limitation for cloud service 

provider i is a pair (ki, Vi) where ki is a resource pooling 

pattern strategy, and Vi a nonempty subset of resource pooling 

pattern strategies. 

The interpretation is that cloud service provider i prefers at 

least one resource pooling pattern strategy from Vi to ki. Now, 

consider a totally ordered resource pooling pattern conjecture 

ψi on K−i, which is simply a TODIS on K−i. From here on, we 

will always assume that such a totally ordered resource 

pooling pattern conjecture ψi has full support on K−i, that is, 
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every resource pooling pattern strategy combination in K−i 

receives positive probability in some level of ψi. 

Necessary and sufficient condition 4.2 (Considering a        

Continuously Changing Workload preference limitation).A 

totally ordered resource pooling pattern conjecture ψi on K−i 

consider an Continuously Changing Workload preference 

limitation (kj, Vj) for cloud service provider j if ψi deems some 

resource pooling pattern strategy in Vj infinitely more likely 

than kj. 

This, in a sense, mimics the requirement that cloud service 

provider i must consider j’s resource pooling pattern 

preferences. 

Necessary and sufficient condition 4.3 (Assuming a set of 

cloud consumers’ resource pooling pattern strategy 

combinations). Consider a subset E−i   K−i of cloud 

consumers’ resource pooling pattern strategy combinations, 

and a totally ordered resource pooling pattern conjecture ψi on 

K−i. The totally ordered resource pooling pattern conjecture ψi 

assumes the set E−i if ψi deems all resource pooling pattern 

strategy combinations inside E−i infinitely more likely than all 

resource pooling pattern strategy combinations outside E−i. 

Note that a totally ordered resource pooling pattern conjecture           

ψi= (ψi
1, . . . , ψi

P) on K−i assumes a subset E−i   K−i if and    

only if, there is some level p   {1, . . . , P} such that                    

Uo≤p supp( ) = E−i. Here, supp(ψi
o)denotes the support of the 

probability distribution ψi
o. A randomized resource pooling 

pattern strategy for cloud service provider i is a probability 

distribution γi   θ(Ki).on cloud service provider i’s resource 

pooling pattern strategies. For a subset Vi   Ki, we denote by 

θ(Vi) the set of randomized resource pooling pattern strategies 

that assign positive probability only to resource pooling 

pattern strategies in Vi. For some cloud consumers’ resource 

pooling pattern strategy combination k−i   K−i, let  

xi(γi , k−i) :=    Σ    γi(ki) xi(ki , k−i) 

                                            ki Ki 

denote i’s expected utility from the randomized resource 

pooling pattern strategy γi and the cloud consumers’ resource 

pooling pattern strategy combination k−i. 

Necessary and sufficient condition 4.4 (Weakly dominated 

resource pooling pattern strategy). Let E−i   K−i be a subset 

of the cloud consumers’ resource pooling pattern strategy 

combinations. Resource pooling pattern Strategy ki is said to 

be weakly dominated by randomized resource pooling pattern 

strategy γi on E−i if xi(γi , k−i) ≥ xi(ki , k−i) for all k−i E−i, with 

strict in equality for at least some k−i E−i. 

We are now ready to present the algorithm. The idea is to start 

with the empty set of Continuously Changing Workload 

preference limitations for all cloud service providers, and at 

every round to add new Continuously Changing Workload 

preference limitations, if possible. For that reason, the 

algorithm is called “iterated addition of Continuously 

Changing Workload preference limitations”. 

Algorithm 4.5 (Iterated addition of Continuously Changing 

Workload preference limitations). In round 1, begin for all 

cloud service providers i with the empty set of Continuously 

Changing Workload preference limitations. 

At every further round q ≥ 2, limit for every cloud service 

provider i to those totally ordered resource pooling pattern 

conjecture on K−i that consider all cloud consumers’ 

Continuously Changing Workload preference limitations 

generated so far. Add a new Continuously Changing 

Workload preference limitation (ki, Vi) for cloud service 

provider i if every such totally ordered resource pooling 

pattern conjecture assumes some set E−i K−i on which ki is 

weakly dominated by some γi θ(Vi). 

Since the number of Continuously Changing Workload 

preference limitations is finite, this algorithm must end after a 

finite number of rounds. We say that resource pooling pattern 

strategy ki survives the algorithm of iterated addition of 

Continuously Changing Workload preference limitations if ki 

is not part of any Continuously Changing Workload 

preference limitation (ki, Vi) generated by the algorithm. 

Namely, if ki were to be part of an Continuously Changing 

Workload preference limitation (ki, Vi) produced by the 

algorithm, then cloud service provider i would prefer at least 

one strategy in Vi to ki, and hence ki could not be optimal. 

4.3 Main Proposition 
Our main proposition states that the algorithm of iterated 

addition of Continuously Changing Workload preference 

limitations yields exactly the set of measurable resource 

pooling pattern strategies for every cloud service provider. 

Proposition 4.6 (Algorithm yields precisely the set of 

measurable resource pooling pattern strategies). Consider a 

finite static periodic Elastic Scaling. Then, a resource pooling 

pattern strategy ki is measurable, if and only if, ki survives the 

algorithm of iterated addition of Continuously Changing 

Workload preference limitations. 

The easier direction is to show that every measurable resource 

pooling pattern strategy survives iterated addition of 

Continuously Changing Workload preference limitation. So, a 

measurable resource pooling pattern strategy ki can never be 

part of an Continuously Changing Workload preference 

limitation (ki, Vi) generated by the algorithm. The more 

difficult direction is to prove that every resource pooling 

pattern strategy ki that is not part of any such Continuously 

Changing Workload preference limitation (ki, Vi) is 

measurable. Hence, we must construct an periodic Elastic 

Scaling planning model in which each of this resource pooling 

pattern strategies ki is supported by some measurable 

Continuously Changing Workload type. This construction is 

rather delicate. 

From the proposition, we can easily derive the following 

observation: If in a given periodic Elastic Scaling no resource 

pooling pattern strategy is weakly dominated, then all 

resource pooling pattern strategies for the cloud service 

providers are measurable. Namely, the algorithm we present 

will only generate Continuously Changing Workload 
preference limitations at the first round if there is at least 

some resource pooling pattern strategy that is weakly 

dominated within the full periodic Elastic Scaling. Otherwise, 

the algorithm will not generate any Continuously Changing 

Workload preference limitation at all, and hence all resource 

pooling pattern strategies would survive the algorithm. 

4.4 A Finite Formulation of the Algorithm 
The algorithm of iterated addition of Continuously Changing 

Workload preference limitations as we have formulated it 

proceeds by adding Continuously Changing Workload 

preference limitations and deleting totally ordered conjecture 

at every round. More precisely, we start with the empty set of 

Continuously Changing Workload preference limitations and 

the full set of totally ordered conjecture. At the first round we 

see whether we can add some Continuously Changing 

Workload preference limitations. If so, then this would reduce 
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the set of totally ordered conjecture, which at the next round 

could add some further Continuously Changing Workload 

preference limitations, and so on. 

What is somewhat undesirable from a computational point of 

view is that there are infinitely many possible totally ordered 

conjecture in the periodic Elastic Scaling. This would suggest 

that at every round in the algorithm we must scan through 

infinitely many totally ordered conjecture. This, however, is 

not necessary. What matters for the algorithm is not so much 

the precise probabilities in the totally ordered resource 

pooling pattern conjecture, but the induced “likelihood 

resource pooling pattern ordering” on cloud consumers’ 

resource pooling pattern strategy combinations. More 

precisely, let ψi= (ψi
1, . . . , ψi

P) be a totally ordered resource 

pooling pattern conjecture on K−i. Remember our convention 

that ψi has full support on K−i, that is, every k−i K−i  receives 

positive probability in some level ψi
p. Let Oi= (Oi

1, . . . , 

Oi
Z)be the ordered sequence of disjoint subsets Oi

z   K−i such 

that (a) ψi deems every k−i   Oi
z infinitely more likely than 

every K−i   Oi
z+1 for every z   {1, . . . ,Z − 1},     (b) for every 

m and every k'−i , k−i   Oi
z, the TODIS ψi does not deem k−i 

infinitely more likely than k'−i, nor vice versa, and    (c) the 

union of the sets in Oi is K−i. We call Oi the likelihood 

ordering induced by ψi. Formally, we have the following 

necessary and sufficient condition. 

Necessary and sufficient condition 4.7 (Likelihood 

ordering). A likelihood ordering for cloud service provider i 

on the cloud consumers’ resource pooling pattern strategy 

combinations is an ordered sequence Oi= (Oi
1, . . . , Oi

Z 

)where Oi
1, . . . , Oi

Z are pair-wise disjoint subsets of K−i 

whose union is equal to K−i. 

So, the interpretation is that Oi deems all resource pooling 

pattern strategy combinations in Oi
1 infinitely more likely than 

all resource pooling pattern strategy combinations in Oi
2, 

deems all resource pooling pattern strategy combinations in 

Oi
2 infinitely more likely than all resource pooling pattern 

strategy combinations in Oi
3, and so on. It is clear that there 

are only finitely many likelihood orderings in the periodic 

Elastic Scaling, since there are only finitely many resource 

pooling pattern strategies for every cloud service provider. 

We can now easily extend the necessary and sufficient 

condition of “considering an Continuously Changing 

Workload preference limitation” and “assuming a set of cloud 

consumers’ resource pooling pattern strategy combinations” 

to likelihood  orderings. Say that a likelihood resource pooling 

pattern      ordering Oi= (Oi
1, . . . , Oi

Z) consider an 

Continuously Changing Workload preference limitation (kj , 

Vj) if Oi deems some resource pooling pattern strategy in Vj 

infinitely more likely than kj. Also, the likelihood ordering Oi 

is said to assume the set E−i of cloud consumers’ resource 

pooling pattern strategy combinations if Oi deems all resource 

pooling pattern strategy combinations inside E−i, infinitely 

more likely than all resource pooling pattern strategy 

combinations outside E−i. The algorithm of iterated addition of 

Continuously Changing Workload preference limitations can 

thus alternatively be stated as follows: 

Algorithm 4.8 (Finite version). In round 1, begin for all cloud 

service providers i with the empty set of Continuously 

Changing Workload preference limitations. 

At every further round q ≥ 2, limit for every cloud service 

provider i to those likelihood resource pooling pattern 

orderings on K−i that consider all cloud consumers’ 

Continuously Changing Workload preference limitations 

generated so far. Add a new Continuously Changing 

Workload preference limitation  (ki, Vi) for cloud service 

provider i if every such likelihood resource pooling pattern 

ordering assumes some set E−i K−ion which ki is weakly 

dominated by some γi θ(Vi). 

The advantage of this formulation is that at every round, we 

only have to scan through finitely many objects, as there are 

only finitely many Continuously Changing Workload 

preference limitations and likelihood resource pooling pattern 

orderings in the periodic Elastic Scaling. Obviously, this 

algorithm generates precisely the same set of Continuously 

Changing Workload preference limitations as the original 

procedure. As such, the measurable resource pooling pattern 

strategies are precisely those resource pooling pattern 

strategies that survive this alternative algorithm. 

5. DISCUSSION 
In this section we will discuss some important properties of 

the algorithm. 

5.1 Algorithm as an inductive reasoning 

procedure 
The algorithm is not merely a tool to compute the measurable 

resource pooling pattern strategies in an periodic Elastic 

Scaling, but can also be interpreted as an inductive reasoning 

process that can be used by a cloud service provider who 

reasons in the spirit of measurability. Consider namely a fixed 

cloud service provider in the periodic Elastic Scaling, say 

cloud service provider i. In round 2, the algorithm would add 

for every cloud consumer j an Continuously Changing 

Workload preference limitation (kj, Vj) if kj would be weakly 

dominated on K−j by a mixture on Vj. In that case, cloud 

service provider i would store the Continuously Changing 

Workload preference limitation (kj, Vj) in its mind, meaning 

that he premises that cloud service provider j prefers some 

resource pooling pattern strategy in Vj to kj. If i consider j’s 

resource pooling pattern preferences, then it should 

consequently deem some resource pooling pattern strategy in 

Vj infinitely more likely than kj. That is, the Continuously 

Changing Workload preference limitations that cloud service 

provider i would store in its mind at round 2 would limit the 

possible totally ordered conjecture it could hold about its 

cloud consumers’ choices. Moreover, if cloud service 

provider i premises that its cloud consumers reason similarly, 

then cloud service provider i can actually deduce the possible 

totally ordered conjecture that its cloud consumers may hold 

at this round. 

In the next round of its reasoning procedure, cloud service 

provider i would then ask for every cloud consumer j: Given 

its limited set of conjecture, would cloud service provider j 

always assume some set E−j   K−j on which some resource 

pooling pattern strategy kj would always be weakly dominated 

by a mixture on Vj? If yes, then cloud service provider i will 

store (kj , Vj) as a new Continuously Changing Workload 

preference limitation in its mind. By doing so, cloud service 

provider i would then further limit the possible totally ordered 

conjecture it could hold about its cloud consumers. Cloud 

service provider i could continue this inductive reasoning 

procedure until no new Continuously Changing Workload 

preference limitation could be added, and hence its possible 

totally ordered conjecture could not be limited any further. 

So we see that the algorithm may serve very well as an 

intuitive reasoning procedure for cloud service providers that 

will eventually lead them to the measurable resource pooling 

pattern strategies in the periodic Elastic Scaling. What is 
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crucial in this reasoning procedure is that a cloud service 

provider only needs to keep track of Continuously Changing 

Workload preference limitations, which substantially 

simplifies matters compared to the original necessary and 

sufficient condition of measurability. In that light, our main 

proposition thus says that in order to find the measurable 

resource pooling pattern strategies in an periodic Elastic 

scaling, it is sufficient for a cloud service provider to think in 

terms of Continuously Changing Workload preference 

limitations, and to reason in accordance with the algorithm. 

In the periodic Elastic scaling  literature [1], there are other 

algorithms that can nicely be interpreted as intuitive reasoning 

procedures. Take, for instance, the concept of common 

resource pooling pattern conjecture in measurability and the 

associated algorithm of iterated elimination of strictly 

dominated resource pooling pattern strategies. Here, the 

algorithm can be seen as a reasoning procedure in which a 

cloud service provider successively deletes cloud consumers’ 

resource pooling pattern strategies, since they can no longer 

be optimal. At every round, this would then limit the cloud 

service provider’s possible conjecture as it must assign 

probability zero to these resource pooling pattern strategies. 

These additional limitations on the cloud service providers’ 

conjecture could then induce further resource pooling pattern 

strategies that can be deleted, and so on. So, in that procedure 

the cloud service providers’ possible (non-totally ordered) 

conjecture are limited further and further by deleting resource 

pooling pattern strategies, whereas in our procedure the 

(totally ordered) conjecture are limited further and further by 

adding new Continuously Changing Workload preference 

limitations. 

A similar story can be told for the concept of iterated 

assumption of measurability within a complete Continuously 

Changing Workload type structure and the associated 

algorithm of iterated elimination of weakly dominated 

resource pooling pattern strategies. Here, the algorithm 

reflects a reasoning procedure in which a cloud service 

provider with totally ordered conjecture iteratedly deletes 

weakly dominated resource pooling pattern strategies from its 

mind. At every round of this procedure, the cloud service 

provider will then deem all surviving resource pooling pattern 

strategies infinitely more likely than all deleted resource 

pooling pattern strategies, thus limiting the possible totally 

ordered conjecture it can hold. So also in this procedure, the 

cloud service provider’s possible conjecture is limited in 

every round by deleting resource pooling pattern strategies. 

5.2 Order Independence 
For the algorithm, it can be shown that the order and speed in 

which we add preference restrictions does not matter for the 

eventual result. That is, it does not matter whether in every 

round we add all preference restrictions that can possibly be 

generated, or only some of these. 

To see this, let us compare two procedures, Procedure 1 and 

Procedure 2, where in the first we always add all possible 

Continuously Changing Workload preference limitations at 

every round, and in the second we only add some of the 

possible Continuously Changing Workload preference 

limitations every time. Then, first of all, Procedure 1 will at 

every round generate at least as many Continuously Changing 

Workload preference limitations as Procedure 2. Namely, at 

round 2 Procedure 1 generates as least as many Continuously 

Changing Workload preference limitations, by necessary and 

sufficient condition. Therefore, at round 3 Procedure 1 limits 

to a smaller set of totally ordered conjecture than Procedure 2. 

But then, under Procedure 1 it will be “easier” to generate 

new Continuously Changing Workload preference limitations 

at round 3 than under Procedure 2. Hence, at round 3 

Procedure 1 will, again, generate at least as many 

Continuously Changing Workload preference limitations as 

Procedure 2, and so on. So, eventually, Procedure 1 will 

generate at least as many Continuously Changing Workload 

preference limitations as Procedure 2. The key argument here 

was that a larger set of Continuously Changing Workload 

preference limitations will lead to a smaller set of possible 

totally ordered conjecture, and a smaller set of possible totally 

ordered conjecture will in turn lead to a larger set of induced 

Continuously Changing Workload preference limitations. So, 

the algorithm is monotone in this sense. 

On the other hand, it can also be shown that every 

Continuously Changing Workload preference limitation 

generated by Procedure 1 will also eventually be generated by 

Procedure 2. Suppose, namely, that Procedure 1 would 

generate some Continuously Changing Workload preference 

limitation that would not be generated at all by Procedure 2. 

Then, let p be the first round at which Procedure 1 would 

generate an Continuously Changing Workload preference 

limitation, say (ki, Vi), not generated by Procedure 2 at all. By 

construction of the algorithm, every totally ordered resource 

pooling pattern conjecture for cloud service provider i that 

consider all Continuously Changing Workload preference 

limitations generated by Procedure 1 before round p, must 

assume some set E−i on which ki is weakly dominated by some 

γi   θ(Vi). By our assumption, all these Continuously 

Changing Workload preference limitations generated by 

Procedure 1 before round p are also eventually generated by 

Procedure 2, let us say before round z ≥ p. But then, every 

totally ordered resource pooling pattern conjecture for cloud 

service provider i that consider all Continuously Changing 

Workload preference limitations generated by Procedure 2 

before round z, assumes a set E−i on which ki is weakly 

dominated by some γi   θ(Vi). 

Hence, Procedure 2 must add the Continuously Changing 

Workload preference limitation (ki, Vi) sooner or later, which 

is a contradiction since we assumed that Procedure 2 does not 

generate Continuously Changing Workload preference 

limitation (ki, Vi) at all. We thus conclude that every 

Continuously Changing Workload preference limitation added 

by Procedure 1 is also finally added by Procedure 2. As such, 

Procedures 1 and 2 eventually generate exactly the same set of 

Continuously Changing Workload preference limitations. So, 

indeed, the order and speed in which we add Continuously 

Changing Workload preference limitations is irrelevant to the 

algorithm. 

6. CONCLUSION AND FUTURE SCOPE 
In this section we conclude, stating that the algorithm of 

iterated addition of Continuously Changing Workload 

preference limitations selects exactly the set of measurable 

resource pooling pattern strategies in the periodic Elastic 

scaling. For our conclusion, we recall the necessary and 

sufficient condition of a likelihood resource pooling pattern 

ordering induced by a TODIS. Consider a TODIS ψi = (ψi
1, . . 

. , ψi
P)on K−i. Remember our convention that ψi has full 

support on K−i, that is, every k−i K−i receives positive 

probability in some level ψi
p. Let Oi= (Oi

1, . . . , Oi
Z )be the 

ordered sequence of disjoint subsets Oi
z   K−i such that (a) ψi 

deems every k−i   Oi
z infinitely more likely than every k'−i   

Oi
z+1, for every  z   {1, . . . ,Z − 1},(b) for every z and every 

k−i , k'−i   Oi
z, the TODIS ψi does not deem k−i infinitely more 

likely than k'−i, nor vice versa, and(c) the union of the sets in 
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Oi is K−i. We call Oi the likelihood resource pooling pattern 

ordering induced by ψi. Our conclusion characterizes, for a 

given resource pooling pattern strategy ki and set Vi   Ki, 

those likelihood resource pooling pattern orderings on K−i that 

admit an TODIS under which ki is weakly preferred to all 

resource pooling pattern strategies in Vi. Despite the progress 

on our interpretation is made the following three open 

problems are available for further research. 

Open Problem 6.1 Let ψi be a TODIS on K−i, let ki be a 

resource pooling pattern strategy and Vi   Ki a subset of 

resource pooling pattern strategies.(a) If under the TODIS ψi, 

resource pooling pattern strategy ki is weakly preferred to all 

resource pooling pattern strategies in Vi. Does ψi assume any 

E−i K−i on which ki is weakly dominated by a mixture on Vi? 

(b) If ψi does not assume any E−i K−i on which ki is weakly 

dominated by a mixture on Vi. Does some TODIS ϕi, inducing 

the same likelihood resource pooling pattern ordering as ψi, 

under which ki is weakly preferred to all resource pooling 

pattern strategies in Vi? 

Open Problem 6.2 Let ti be a measurable Continuously 

Changing Workload type. Does ti’s totally ordered resource 

pooling pattern conjecture on K−i consider every 

Continuously Changing Workload preference limitation in 

F∞
−i? 

Open Problem 6.3 (Property of Continuously Changing 

Workload preference limitations not generated by the 

algorithm). For every cloud service provider i, let Fi
not be the 

set of Continuously Changing Workload preference 

limitations not generated by the algorithm. Does for every (ki, 

Vi)   Fi
not is there an TODIS ψi on K−i such that (1) under ψi, 

resource pooling pattern strategy ki is weakly preferred to all 

resource pooling pattern strategies in Vi, and (2) for every 

cloud consumer’s resource pooling pattern strategy kj, the 

pair ((kj, Vj
−(kj, ψi)) is in Fj

not? 
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