

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.10, May 2016 – www.ijais.org

12

Is it Possible to Sequence Continuously Changing

Workload Patterns for Periodic Elastic Scaling?

Ravi (Ravinder) Prakash
G.

Senior Professor Research,
BMS Institute of Technology

Dodaballapur Road,
Avalahalli, Yelahanka
Bangalore – 560 064

 Akshay Reddy
Undergraduate Student (2015)

Department of Computer
Science Engineering

SDM College of Engineering
and Technology

Dhavalagiri, Dharwad 580 002

ABSTRACT

Measurability is a concept in periodic Elastic scaling based on

the following two conditions: (a) a cloud service provider

should be cautious, that is, should not exclude any cloud

consumer’s resource pooling pattern strategy from

consideration; and (b) a cloud service provider should

consider the cloud consumers’ resource pooling pattern

preferences, that is, should deem a cloud consumer’s resource

pooling pattern strategy ki infinitely more likely than k'i if it

premises the cloud consumer to prefer ki to k'i. A resource

pooling pattern strategy is measurable if it can optimally be

chosen under common resource pooling pattern conjecture in

the events (a) and (b). In this paper we present an algorithm

that for every finite periodic Elastic Scaling operation

computes the set of all measurable resource pooling pattern

strategies. The algorithm is based on the new idea of an

Continuously Changing Workload preference limitation,

which is a pair (ki, Vi) consisting of a resource pooling pattern

strategy ki, and a subset of resource pooling pattern strategies

Vi, for cloud service provider i. The interpretation is that cloud

service provider i prefers some resource pooling pattern

strategy in Vi to ki. The algorithm proceeds by successively

adding Continuously Changing Workload preference

limitations to the periodic Elastic Scaling.

Keywords

Periodic Elastic Scaling, measurability, Continuously

Changing Workload, preference limitation, resource pooling

pattern, Totally Ordered Data-Intensive Systems.

1. INTRODUCTION
In an periodic Elastic Scaling, it is natural to assume that a

cloud service provider reasons about its cloud consumers

before making a decision. Namely, in order to evaluate the

possible consequences of a decision, the cloud service

provider must form some resource pooling pattern conjecture

about its cloud consumers’ choices which, in turn, must be

based on some resource pooling pattern conjecture about its

cloud consumers’ conjecture about their cloud consumers’

choices, and so on. It is the goal of periodic Elastic Scaling

[1] [28] [29[to formally describe such reasoning processes,

and to investigate their behavioral implications.

Throughout this paper we take a cloud service provider set

perspective to analyze periodic Elastic Scaling-theoretic

situations. That is, we always view the periodic Elastic

Scaling from the perspective of cloud service provider set, and

put restrictions only on the conjecture of this particular cloud

service provider set – including conjecture about the cloud

consumers’ conjecture – without imposing restrictions on the

actual conjecture of the cloud consumers. We premise this

approach to be plausible; as we cannot look inside the cloud

consumers at the time we make an Continuously Changing

Workload choice. So, can only base Continuously Changing

Workload choice on conjecture about the cloud consumers,

and not on the actual conjecture and Continuously Changing

Workload choices of cloud consumers. But then, if we want to

analyze the reasonable Continuously Changing Workload

choices a cloud service provider can make in an periodic

Elastic Scaling, it is sufficient to concentrate only on the

conjecture of this particular cloud service provider set, as they

encompass everything that can be used to make a decision.

Although we premise the cloud service provider set

perspective to be very natural, it crucially differs from the

usual approach to periodic Elastic Scaling in papers and

articles, which typically proceed by imposing restrictions on

the conjecture of all cloud service provider set, and not only

cloud service provider set.

Measurability is a concept within periodic Elastic Scaling that

is based upon the following two assumptions:

 A cloud service provider should be cautious, that is, a

cloud service provider should not exclude any cloud

consumer’s resource pooling pattern strategy from

consideration;

 A cloud service provider should consider the cloud

consumers’ resource pooling pattern preferences, that is,

if the cloud service provider premises that an cloud

consumer prefers resource pooling pattern strategy ki to

resource pooling pattern strategy k'i, then the cloud

service provider should deem ki much more likely k'i.

Any resource pooling pattern strategy that can be chosen

optimally under common resource pooling pattern conjecture

in these two events is called measurable.

In order to define measurability formally we can no longer

model the cloud service providers’ conjecture by standard

probability distributions. Suppose, for instance, that cloud

service provider 1 premises that cloud service provider 2

prefers resource pooling pattern strategy a to resource pooling

pattern strategy b. If cloud service provider 1’s resource

pooling pattern conjecture about 2’s choice would be modeled

by a single probability distribution then cloud service provider

13

1 should assign probability 0 to b, since it must consider 2’s

resource pooling pattern preferences. This, however, would

contradict the assumption that it is cautious.

A possible way to define measurability is by means of

sequences of probability distributions, or by using totally

ordered Data-intensive systems [9], [10], [12], [14] [11], [24].

Both frameworks can model a state of mind in which you

deem some cloud consumer’s resource pooling pattern

strategy ki infinitely more likely than some other resource

pooling pattern strategy k'i, without completely discarding the

latter choice.

The practical disadvantage of these richer frameworks is that,

it makes the computation of measurable resource pooling

pattern strategies rather difficult. This is probably also the

reason that measurability, despite its strong intuitive appeal,

has not received as much attention as many other concepts in

periodic Elastic Scaling. It would therefore be very useful to

have an algorithm helping us to compute this measurable

resource pooling pattern strategies. A procedure, called

iteratively trembling, that for any given α > 0 yields the set of

α-measurable resource pooling pattern strategies. By letting α

tend to zero, we finally would obtain the set of measurable

resource pooling pattern strategies. So, in a sense, this

procedure only indirectly leads to the set of measurable

resource pooling pattern strategies, as we first have to apply

the procedure for a sequence of small α’s, and then let α go to

zero.

There is another algorithm designed for measurability, called

iterated backward inference. This procedure does not exactly

yield the set of measurable resource pooling pattern strategies,

as its output may contain resource pooling pattern strategies

that are not measurable. The output, however, always includes

the set of measurable resource pooling pattern strategies.

In this paper we present an algorithm, called iterated addition

of Continuously Changing Workload preference limitations

that directly delivers the set of all measurable resource

pooling pattern strategies in every finite periodic Elastic

Scaling operation [17], [19], [23]. The algorithm is based on

the new notion of an Continuously Changing Workload

preference limitation. Formally, an Continuously Changing

Workload preference limitation for cloud service provider i is

a pair (ki, Vi), where ki is a resource pooling pattern strategy

and Vi a subset of resource pooling pattern strategies for cloud

service provider i. The interpretation is that cloud service

provider i prefers some resource pooling pattern strategy Vi in

to ki, without specifying which one (unless Vi contains only

one resource pooling pattern strategy, of course). A totally

ordered resource pooling pattern conjecture for cloud service

provider i about its cloud consumers’ resource pooling pattern

strategies is a finite sequence ψi = (ψi
1, . . . , ψi

P) of probability

distributions on K−i, the set of cloud consumers’ resource

pooling pattern strategy combinations, such that every

resource pooling pattern strategy combination k−i in K−i

receives positive probability under some probability

distribution ψi
p in this sequence. For every p {1, . . . , P}, we

call ψi
p the level p resource pooling pattern conjecture.

The totally ordered resource pooling pattern conjecture ψi

deems some resource pooling pattern strategy combination k−i

infinitely more likely than some other resource pooling pattern

strategy combination k'−i if there is some level p such that k−i

receives positive probability under the level p resource

pooling pattern conjecture ψi
P, whereas k'−i receives

probability zero under the first p levels. We say that ψi

consider an Continuously Changing Workload preference

limitation (kj, Vj), for cloud consumer j if it deems some

resource pooling pattern strategy in Vj infinitely more likely

than kj. This thus mimics the condition in measurability that i

must consider j’s resource pooling pattern preferences. The

totally ordered resource pooling pattern conjecture ψi is said to

assume a subset E−i K−i of resource pooling pattern strategy

combinations if it deems every element in E−i infinitely more

likely than every element outside E−i.

The algorithm we present proceeds by inductively adding

Continuously Changing Workload preference limitations [6],

[2], [4], [3], [8], [5], [26] until no further Continuously

Changing Workload preference limitations can be produced.

At round 1, we start with the empty set of Continuously

Changing Workload preference limitations for all cloud

service providers. In every subsequent round, we add an

Continuously Changing Workload preference limitation (ki,

Vi) for cloud service provider i if every totally ordered

resource pooling pattern conjecture on K−i that consider all

current Continuously Changing Workload preference

limitations for i’s cloud consumers, assumes some subset

E−i K−i on which ki is weakly dominated by some randomized

resource pooling pattern strategy on Vi. We continue this

process until no further Continuously Changing Workload

preference limitation can be added. Among the final set of

Continuously Changing Workload preference limitations for

cloud service provider i, we look for those resource pooling

pattern strategies ki that are not part of any Continuously

Changing Workload preference limitation (ki, Vi). We show

that these resource pooling pattern strategies are exactly the

measurable resource pooling pattern strategies for cloud

service provider i.

So, at every round the algorithm produces, for each cloud

service provider, a set of Continuously Changing Workload

preference limitations. As the set of Continuously Changing

Workload preference limitations can only grow at every

round, and there are only finitely many possible Continuously

Changing Workload preference limitations, the algorithm

must stop after finitely many rounds.

Not only can this algorithm be used to compute the

measurable resource pooling pattern strategies in an periodic

Elastic Scaling, it also represents a natural inductive

reasoning procedure for the cloud service providers that

eventually lead them to measurable resource pooling pattern

choices. The central object in this reasoning process is that of

an Continuously Changing Workload preference limitation. If

we add an Continuously Changing Workload preference

limitation (ki, Vi) for cloud service provider i, then normally

this means that i’s cloud consumers premises that i prefers

some resource pooling pattern strategy in Vi to ki. Moreover, if

i’s cloud consumers consider i’s resource pooling pattern

preferences, as we assume in measurability, then i’s cloud

consumers will also deem some resource pooling pattern

strategy in Vi infinitely more likely than ki. Thus, by adding

Continuously Changing Workload preference limitations at

every round, we further and further limit the possible totally

ordered conjecture that cloud service providers can plausibly

hold about their cloud consumers’ choices. In a sense, what

the algorithm shows is that, in order to reason your way

toward measurable resource pooling pattern strategies, it is

sufficient to keep track of the cloud service providers’

Continuously Changing Workload preference limitations. At

every round, by considering the current Continuously

Changing Workload preference limitations, we can possibly

derive new Continuously Changing Workload preference

limitations, thus further limitations the cloud service

14

providers’ possible totally ordered conjecture, until this

reasoning process cannot produce any new Continuously

Changing Workload preference limitations. This is where the

reasoning procedure ends, and by looking at the final

Continuously Changing Workload preference limitations we

can find the entire measurable resource pooling pattern

strategies in the periodic Elastic Scaling.

In the algorithm we present, the objects of output are different

than in previous procedure. There, the procedure delivers at

every round and for every cloud service provider i, a set of

full support probability distributions on cloud service provider

i’s resource pooling pattern strategy, where this set becomes

smaller with every round. As there are infinitely many

possible sets of full support probability distributions, previous

procedure can produce infinitely many possible outputs in

every round. This is a major difference with the algorithm we

propose, where at every round there are only a finite number

of possible outputs, namely the Continuously Changing

Workload preference limitations at that round. Note also that

the algorithm in this paper is fundamentally different from

most other inductive concepts in periodic Elastic Scaling,

which usually proceed by successively eliminating resource

pooling pattern strategies from the periodic Elastic Scaling.

Think, for instance, of iterated elimination of strictly (weakly)

dominated resource pooling pattern strategies. So, why did we

not base the algorithm on elimination of resource pooling

pattern strategies as well? The reason is that iterated

elimination of strategies cannot work for measurability. In

Section 2 we provide an algorithm for measurability must

necessarily be of a different nature than the ones we are used

to.

The outline of the paper is as follows. In Section 2 we show,

why successive elimination of resource pooling pattern

strategies does not work for measurability. In Section 3 we

give a formal necessary and sufficient condition of

measurability, by making use of totally ordered Data-intensive

systems [9], [10], [12], [14] [11]. In Section 4 we present the

algorithm, illustrate it by means of our main proposition

showing that the algorithm produces exactly the set of

measurable resource pooling pattern strategies. In Section 5

we discuss some important properties of the algorithm: We

show how the algorithm can be viewed as a natural inductive
reasoning procedure, and explain why the order in which we

add Continuously Changing Workload preference limitations

does not matter for the eventual output. In section 6 we

include conclusion and future scope.

2. WHY ELIMINATION OF RESOURCE

POOLING PATTERN STRATEGIES

DOES NOT WORK
Most algorithms in the periodic Elastic Scaling literature [1],

[27] proceed by successively modifying resource pooling

pattern strategies from the operation cycle. Think, for

instance, of iterated elimination of strictly (weakly) dominated

resource pooling pattern strategies. As announced, the

algorithm we propose for measurability is of a different nature

since it is based on successively adding Continuously

Changing Workload preference limitations rather than

eliminating resource pooling pattern strategies. A natural

question is why we do not stick to the process of eliminating

resource pooling pattern strategies here. In this section we

show why elimination of resource pooling pattern strategies

does not work for measurability.

Let us first be precise about the class of resource pooling

pattern strategy elimination procedures we consider. All the

elimination procedures mentioned above have in common that

at each round, only weakly dominated resource pooling

pattern strategies in the cloud consumer cycle of periodic

Elastic Scaling cycle [18], [20], [22] (but not necessarily all)

are eliminated. Now, say that a resource pooling pattern

strategy elimination procedure is regular if at every round, it

eliminates a (possibly empty) subset of the set of weakly

dominated resource pooling pattern strategies in the cloud

consumer of periodic Elastic Scaling cycle [21].

3. NECESSARY AND SUFFICIENT

CONDITION OF MEASURABILITY

3.1 Totally ordered Data-intensive systems
Totally ordered Data-intensive systems have been formally

introduced as a possible way to represent a decision maker’s

resource pooling pattern conjecture about the data-intensive

state of the data-intensive world. The essential feature is that

it allows the decision maker to deem one data-intensive state

much more likely (in fact, infinitely more likely) than some

other data-intensive state, without completely ignoring the

latter data-intensive state when making a decision.

More formally, let N be some finite set of data-intensive

states. By θ(N) we denote the set of all probability

distributions on N. A Totally ordered Data-intensive systems

(TODIS) on N is a finite sequence of probability distributions

ψ = (ψ1, ψ2, . . ., ψP),

with ψp θ(N) for all p {1, . . . , P}. We refer to ψ1 as the

decision maker’s level 1 resource pooling pattern conjecture,

to ψ2 as its level 2 resource pooling pattern conjecture, and so

on. The interpretation is that the decision maker attaches

much more importance to its level 1 resource pooling pattern

conjecture than to its level 2 resource pooling pattern

conjecture, attaches much more importance to its level 2

resource pooling pattern conjecture than to its level 3 resource

pooling pattern conjecture, and so on, without completely

discarding any of these conjecture. For every data-intensive

state n N, let lp(n,ψ) be the first level p for which ψp(n)>0.

If ψp(n) = 0 for every p {1, . . . , P}, set lp(n,ψ) = ∞. We call

lp(n,ψ) the rank of data-intensive state n within the TODIS ψ.

We say that the TODIS ψ deems data-intensive state n

infinitely more likely than some other data-intensive state

Proposition if n has a lower rank that Proposition.

3.2 Periodic Elastic Scaling Planning

Model
Consider a finite static periodic Elastic Scaling δ = (Ki , xi)i I

where I is the finite set of cloud service providers, the finite

set Ki denotes the set of strategies for cloud service provider i,

and xi : ∏j I Kj →F denotes cloud service provider i’s utility

function. We assume that cloud service provider i does not

only have a resource pooling pattern conjecture about its

cloud consumers’ resource pooling pattern strategy choices,

but also about the possible conjecture that its cloud consumers

could have about the other cloud service providers’ resource

pooling pattern strategy choices, and about the possible

conjecture that the cloud consumers could have about the

possible conjecture that their cloud consumers could have

about the other cloud service providers’ resource pooling

pattern strategy choices, and so on. That is, cloud service

provider i hold a full resource pooling pattern conjecture

hierarchy about the cloud consumers’ choices and the cloud

consumers’ conjecture. If we assume, moreover, that each of

the conjecture in this hierarchy can be represented by a

15

TODIS, this leads to the following periodic Elastic Scaling

planning model [7], [13], [15], [16], [25].

Necessary and sufficient condition 3.1 (periodic Elastic

Scaling planning model). A finite periodic Elastic Scaling

planning model for the periodic Elastic Scaling δ is a tuple (Ti,

ψi)i I where, for all cloud service providers i, Ti is a finite set

of Continuously Changing Workload types, and ψi is a

function that assigns to every Continuously Changing

Workload type ti Ti some TODIS ψi(ti) on the set K−i×T−i of

cloud consumers’ strategy–Continuously Changing Workload

type combinations.

Here, K−i:=∏j≠i Kj denotes the set of cloud consumers’ strategy

combinations, and T−i:=∏j≠i Tj the set of cloud consumers’

Continuously Changing Workload type combinations. The

interpretation is that ψi(ti) represents the resource pooling

pattern conjecture that Continuously Changing Workload type

ti has about its cloud consumers’ choices and conjecture. For

instance, the marginal of ψi(ti) on Pj represents the resource

pooling pattern conjecture that ti has about cloud consumer j’s

choice. Since every cloud consumer’s type tj holds a resource

pooling pattern conjecture about the other cloud service

providers’ choices, we can derive from ψi(ti) as well the

resource pooling pattern conjecture that Continuously

Changing Workload type ti has about the resource pooling

pattern conjecture that cloud service provider j has about its

cloud consumers’ choices, and so on. In fact, from ψi(ti) we

can derive the full resource pooling pattern conjecture

hierarchy that cloud service provider i has about its cloud

consumers’ choices and conjecture.

The reader may wonder why we limit attention to periodic

Elastic Scaling planning models with finitely many

Continuously Changing Workload types for every cloud

service provider. In principle, we could allow for infinitely

many Continuously Changing Workload types for every cloud

service provider, and define measurability for such infinite

periodic Elastic Scaling planning models. But it can be shown

that every measurable strategy in a finite periodic Elastic

Scaling can be supported by a measurable Continuously

Changing Workload type within an periodic Elastic Scaling

planning model with finitely many Continuously Changing

Workload types only. So, we do not “overlook” any

measurable strategies by concentrating on finite Continuously

Changing Workload type spaces only. As working with finite

sets of Continuously Changing Workload types makes things

easier, we have decided to solely concentrate on finite

periodic Elastic Scaling planning models in this paper.

Note that within an periodic Elastic Scaling planning model,

the totally ordered resource pooling pattern conjecture ψi(ti)

= (ψi
1, . . . , ψi

P) of an Continuously Changing Workload type

ti is, mathematically speaking, an TODIS on the set of data-

intensive states K−i×T−i. For every cloud consumers’ resource

pooling pattern strategy–Continuously Changing Workload

type combination (k−i , t−i) K−i×T−i, we can thus define the

rank lp((k−i , t−i), ψi(ti)) of (k−i , t−i) within ψi(ti), being the

lowest level p such that ψi
p(k−i , t−i)>0. Remember that, by

convention, lp((k−i , t−i), ψi(ti))=∞ whenever (k−i , t−i) does not

receive positive probability anywhere in ψi(ti). We say that

Continuously Changing Workload type ti deems the resource

pooling pattern strategy–Continuously Changing Workload

type combination (k−i, t−i) infinitely more likely than some

other combination (k'−i , t'−i) if the rank of (k−i , t−i) is lower

than the rank of (k'−i , t'−i).

Similarly, we can define for every event A K−i×T−i

of cloud consumers’ resource pooling pattern strategy–

Continuously Changing Workload type combinations the

associated rank by

lp(A,ψi(ti))= min{l((k−i , t−i), ψi(ti)|(k−i , t−i) A}.

Hence, the rank of A is the lowest level p such that ψi
p assigns

positive probability to some element in A. This necessary and

sufficient condition then allows us to define the rank of an

individual cloud consumer’s resource pooling pattern

strategy–Continuously Changing Workload type pair (kj, tj),

simply by taking the rank of the event

{kj} × ∏ Kp× {tj} × ∏ Tp.

 p≠i,j p≠i,j

So, we first take the marginal of the TODIS ψi(ti) on Kj×Tj,

and then take the rank of (kj , tj) inside this marginal TODIS.

In a similar fashion, we can also define the rank of an

individual cloud consumer’s Continuously Changing

Workload type tj, and of an individual cloud consumer’s

resource pooling pattern strategy kj. As such, we can formally

data-intensive state expressions like “ψi(ti) deems (kj, tj)

infinitely more likely than(k'j, t'j) for cloud consumer j” or

“ψi(ti) deems kj infinitely more likely than k'j for cloud

consumer j”, which means that the rank of the former is

smaller than the rank of the latter.

We say that Continuously Changing Workload type ti deems

possible some event A K−i×T−i if there is some level p with

ψi
p(A)>0. That is, A is deemed possible if and only if lp(A,

ψi(ti)) ≠ ∞. Since we have defined the rank also for individual

resource pooling pattern strategy–Continuously Changing

Workload type pairs (kj, tj) and for individual Continuously

Changing Workload types tj, we can also formally define the

event that Continuously Changing Workload type ti deems

possible a resource pooling pattern strategy–Continuously

Changing Workload type pair (kj, tj) for cloud consumer j, and

that ti deems possible an cloud consumer’s Continuously

Changing Workload type tj. It simply means that the

associated rank is not ∞.

3.3 Cautious Continuously Changing

Workload Types
Intuitively, caution means that the cloud service provider

should not fully exclude any cloud consumer’s Continuously

Changing Workload choice from consideration. The formal

necessary and sufficient condition is, however – in data-

intensive states that an Continuously Changing Workload type

ti should not exclude any strategy choice for any cloud

consumer’s Continuously Changing Workload type tj

considers possible. Hence, for every resource pooling pattern

conjecture hierarchy that ti deems possible for its cloud

consumer j, and for every measurable strategy kj that j can

possibly choose, Continuously Changing Workload type ti

should deem possible the event that its cloud consumer holds

this resource pooling pattern conjecture hierarchy and chooses

kj.

Necessary and sufficient condition 3.2 (Cautious

Continuously Changing Workload type). Consider an periodic

Elastic Scaling planning model with sets of Continuously

Changing Workload types Ti for every cloud service provider

i. Continuously Changing Workload type t Ti is cautious if,

for every cloud consumer j, every Continuously Changing

Workload type t Tj it considers possible, and every resource

pooling pattern strategy choice kj Kj, Continuously

16

Changing Workload type ti deems possible the strategy–

Continuously Changing Workload type pair (kj, tj).

3.4 Considering the cloud consumers’

resource pooling pattern preferences
The key condition for measurability is that an Continuously

Changing Workload type should consider its cloud

consumers’ Continuously Changing Workload resource

pooling pattern preferences. In words it means that, whenever

Continuously Changing Workload type ti premises that its

cloud consumer j prefers some resource pooling pattern

strategy kj to some other resource pooling pattern strategy k'j,

then it should deem kj infinitely more likely than k'j. We must

first define what it means, within our periodic Elastic Scaling

planning model, that an Continuously Changing Workload

type prefers some resource pooling pattern strategy to another

resource pooling pattern strategy.

Consider an Continuously Changing Workload type ti with an

TODIS ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i. Then,

for every level p {1, . . . , P} and every resource

pooling pattern strategy ki, we can define the level p expected

utility

xi(ki, ψi
p):= Σ ψi

P (k−i , t−i) xi(ki , k−i).

 (k−i ,t−i) K−i×T−i

This is the expected utility that would result by choosing ki

under the resource pooling pattern conjecture ψi
P.

Necessary and sufficient condition 3.3 (An Continuously

Changing Workload type’s preference relation over resource

pooling pattern strategies). Let ti Ti be an Continuously

Changing Workload type with TODIS ψi(ti) = (ψi
1, . . . , ψi

P)

on K−i×T−i. Continuously Changing Workload type ti prefers

resource pooling pattern strategy ki to some other resource

pooling pattern strategy k'i if there is some level p {1, . . . ,

P} such that xi(ki, ψi
o) > xi(k'i, ψi

o) and xi(ki, ψi
o) = xi(k'i, ψi

o)

for all o<p.

For later purposes, we say that Continuously Changing

Workload type ti weakly prefers ki to k'i if ti does not prefer k'i
to ki.

Necessary and sufficient condition 3.4 (Considering the

cloud consumers’ resource pooling pattern preferences). Let

ti Ti be a cautious Continuously Changing Workload type.

Continuously Changing Workload type ti consider the cloud

consumer’s resource pooling pattern preferences if, for every

cloud consumer j, every Continuously Changing Workload

type tj Tj deemed possible by ti, and every two strategies kj,

k'j such that tj prefers kj to k'j, Continuously Changing

Workload type ti deems the pair (kj, tj) infinitely more likely

than the pair (k'j, tj).

3.5 Measurability
We say that an Continuously Changing Workload type ti is

measurable if ti is cautious and consider the cloud consumers’

resource pooling pattern preferences, premises that all cloud

consumers are cautious and consider their cloud consumers’

resource pooling pattern preferences, premises that all cloud

consumers premise that their cloud consumers are cautious

and consider their cloud consumers’ resource pooling pattern

preferences, and so on. In other words, ti is cautious and

consider the cloud consumers’ resource pooling pattern

preferences, and expresses common resource pooling pattern

conjecture in the event that cloud service providers are

cautious and consider the cloud consumers’ resource pooling

pattern preferences.

Necessary and sufficient condition 3.5 (Common resource

pooling pattern conjecture in “caution and consider of the

cloud consumers’ resource pooling pattern preferences”). An

Continuously Changing Workload type ti expresses common

resource pooling pattern conjecture in the event that cloud

service providers are cautious and consider the cloud

consumers’ resource pooling pattern preferences if ti only

deems possible cloud consumers’ Continuously Changing

Workload types that are cautious and consider their cloud

consumers’ resource pooling pattern preferences, only deems

possible cloud consumers’ Continuously Changing Workload

types that only deem possible cloud consumers’ Continuously

Changing Workload types that are cautious and consider their

cloud consumers’ resource pooling pattern preferences, and so

on.

By additionally assuming that ti itself is cautious and consider

the cloud consumers’ resource pooling pattern preferences, we

obtain the necessary and sufficient condition of a measurable

Continuously Changing Workload type.

Necessary and sufficient condition 3.6 (measurable

Continuously Changing Workload type). An Continuously

Changing Workload type ti is measurable if it is cautious and

consider the cloud consumers’ resource pooling pattern

preferences, and moreover expresses common resource

pooling pattern conjecture in the event that cloud service

providers are cautious and consider the cloud consumers’

resource pooling pattern preferences.

Finally, we say that a resource pooling pattern strategy ki is

measurable for cloud service provider i if it is optimal for

some measurable Continuously Changing Workload type.

Formally, a resource pooling pattern strategy ki is called

optimal for Continuously Changing Workload type ti if ti

weakly prefers ki to any other resource pooling pattern

strategy.

Necessary and sufficient condition 3.7 (measurable resource

pooling pattern strategy). A resource pooling pattern strategy

ki for cloud service provider i is measurable if there is some

finite periodic Elastic Scaling planning model (Ti, ψi)i I and

some measurable Continuously Changing Workload type ti

 Ti such that ki is optimal for ti.

As we already mentioned before, the concept of a measurable

resource pooling pattern strategy would not change if we

would allow for infinite periodic Elastic Scaling planning

models here.

4. ALGORITHM
In this section we will present an algorithm that always

delivers all measurable resource pooling pattern strategies.

Before doing so, we first provide some intuitive arguments

that eventually will lead to the algorithm. Finally, we state our

main result, namely that the algorithm yields precisely the set

of measurable resource pooling pattern strategies in every

periodic Elastic Scaling.

4.1 Road to the Algorithm
In Section II we have seen that elimination of (subsets of)

weakly dominated resource pooling pattern strategies cannot

work for measurability. So, what kind of procedure could

work here? We start our informal investigation with the

following well-known fact:

Step 1. Suppose that resource pooling pattern strategy ki is

weakly dominated on K−i by some randomized resource

pooling pattern strategy γi θ(Vi), where Vi is a subset of

resource pooling pattern strategies. Then, if cloud service

17

provider i is cautious, it will prefer some resource pooling

pattern strategy in Vi to ki. We say that (ki, Vi) is a resource

pooling pattern Continuously Changing Workload preference

limitation for cloud service provider i.

Here, θ(Vi) denotes the set of probability distributions on Vi.

The reason for this fact is simple: If ki is weakly dominated by

resource pooling pattern γi, then under every cautious totally

ordered resource pooling pattern conjecture, ki will be worse

than γi, and hence there must be some vi Vi which is better

than ki under such a cautious totally ordered resource pooling

pattern conjecture. So, (ki, Vi) will be a resource pooling

pattern Continuously Changing Workload preference

limitation for cloud service provider i.

Suppose now that cloud service provider i premise its cloud

consumers are cautious and that it consider its cloud

consumers’ resource pooling pattern preferences. If some

cloud consumer’s resource pooling pattern strategy kj is

weakly dominated on K−j by some randomized resource

pooling pattern strategy γi θ(Vi), then we know by Step 1

that cloud service provider j will prefer some resource pooling

pattern strategy in Vj to kj in case it is cautious. As cloud

service provider i indeed premises it is cautious, and consider

j’s resource pooling pattern preferences, cloud service

provider i must deem some resource pooling pattern strategy

in Vj infinitely more likely than kj. We say that cloud service

provider i’s totally ordered resource pooling pattern

conjecture consider the preference limitation (kj, Vj). This

leads to the following observation:

Step 2. Suppose cloud service provider i premises its cloud

consumers are cautious, and consider its cloud consumers’

resource pooling pattern preferences. Then, i’s totally ordered

resource pooling pattern conjecture must consider every cloud

consumer’s resource pooling pattern Continuously Changing

Workload preference limitation (kj, Vj) generated in Step 1.

Say that a totally ordered resource pooling pattern conjecture

for cloud service provider i assumes a set E−i K−i of cloud

consumers’ resource pooling pattern strategy combinations if

it deems all resource pooling pattern strategy combinations

inside E−i infinitely more likely than all resource pooling

pattern strategy combinations outside E−i. Suppose now that

i’s totally ordered resource pooling pattern conjecture is

cautious, and assumes some set E−i of cloud consumers’

resource pooling pattern strategy combinations. Assume,

moreover, that its resource pooling pattern strategy ki is

weakly dominated on E−i by a randomized resource pooling

pattern strategy γi θ(Vi). Then, i must prefer some resource

pooling pattern strategy in Vi to ki. The argument is basically

the same as for Step 1, if we would “reduce” the periodic

Elastic Scaling to cloud consumers’ resource pooling pattern

strategy combinations in E−i. We thus obtain the following

step:

Step 3. Suppose that every totally ordered resource pooling

pattern conjecture for cloud service provider i considering all

Continuously Changing Workload preference limitations from

Step 1, assumes some E−i K−ion which ki is weakly

dominated by some γi θ(Vi). Suppose, moreover, that cloud

service provider i is cautious, premises its cloud consumers

are cautious, and consider the cloud consumers’ resource

pooling pattern preferences. Then, i must prefer some

resource pooling pattern strategy in Vi to ki. We say that (ki,

Vi) is a new Continuously Changing Workload preference

limitation for cloud service provider i.

Of course, we can iterate this argument if we assume that

cloud service provider i is cautious, consider the cloud

consumers’ resource pooling pattern preferences, and

expresses common resource pooling pattern conjecture in the

event that cloud service providers are cautious and consider

the cloud consumers’ resource pooling pattern preferences.

That is, if we assume that cloud service provider i’s

Continuously Changing Workload type is measurable. The

inductive step would then look as follows:

Inductive step. Suppose that every totally ordered resource

pooling pattern conjecture for i that consider all Continuously

Changing Workload preference limitations generated so far,

assumes some E−i K−ion which ki is weakly dominated by

some γi θ(Vi). Then, if i is of a measurable Continuously

Changing Workload type, it must prefer some resource

pooling pattern strategy in Vi to ki. So, (ki, Vi) would be a new

Continuously Changing Workload preference limitation for

cloud service provider i.

This would thus generate an inductive procedure in which at

every step (possibly) some new Continuously Changing

Workload preference limitations would be added for the cloud

service providers. Since there are only finitely many possible

Continuously Changing Workload preference limitations for

the cloud service providers, this procedure must end after

finitely many steps. Now, consider some cloud service

provider i, and its set of Continuously Changing Workload

preference limitations generated by the procedure above.

If cloud service provider i is of some measurable

Continuously Changing Workload type, we know from our

arguments above that it will never choose a resource pooling

pattern strategy ki if it is part of some Continuously Changing

Workload preference limitation (ki, Vi). In that case, namely, it

would always prefer some resource pooling pattern strategy in

Vi to ki, so ki could not be optimal.

So, the procedure above rules out resource pooling pattern

strategies that is certainly not measurable. But what about the

converse? So, what about resource pooling pattern strategies

that are not ruled out by the procedure above? The main

proposition in this paper, Proposition 4.6, will show that the

“surviving” resource pooling pattern strategies are all

measurable! Hence, the procedure above will always select

exactly those resource pooling pattern strategies that are

measurable – not more and not less.

4.2 Description of the algorithm
Before we state the algorithm, we first formally necessary and

sufficient condition the new concepts we described above,

such as Continuously Changing Workload preference

limitations, what it means for a totally ordered resource

pooling pattern conjecture to consider an Continuously

Changing Workload preference limitation, and so on.

Necessary and sufficient condition 4.1 (Continuously

Changing Workload preference limitation). An Continuously

Changing Workload preference limitation for cloud service

provider i is a pair (ki, Vi) where ki is a resource pooling

pattern strategy, and Vi a nonempty subset of resource pooling

pattern strategies.

The interpretation is that cloud service provider i prefers at

least one resource pooling pattern strategy from Vi to ki. Now,

consider a totally ordered resource pooling pattern conjecture

ψi on K−i, which is simply a TODIS on K−i. From here on, we

will always assume that such a totally ordered resource

pooling pattern conjecture ψi has full support on K−i, that is,

18

every resource pooling pattern strategy combination in K−i

receives positive probability in some level of ψi.

Necessary and sufficient condition 4.2 (Considering a

Continuously Changing Workload preference limitation).A

totally ordered resource pooling pattern conjecture ψi on K−i

consider an Continuously Changing Workload preference

limitation (kj, Vj) for cloud service provider j if ψi deems some

resource pooling pattern strategy in Vj infinitely more likely

than kj.

This, in a sense, mimics the requirement that cloud service

provider i must consider j’s resource pooling pattern

preferences.

Necessary and sufficient condition 4.3 (Assuming a set of

cloud consumers’ resource pooling pattern strategy

combinations). Consider a subset E−i K−i of cloud

consumers’ resource pooling pattern strategy combinations,

and a totally ordered resource pooling pattern conjecture ψi on

K−i. The totally ordered resource pooling pattern conjecture ψi

assumes the set E−i if ψi deems all resource pooling pattern

strategy combinations inside E−i infinitely more likely than all

resource pooling pattern strategy combinations outside E−i.

Note that a totally ordered resource pooling pattern conjecture

ψi= (ψi
1, . . . , ψi

P) on K−i assumes a subset E−i K−i if and

only if, there is some level p {1, . . . , P} such that

Uo≤p supp() = E−i. Here, supp(ψi
o)denotes the support of the

probability distribution ψi
o. A randomized resource pooling

pattern strategy for cloud service provider i is a probability

distribution γi θ(Ki).on cloud service provider i’s resource

pooling pattern strategies. For a subset Vi Ki, we denote by

θ(Vi) the set of randomized resource pooling pattern strategies

that assign positive probability only to resource pooling

pattern strategies in Vi. For some cloud consumers’ resource

pooling pattern strategy combination k−i K−i, let

xi(γi , k−i) := Σ γi(ki) xi(ki , k−i)

 ki Ki

denote i’s expected utility from the randomized resource

pooling pattern strategy γi and the cloud consumers’ resource

pooling pattern strategy combination k−i.

Necessary and sufficient condition 4.4 (Weakly dominated

resource pooling pattern strategy). Let E−i K−i be a subset

of the cloud consumers’ resource pooling pattern strategy

combinations. Resource pooling pattern Strategy ki is said to

be weakly dominated by randomized resource pooling pattern

strategy γi on E−i if xi(γi , k−i) ≥ xi(ki , k−i) for all k−i E−i, with

strict in equality for at least some k−i E−i.

We are now ready to present the algorithm. The idea is to start

with the empty set of Continuously Changing Workload

preference limitations for all cloud service providers, and at

every round to add new Continuously Changing Workload

preference limitations, if possible. For that reason, the

algorithm is called “iterated addition of Continuously

Changing Workload preference limitations”.

Algorithm 4.5 (Iterated addition of Continuously Changing

Workload preference limitations). In round 1, begin for all

cloud service providers i with the empty set of Continuously

Changing Workload preference limitations.

At every further round q ≥ 2, limit for every cloud service

provider i to those totally ordered resource pooling pattern

conjecture on K−i that consider all cloud consumers’

Continuously Changing Workload preference limitations

generated so far. Add a new Continuously Changing

Workload preference limitation (ki, Vi) for cloud service

provider i if every such totally ordered resource pooling

pattern conjecture assumes some set E−i K−i on which ki is

weakly dominated by some γi θ(Vi).

Since the number of Continuously Changing Workload

preference limitations is finite, this algorithm must end after a

finite number of rounds. We say that resource pooling pattern

strategy ki survives the algorithm of iterated addition of

Continuously Changing Workload preference limitations if ki

is not part of any Continuously Changing Workload

preference limitation (ki, Vi) generated by the algorithm.

Namely, if ki were to be part of an Continuously Changing

Workload preference limitation (ki, Vi) produced by the

algorithm, then cloud service provider i would prefer at least

one strategy in Vi to ki, and hence ki could not be optimal.

4.3 Main Proposition
Our main proposition states that the algorithm of iterated

addition of Continuously Changing Workload preference

limitations yields exactly the set of measurable resource

pooling pattern strategies for every cloud service provider.

Proposition 4.6 (Algorithm yields precisely the set of

measurable resource pooling pattern strategies). Consider a

finite static periodic Elastic Scaling. Then, a resource pooling

pattern strategy ki is measurable, if and only if, ki survives the

algorithm of iterated addition of Continuously Changing

Workload preference limitations.

The easier direction is to show that every measurable resource

pooling pattern strategy survives iterated addition of

Continuously Changing Workload preference limitation. So, a

measurable resource pooling pattern strategy ki can never be

part of an Continuously Changing Workload preference

limitation (ki, Vi) generated by the algorithm. The more

difficult direction is to prove that every resource pooling

pattern strategy ki that is not part of any such Continuously

Changing Workload preference limitation (ki, Vi) is

measurable. Hence, we must construct an periodic Elastic

Scaling planning model in which each of this resource pooling

pattern strategies ki is supported by some measurable

Continuously Changing Workload type. This construction is

rather delicate.

From the proposition, we can easily derive the following

observation: If in a given periodic Elastic Scaling no resource

pooling pattern strategy is weakly dominated, then all

resource pooling pattern strategies for the cloud service

providers are measurable. Namely, the algorithm we present

will only generate Continuously Changing Workload
preference limitations at the first round if there is at least

some resource pooling pattern strategy that is weakly

dominated within the full periodic Elastic Scaling. Otherwise,

the algorithm will not generate any Continuously Changing

Workload preference limitation at all, and hence all resource

pooling pattern strategies would survive the algorithm.

4.4 A Finite Formulation of the Algorithm
The algorithm of iterated addition of Continuously Changing

Workload preference limitations as we have formulated it

proceeds by adding Continuously Changing Workload

preference limitations and deleting totally ordered conjecture

at every round. More precisely, we start with the empty set of

Continuously Changing Workload preference limitations and

the full set of totally ordered conjecture. At the first round we

see whether we can add some Continuously Changing

Workload preference limitations. If so, then this would reduce

19

the set of totally ordered conjecture, which at the next round

could add some further Continuously Changing Workload

preference limitations, and so on.

What is somewhat undesirable from a computational point of

view is that there are infinitely many possible totally ordered

conjecture in the periodic Elastic Scaling. This would suggest

that at every round in the algorithm we must scan through

infinitely many totally ordered conjecture. This, however, is

not necessary. What matters for the algorithm is not so much

the precise probabilities in the totally ordered resource

pooling pattern conjecture, but the induced “likelihood

resource pooling pattern ordering” on cloud consumers’

resource pooling pattern strategy combinations. More

precisely, let ψi= (ψi
1, . . . , ψi

P) be a totally ordered resource

pooling pattern conjecture on K−i. Remember our convention

that ψi has full support on K−i, that is, every k−i K−i receives

positive probability in some level ψi
p. Let Oi= (Oi

1, . . . ,

Oi
Z)be the ordered sequence of disjoint subsets Oi

z K−i such

that (a) ψi deems every k−i Oi
z infinitely more likely than

every K−i Oi
z+1 for every z {1, . . . ,Z − 1}, (b) for every

m and every k'−i , k−i Oi
z, the TODIS ψi does not deem k−i

infinitely more likely than k'−i, nor vice versa, and (c) the

union of the sets in Oi is K−i. We call Oi the likelihood

ordering induced by ψi. Formally, we have the following

necessary and sufficient condition.

Necessary and sufficient condition 4.7 (Likelihood

ordering). A likelihood ordering for cloud service provider i

on the cloud consumers’ resource pooling pattern strategy

combinations is an ordered sequence Oi= (Oi
1, . . . , Oi

Z

)where Oi
1, . . . , Oi

Z are pair-wise disjoint subsets of K−i

whose union is equal to K−i.

So, the interpretation is that Oi deems all resource pooling

pattern strategy combinations in Oi
1 infinitely more likely than

all resource pooling pattern strategy combinations in Oi
2,

deems all resource pooling pattern strategy combinations in

Oi
2 infinitely more likely than all resource pooling pattern

strategy combinations in Oi
3, and so on. It is clear that there

are only finitely many likelihood orderings in the periodic

Elastic Scaling, since there are only finitely many resource

pooling pattern strategies for every cloud service provider.

We can now easily extend the necessary and sufficient

condition of “considering an Continuously Changing

Workload preference limitation” and “assuming a set of cloud

consumers’ resource pooling pattern strategy combinations”

to likelihood orderings. Say that a likelihood resource pooling

pattern ordering Oi= (Oi
1, . . . , Oi

Z) consider an

Continuously Changing Workload preference limitation (kj ,

Vj) if Oi deems some resource pooling pattern strategy in Vj

infinitely more likely than kj. Also, the likelihood ordering Oi

is said to assume the set E−i of cloud consumers’ resource

pooling pattern strategy combinations if Oi deems all resource

pooling pattern strategy combinations inside E−i, infinitely

more likely than all resource pooling pattern strategy

combinations outside E−i. The algorithm of iterated addition of

Continuously Changing Workload preference limitations can

thus alternatively be stated as follows:

Algorithm 4.8 (Finite version). In round 1, begin for all cloud

service providers i with the empty set of Continuously

Changing Workload preference limitations.

At every further round q ≥ 2, limit for every cloud service

provider i to those likelihood resource pooling pattern

orderings on K−i that consider all cloud consumers’

Continuously Changing Workload preference limitations

generated so far. Add a new Continuously Changing

Workload preference limitation (ki, Vi) for cloud service

provider i if every such likelihood resource pooling pattern

ordering assumes some set E−i K−ion which ki is weakly

dominated by some γi θ(Vi).

The advantage of this formulation is that at every round, we

only have to scan through finitely many objects, as there are

only finitely many Continuously Changing Workload

preference limitations and likelihood resource pooling pattern

orderings in the periodic Elastic Scaling. Obviously, this

algorithm generates precisely the same set of Continuously

Changing Workload preference limitations as the original

procedure. As such, the measurable resource pooling pattern

strategies are precisely those resource pooling pattern

strategies that survive this alternative algorithm.

5. DISCUSSION
In this section we will discuss some important properties of

the algorithm.

5.1 Algorithm as an inductive reasoning

procedure
The algorithm is not merely a tool to compute the measurable

resource pooling pattern strategies in an periodic Elastic

Scaling, but can also be interpreted as an inductive reasoning

process that can be used by a cloud service provider who

reasons in the spirit of measurability. Consider namely a fixed

cloud service provider in the periodic Elastic Scaling, say

cloud service provider i. In round 2, the algorithm would add

for every cloud consumer j an Continuously Changing

Workload preference limitation (kj, Vj) if kj would be weakly

dominated on K−j by a mixture on Vj. In that case, cloud

service provider i would store the Continuously Changing

Workload preference limitation (kj, Vj) in its mind, meaning

that he premises that cloud service provider j prefers some

resource pooling pattern strategy in Vj to kj. If i consider j’s

resource pooling pattern preferences, then it should

consequently deem some resource pooling pattern strategy in

Vj infinitely more likely than kj. That is, the Continuously

Changing Workload preference limitations that cloud service

provider i would store in its mind at round 2 would limit the

possible totally ordered conjecture it could hold about its

cloud consumers’ choices. Moreover, if cloud service

provider i premises that its cloud consumers reason similarly,

then cloud service provider i can actually deduce the possible

totally ordered conjecture that its cloud consumers may hold

at this round.

In the next round of its reasoning procedure, cloud service

provider i would then ask for every cloud consumer j: Given

its limited set of conjecture, would cloud service provider j

always assume some set E−j K−j on which some resource

pooling pattern strategy kj would always be weakly dominated

by a mixture on Vj? If yes, then cloud service provider i will

store (kj , Vj) as a new Continuously Changing Workload

preference limitation in its mind. By doing so, cloud service

provider i would then further limit the possible totally ordered

conjecture it could hold about its cloud consumers. Cloud

service provider i could continue this inductive reasoning

procedure until no new Continuously Changing Workload

preference limitation could be added, and hence its possible

totally ordered conjecture could not be limited any further.

So we see that the algorithm may serve very well as an

intuitive reasoning procedure for cloud service providers that

will eventually lead them to the measurable resource pooling

pattern strategies in the periodic Elastic Scaling. What is

20

crucial in this reasoning procedure is that a cloud service

provider only needs to keep track of Continuously Changing

Workload preference limitations, which substantially

simplifies matters compared to the original necessary and

sufficient condition of measurability. In that light, our main

proposition thus says that in order to find the measurable

resource pooling pattern strategies in an periodic Elastic

scaling, it is sufficient for a cloud service provider to think in

terms of Continuously Changing Workload preference

limitations, and to reason in accordance with the algorithm.

In the periodic Elastic scaling literature [1], there are other

algorithms that can nicely be interpreted as intuitive reasoning

procedures. Take, for instance, the concept of common

resource pooling pattern conjecture in measurability and the

associated algorithm of iterated elimination of strictly

dominated resource pooling pattern strategies. Here, the

algorithm can be seen as a reasoning procedure in which a

cloud service provider successively deletes cloud consumers’

resource pooling pattern strategies, since they can no longer

be optimal. At every round, this would then limit the cloud

service provider’s possible conjecture as it must assign

probability zero to these resource pooling pattern strategies.

These additional limitations on the cloud service providers’

conjecture could then induce further resource pooling pattern

strategies that can be deleted, and so on. So, in that procedure

the cloud service providers’ possible (non-totally ordered)

conjecture are limited further and further by deleting resource

pooling pattern strategies, whereas in our procedure the

(totally ordered) conjecture are limited further and further by

adding new Continuously Changing Workload preference

limitations.

A similar story can be told for the concept of iterated

assumption of measurability within a complete Continuously

Changing Workload type structure and the associated

algorithm of iterated elimination of weakly dominated

resource pooling pattern strategies. Here, the algorithm

reflects a reasoning procedure in which a cloud service

provider with totally ordered conjecture iteratedly deletes

weakly dominated resource pooling pattern strategies from its

mind. At every round of this procedure, the cloud service

provider will then deem all surviving resource pooling pattern

strategies infinitely more likely than all deleted resource

pooling pattern strategies, thus limiting the possible totally

ordered conjecture it can hold. So also in this procedure, the

cloud service provider’s possible conjecture is limited in

every round by deleting resource pooling pattern strategies.

5.2 Order Independence
For the algorithm, it can be shown that the order and speed in

which we add preference restrictions does not matter for the

eventual result. That is, it does not matter whether in every

round we add all preference restrictions that can possibly be

generated, or only some of these.

To see this, let us compare two procedures, Procedure 1 and

Procedure 2, where in the first we always add all possible

Continuously Changing Workload preference limitations at

every round, and in the second we only add some of the

possible Continuously Changing Workload preference

limitations every time. Then, first of all, Procedure 1 will at

every round generate at least as many Continuously Changing

Workload preference limitations as Procedure 2. Namely, at

round 2 Procedure 1 generates as least as many Continuously

Changing Workload preference limitations, by necessary and

sufficient condition. Therefore, at round 3 Procedure 1 limits

to a smaller set of totally ordered conjecture than Procedure 2.

But then, under Procedure 1 it will be “easier” to generate

new Continuously Changing Workload preference limitations

at round 3 than under Procedure 2. Hence, at round 3

Procedure 1 will, again, generate at least as many

Continuously Changing Workload preference limitations as

Procedure 2, and so on. So, eventually, Procedure 1 will

generate at least as many Continuously Changing Workload

preference limitations as Procedure 2. The key argument here

was that a larger set of Continuously Changing Workload

preference limitations will lead to a smaller set of possible

totally ordered conjecture, and a smaller set of possible totally

ordered conjecture will in turn lead to a larger set of induced

Continuously Changing Workload preference limitations. So,

the algorithm is monotone in this sense.

On the other hand, it can also be shown that every

Continuously Changing Workload preference limitation

generated by Procedure 1 will also eventually be generated by

Procedure 2. Suppose, namely, that Procedure 1 would

generate some Continuously Changing Workload preference

limitation that would not be generated at all by Procedure 2.

Then, let p be the first round at which Procedure 1 would

generate an Continuously Changing Workload preference

limitation, say (ki, Vi), not generated by Procedure 2 at all. By

construction of the algorithm, every totally ordered resource

pooling pattern conjecture for cloud service provider i that

consider all Continuously Changing Workload preference

limitations generated by Procedure 1 before round p, must

assume some set E−i on which ki is weakly dominated by some

γi θ(Vi). By our assumption, all these Continuously

Changing Workload preference limitations generated by

Procedure 1 before round p are also eventually generated by

Procedure 2, let us say before round z ≥ p. But then, every

totally ordered resource pooling pattern conjecture for cloud

service provider i that consider all Continuously Changing

Workload preference limitations generated by Procedure 2

before round z, assumes a set E−i on which ki is weakly

dominated by some γi θ(Vi).

Hence, Procedure 2 must add the Continuously Changing

Workload preference limitation (ki, Vi) sooner or later, which

is a contradiction since we assumed that Procedure 2 does not

generate Continuously Changing Workload preference

limitation (ki, Vi) at all. We thus conclude that every

Continuously Changing Workload preference limitation added

by Procedure 1 is also finally added by Procedure 2. As such,

Procedures 1 and 2 eventually generate exactly the same set of

Continuously Changing Workload preference limitations. So,

indeed, the order and speed in which we add Continuously

Changing Workload preference limitations is irrelevant to the

algorithm.

6. CONCLUSION AND FUTURE SCOPE
In this section we conclude, stating that the algorithm of

iterated addition of Continuously Changing Workload

preference limitations selects exactly the set of measurable

resource pooling pattern strategies in the periodic Elastic

scaling. For our conclusion, we recall the necessary and

sufficient condition of a likelihood resource pooling pattern

ordering induced by a TODIS. Consider a TODIS ψi = (ψi
1, . .

. , ψi
P)on K−i. Remember our convention that ψi has full

support on K−i, that is, every k−i K−i receives positive

probability in some level ψi
p. Let Oi= (Oi

1, . . . , Oi
Z)be the

ordered sequence of disjoint subsets Oi
z K−i such that (a) ψi

deems every k−i Oi
z infinitely more likely than every k'−i

Oi
z+1, for every z {1, . . . ,Z − 1},(b) for every z and every

k−i , k'−i Oi
z, the TODIS ψi does not deem k−i infinitely more

likely than k'−i, nor vice versa, and(c) the union of the sets in

21

Oi is K−i. We call Oi the likelihood resource pooling pattern

ordering induced by ψi. Our conclusion characterizes, for a

given resource pooling pattern strategy ki and set Vi Ki,

those likelihood resource pooling pattern orderings on K−i that

admit an TODIS under which ki is weakly preferred to all

resource pooling pattern strategies in Vi. Despite the progress

on our interpretation is made the following three open

problems are available for further research.

Open Problem 6.1 Let ψi be a TODIS on K−i, let ki be a

resource pooling pattern strategy and Vi Ki a subset of

resource pooling pattern strategies.(a) If under the TODIS ψi,

resource pooling pattern strategy ki is weakly preferred to all

resource pooling pattern strategies in Vi. Does ψi assume any

E−i K−i on which ki is weakly dominated by a mixture on Vi?

(b) If ψi does not assume any E−i K−i on which ki is weakly

dominated by a mixture on Vi. Does some TODIS ϕi, inducing

the same likelihood resource pooling pattern ordering as ψi,

under which ki is weakly preferred to all resource pooling

pattern strategies in Vi?

Open Problem 6.2 Let ti be a measurable Continuously

Changing Workload type. Does ti’s totally ordered resource

pooling pattern conjecture on K−i consider every

Continuously Changing Workload preference limitation in

F∞
−i?

Open Problem 6.3 (Property of Continuously Changing

Workload preference limitations not generated by the

algorithm). For every cloud service provider i, let Fi
not be the

set of Continuously Changing Workload preference

limitations not generated by the algorithm. Does for every (ki,

Vi) Fi
not is there an TODIS ψi on K−i such that (1) under ψi,

resource pooling pattern strategy ki is weakly preferred to all

resource pooling pattern strategies in Vi, and (2) for every

cloud consumer’s resource pooling pattern strategy kj, the

pair ((kj, Vj
−(kj, ψi)) is in Fj

not?

7. REFERENCES
[1] Kiran M., Saikat Mukherjee, Ravi Prakash G.,

Characterization of Randomized Shuffle and Sort

Quantifiability in MapReduce Model, International

Journal of Computer Applications, 51-58, Volume 79,

No. 5, October 2013.

[2] Amresh Kumar, Kiran M., Saikat Mukherjee, Ravi

Prakash G., Verification and Validation of MapReduce

Program model for Parallel K-Means algorithm on

Hadoop Cluster, International Journal of Computer

Applications, 48-55, Volume 72, No. 8, June 2013.

[3] Barroso, L.A., Ho¨lzle, U.: The datacenter as a computer:

an introduction to the design of warehouse-scale

machines. Synth. Lect. Comput. Architect. 4, 1–45

(2009).

[4] Kiran M., Amresh Kumar, Saikat Mukherjee, Ravi

Prakash G., Verification and Validation of MapReduce

Program Model for Parallel Support Vector Machine

Algorithm on Hadoop Cluster, International Journal of

Computer Science Issues, 317-325, Vol. 10, Issue 3, No.

1, May 2013.

[5] Ravi Prakash G, Kiran M. Saikat Mukherjee, On

Randomized Preference Limitation Protocol for

Quantifiable Shuffle and Sort Behavioral Implications in

MapReduce Programming Model, Parallel & Cloud

Computing, Vol. 3, Issue 1, 1-14, January 2014.

[6] Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A

collection of patterns for cloud types, cloud service

models, and cloud-based application architectures.

Technical report, University of Stuttgart (2011)

[7] Ravi Prakash G, Kiran M, On The Least Economical

MapReduce Sets for Summarization Expressions,

International Journal of Computer Applications, 13-20,

Volume 94, No.7, May 2014.

[8] Ravi (Ravinder) Prakash G, Kiran M., On Randomized

Minimal MapReduce Sets for Filtering Expressions,

International Journal of Computer Applications, Volume

98, No. 3, Pages 1-8, July 2014.

[9] Fehling, C., Leymann, F., Retter, R., Schumm, D.,

Schupeck, W.: An architectural pattern language of

cloud-based applications. In: Proceedings of the 18th

Conference on Pattern Languages of Programs (PLoP),

Portland, (2011).

[10] Fehling, C., Leymann, F., Rutschlin, J., Schumm, D.:

Pattern-based development and management of cloud

applications. Future Internet 4, 110–141 (2012).

(doi:10.3390/fi4010110)

[11] Ravi (Ravinder) Prakash G, Kiran M., How Minimal are

MapReduce Arrangements for Binning Expressions.

International Journal of Computer Applications Volume

99 (11): 7-14, August 2014.

[12] Ravi (Ravinder) Prakash G, Kiran M., Shuffling

Expressions with MapReduce Arrangements and the

Role of Binary Path Symmetry. International Journal of

Computer Applications 102(16): 19-24, September 2014.

[13] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and

Distributed Computation: Numerical Methods, Athena

Scientific, Hardcover Edition (appeared in 2015), ISBN:

1-886529-15-9 Publication: 2015, 735 pages.

[14] Ravi (Ravinder) Prakash G, Kiran M; How Replicated

Join Expressions Equal Map Phase or Reduce Phase in a

MapReduce Structure? International Journal of Computer

Applications, Volume 107 (12): 43-50, December 2014.

[15] Fehling, C., Ewald, T., Leymann, F., Pauly, M.,

Ru¨tschlin, J., Schumm, D.: Capturing cloud computing

knowledge and experience in patterns. In: Proceedings of

the 5th IEEE International Conference on Cloud

Computing (CLOUD), Honolulu, (2012).

[16] Bauer, E., Adams, R.: Reliability and Availability of

Cloud Computing. Wiley-IEEE Press, Hoboken (2012).

[17] Ravi (Ravinder) Prakash G, Kiran M., On Composite

Join Expressions of Map-side with many Reduce Phase.

International Journal of Computer Applications Volume

110(9): 37-44, January 2015.

[18] Dimitri P. Bertsekas, Convex Optimization Algorithms,

Athena Scientific, Hardcover Edition ISBN: 1-886529-

28-0, 978-1-886529-28-1, Publication: February, 2015,

576 pages.

[19] Ravi (Ravinder) Prakash G, Kiran M; How Reduce Side

Join Part File Expressions Equal MapReduce Structure

into Task Consequences, Performance? International

Journal of Computer Applications, Volume 105(2):8-15,

November 2014

[20] Ravi (Ravinder) Prakash G, Kiran M. "On the

MapReduce Arrangements of Cartesian product Specific

22

Expressions". International Journal of Computer

Applications 112(9):34-41, February 2015.

[21] Ravi (Ravinder) Prakash G, Kiran M., On Job Chaining

MapReduce Meta Expressions of Mapping and Reducing

Entropy Densities. International Journal of Computer

Applications 113(15): 20-27, March 2015.

[22] Ravi (Ravinder) Prakash G, Kiran M. "On Chain Folding

Problems of Chain Mapper and Chain Reducer Meta

Expressions". International Journal of Computer

Applications 116(16): 35-42, April 2015.

[23] Ravi (Ravinder) Prakash G, Kiran M."On Job Merging

MapReduce Meta Expressions for Multiple

Decomposition Mapping and Reducing". International

Journal of Computer Applications 118 (13):14-21, May

2015.

[24] Ravi (Ravinder) Prakash G, Kiran M." Characterization

of Randomized External Source Output Map Reduce

Expressions". International Journal of Computer

Applications 123(14):9-16, August 2015.

[25] Ravi (Ravinder) Prakash G, Kiran M., Does there Exist

Pruning Decomposition for MapReduce Expressions

Arrangements?. International Journal of Computer

Applications 125(12): 41-48, September 2015.

[26] Ravi (Ravinder) Prakash G, Kiran M: Can one find

External Source Input Expressions for which there exist

Map Reduce Configurations? International Journal of

Computer Applications 128(12): 14-21, October 2015.

[27] Ravi (Ravinder) Prakash G. and Kiran M.. Is It True for

Static Scaling Cloud Model there Exists a Centrally

Asymmetric Static Workload Pattern?. Communications

on Applied Electronics 3(4):39-48, November 2015.

[28] Ravi (Ravinder) Prakash. G and Kiran M., Given a Static

Workload Cloud Computing Patterns does it have an

Elastic Scaling? Communications on Applied Electronics

4(2): 17-26, January 2016.

[29] Ravi (Ravinder) Prakash G. and Kiran M., How can

Periodic Workload Cloud Pattern benefit from

Periodically Peaking Utilization?. International Journal

of Applied Information Systems 10(5):27-36, February

2016.

