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ABSTRACT 
We develop a novel technique for resizable Hadoop cluster’s 

lower bounds, the template matching rectangular array of 

inverted Index summarization expressions. Specifically, fix an 

arbitrary hybrid kernel function � ∶ {0,1}� → {0,1} and let 
� 

be the rectangular array of inverted Index summarization 

expressions whose columns are each an application of � to 

some subset of the variables �
, ��, … , ���. We prove that 
� 

has bounded-capacity resizable Hadoop cluster’s complexity 

Ω(�), where � is the approximate degree of �. This finding 

remains valid in the MapReduce programming model, 

regardless of prior measurement. In particular, it gives a new 

and simple proof of lower bounds for robustness and other 

symmetric conjunctive predicates. We further characterize the 

discrepancy, approximate PageRank, and approximate trace 

distance norm of 
� in terms of well-studied analytic properties 

of �, broadly generalizing several findings on small-bias 

resizable Hadoop cluster and agnostic inference. The method of 

this paper has also enabled important progress in multi-cloud 

resizable Hadoop cluster’s complexity. 

Keywords 
Inverted Index summarization, Bounded-Capacity, Resizable 

Hadoop, Cluster Complexity, Discrepancy, Trace Distance 

Norm, and Finite string Representation    

1. INTRODUCTION 
A central MapReduce programming model in resizable Hadoop 

cluster’s complexity is the bounded-capacity model. Let � ∶ � × � → {−1, +1} be a given hybrid kernel function, where � and � are finite information sets. Alice receives an input � ∈ �, Bob receives � ∈  �, and their objective is to compute �(�, �) with minimal resizable Hadoop cluster. To this end, 

Alice and Bob share an unlimited supply of random compatible 

JAR files. Their preference limitation protocol is said to 

compute � if on every input (�, �), the output is correct with 

probability at least 1 − �. The canonical setting is � = 1/3, but 

any other parameter � ∈ (0, 1/2) can be considered. The cost 

of a preference limitation protocol is the worst-case number of 

compatible JAR files exchanged on any input. Depending on 

the nature of the resizable Hadoop cluster’s channel, one study 

the MapReduce programming model, in which the cascading 

are compatible JAR files 0 and 1, and the more powerful 

MapReduce programming model, in which the cascading are 

compatible JAR files and arbitrary prior measurement is 

allowed. The resizable Hadoop cluster’s complexity in these 

models are denoted "#(�) and $#∗(�), respectively. 

Bounded-capacity preference limitation protocols have been the 

focus of our research in resizable Hadoop cluster’s complexity 

since the inception of the area by [1][39].     A variety of 

techniques have been developed for proving lower bounds on 

complexity of clustering [2, 22, 3]. When we run our Hadoop 

cluster on Amazon Elastic MapReduce, we can easily expand 
or shrink the number of virtual servers in our cluster depending 

on our processing needs. Adding or removing servers takes 

minutes, which is much faster than making similar changes in 

clusters running on physical servers. There has been consistent 

progress on resizable Hadoop cluster as well [4, 28, 29, 30, 31, 

32], although preference limitation protocols remain less 
understood than their channel counterparts. 

The main contribution of this paper is a novel method for lower 

bounds on resizable Hadoop cluster’s channel and cluster 

complexity, the template matching rectangular array of 

inverted Index summarization expressions. Inverted index 

expression is commonly used for MapReduce analytics. The 

mapper outputs the desired fields for the index as the key and 

the unique identifier as the value. The partitioner is responsible 

for determining where values with the same key will eventually 

be copied by a reducer for final output. It can be customized for 

more efficient load balancing if the intermediate keys are not 
evenly distributed. The reducer will receive a set of unique 

record identifiers to map back to the input key. The identifiers 

can either be concatenated by some unique delimiter, leading to 

the output of one key/value pair per group, or each input value 

can be written with the input key, known as the identity 

reducer. [38]. The method converts analytic properties of 

hybrid cost functions into lower bounds for the corresponding 

resizable Hadoop cluster problems. The analytic properties in 

question pertain to the approximation and finite string 

representation of a given hybrid kernel function by real 

polynomials of low degree, which are among the most studied 
objects in theoretical computer science [34, 33]. In other words, 

the template matching rectangular array of inverted Index 

summarization expressions takes the wealth of inception 

available on the representations of hybrid cost functions by real 

polynomials and puts them at the disposal of resizable Hadoop 

cluster’s complexity. 

We consider two ways of representing hybrid cost functions by 

real polynomials. Let � ∶ {0, 1}� → {−1, +1} be a given hybrid 

cost function. The �-approximate degree of �, denoted deg#(�), is the least degree of a real polynomial ) such that |�(�) − )(�)| ≤ � for all � ∈ {0, 1}�. There is an extensive 

literature on the �-approximate degree of hybrid kernel 

functions [5, 6], for the canonical setting � = 1/3 and various 

other settings. Apart from uniform approximation, the other 
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representation scheme of interest to us is finite string 

representation. Specifically, the degree-� threshold weight ,(�, �) of � is the minimum ∑ |λ/||/|01  over all integers λ/ 

such that 

�(�) ≡ sgn 5 6 λ/�/(�)/⊆{
,…,�},|/|01 8 , 
where �/(�) = (−1)∑ 9::∈; . If no such integers λ/ exist, we 

write ,(�, �) = ∞. The threshold weight of hybrid kernel 

functions has been heavily studied, both when ,(�, �) is 

infinite [8] and when it is finite [7]. The notions of uniform 

approximation and finite string representation are closely 

related, as we discuss in Section 2. Roughly speaking, the study 

of threshold weight corresponds to the study of the       �-

approximate degree for � = 1 − =(1). Having defined uniform 

approximation and finite string representation for hybrid cost 

functions; we now describe how we use them to prove resizable 

Hadoop cluster’s lower bounds. The central concept in our 
work is what we call a template matching rectangular array of 

inverted Index summarization expressions. Consider the 

resizable Hadoop cluster problem of computing �(�|>), where � ∶ {0, 1}? → {−1, +1} is a fixed hybrid cost function; the finite 

string � ∈ {0, 1}� is Alice’s input (@ is a multiple of A); and the 

set B ⊂ {1, 2, … , @} with |B| = A is Bob’s input. In words, this 

resizable Hadoop cluster problem corresponds to a situation 

when the hybrid kernel function � depends on only A of the 

inputs �
, … , ��. Alice knows the aggregate statistical values of 

all the inputs �
, … , �� but does not know which A of them are 

relevant. Bob, on the other hand, knows which A inputs are 

relevant but does not know their aggregate statistical values. 

For the purposes of the inception, one can think of the (@, A, �)-

template matching rectangular array of inverted Index 

summarization expressions as the rectangular array of inverted 

Index summarization expressions [�(�|>)]9,>, where B 

rangesover the (@/A)? information sets that have exactly one 

element from each block of the following partition: 

{1, … , @} = F1, 2, … , @A G ∪ I@A + 1, … , 2@A J  ∪ … 
∪ K(A − 1)@A + 1, … , @L .  

We defer the precise intention to Section 4. Observe that 

restricting B to be of specialform only makes our findings 

stronger. 

1.1 Impact 
Our main finding is a lower bound on the resizable Hadoop 

cluster’s complexity of a template matching rectangular array 
of inverted Index summarization expressions in terms of the         �-approximate degree of the base hybrid kernel function �. The 

lower bound holds for both channel and preference limitation 

protocols, regardless of prior measurement. 

NECESSARY AND SUFFICIENT CONDITION 1.1 (resizable 

Hadoop cluster’s complexity). Let N be the (@, A, �)-template 
matching rectangular array of inverted Index summarization 

expressions, where � ∶ {0, 1}? → {−1, +1} is given. Then for 
every � ∈ [0, 1) and every O < �/2, 

$Q∗(N) ≥ 14 deg#(�)log� V@t X − 12 log� Y 3� − 2OZ . 
In particular, 

(1.1)             $
/[∗ (N) > 14 deg
/](�)log� V@t X − 3. 
Note that Necessary and sufficient condition 1.1 yields lower 

bounds for resizable Hadoop cluster’s complexity with capacity 

probability O for any O ∈ (0, 1/2). In particular, apart from 

bounded-capacity resizable Hadoop cluster (1.1), we obtain 

lower bounds for resizable Hadoop cluster with small bias, i.e., 

capacity probability 

� − =(1). In Section 6, we derive another 

lower bound for small-bias resizable Hadoop cluster, in terms 

of threshold weight ,(�, �). 

As pointed in [9], the lower bound (1.1) for bounded-capacity 

resizable Hadoop cluster is within a polynomial of optimal. 

More precisely, N has a channel deterministic preference 

limitation protocol with cost ^(deg
/](�)_ log(@/A)), by the 

findings of [10]. See Necessary and sufficient condition 5.1 for 

details. In particular, Necessary and sufficient condition 1.1 

exhibits a large new class of resizable Hadoop cluster problems N whose resizable Hadoop cluster’s complexity is polynomially 

related to their channel complexity [37], even if prior 
measurement is allowed. Prior to our work, the largest class of 

problems with polynomially related and channel bounded-

capacity complexities was the class of symmetric hybrid cost 

functions (see Necessary and sufficient condition 1.3 below), 

which is broadly subsumed by Necessary and sufficient 

condition 1.1. Exhibiting a polynomial relationship between 

them and channel bounded-capacity complexities for all hybrid 

kernel functions N ∶ � × � → {−1, +1} is an open problem. 

Template matching rectangular array of inverted Index 

summarization expressions are of interest because they occur as 

sub-rectangular array of inverted Index summarization 

expressions in natural resizable Hadoop cluster problems. For 

example, Necessary and sufficient condition 1.1 can be 

interpreted in terms of hybrid kernel function composition. 

Setting @ = 4A for concreteness, we obtain: 

NECESSARY CONDITION 1.2. Let � ∶ {0, 1}? → {−1, +1} be 
given. Define N ∶ {0, 1}�? × {0, 1}�? → {−1, +1} by N(�, �) =�`… , `�a,
�a,
 ∨ �a,��a,� ∨ �a,]�a,] ∨ �a,��a,�c, … c. Then 

$
/[∗ (N) > 14 deg
/](�) − 3. 
As another illustration of Necessary and sufficient condition 

1.1, we revisit the resizable Hadoop cluster’s complexity of 
symmetric hybrid cost functions. In this setting Alice has a 

finite string� ∈ {0, 1}�, Bob has a finite string � ∈ {0, 1}�, and 

their objective is to compute d(∑ �a�a) for some conjunctive 

predicate d ∶ {0, 1, … , @} → {−1, +1} fixed in advance. This 

framework encompasses several familiar hybrid kernel 

functions, such as robustness (determining if � and � intersect) 

and combiner product modulo 2 (determining if � and � 

intersect in an odd number of positions). Using a celebrated 
finding [11] we establish optimal lower bounds on the resizable 

Hadoop cluster’s complexity of every hybrid kernel function of 

such form: 

NECESSARY AND SUFFICIENT CONDITION 1.3. Let d ∶ {0, 1, … , @} → {−1, +1} be a given conjunctive predicate. 
Put �(�, �) = d(∑ �a�a). Then 

$
/]∗ (�) ≥ Ω Vf@ℓh(d) + ℓ
(d)X, 

where ℓh(d) ∈ {0, 1, … , i@/2j} and ℓ
(d) ∈ {0, 1, … , k@/2l} 
are the smallest integers such that d is constant in the range [ℓh(d), @ − ℓ
(d)]. 
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Using Necessary and sufficient condition 1.1, we give a new 

and simple proof. No alternate proof was available prior to this 

work, despite the fact that this type of problem has drawn the 

attention of early researchers [12]. Moreover, the next-best 
lower bounds for general conjunctive predicates were nowhere 

close to Necessary and sufficient condition 1.3. To illustrate, 

consider the robustness conjunctive predicate d, given by d(A) = 1 ⇔ A = 0. Necessary and sufficient condition 1.3 

shows that it has resizable Hadoop cluster’s complexity Ω`√@c, 

while the next-bestlower bound [13] was Ω(log @). 

Approximate PageRank and trace distance norm: We now 

describe some rectangular array of inverted Index 

summarization expressions-analytic consequences of our work. 

The �-approximate PageRank of a rectangular array of inverted 

Index summarization expressions N ∈  {−1, +1}o×�, denoted rk#  N, is the least PageRank of a real rectangular array of 

inverted Index summarization expressions 
 such that |Nar −
ar| ≤ � for all s, t. This natural analytic quantity arose in the 

study of resizable Hadoop cluster from [15] and has early 

applications to inference theory. In particular, we proved that 

concept classes (i.e., finite string rectangular array of inverted 
Index summarization expressions) with high approximate 

PageRank are beyond the scope of known techniques for 

efficient inference. Exponential lower bounds were cited in [16, 

14] on the approximate disjunctions, majority hybrid kernel 

functions, and decision lists, with the corresponding 

implications for agnostic inference. We broadly generalize 
these findings on approximate PageRank to any hybrid kernel 

functions with high approximate degree or high threshold 

weight: 

NECESSARY AND SUFFICIENT CONDITION 1.4 

(approximate PageRank). Let N be the (@, A, �)-template 
matching rectangular array of inverted Index summarization 

expressions, where � ∶ {0, 1}? → {−1, +1} is given. Then for 
every � ∈ [0, 1) and every O ∈ [0, �], 

rkQ N ≥ Y� − O1 + OZ� V@A Xuvwx(�) . 
In addition, for every y ∈ (0, 1) and every integer� ≥ 1, 

rk
z{  N ≥  Y y2 − yZ� min KV@A X1  , ,(�, � − 1)2A L . 
We derive analogous findings for the approximate trace 

distance norm, another rectangular array of inverted Index 

summarization expressions-analytic notion using celebrated 
approximation techniques from [35]. Necessary and sufficient 

condition 1.4 is close to optimal for a broad range of 

parameters. See Section 8 for details. 

Discrepancy. The discrepancy of a hybrid kernel function N ∶ � × � → {−1, +1}, denoted disc (N), is a combinatorial 

measure of the complexity of N (small discrepancy corresponds 

to high complexity). This complexity measure plays a central 

role in the study of resizable Hadoop cluster. In particular, it 

fully characterizes membership in PP��, the class of resizable 

Hadoop cluster problems with efficient small-bias preference 
limitation protocols [17]. Discrepancy is also known [18] be to 

equivalent to margin complexity, a key notion in inference 

theory. Finally, discrepancy is of interest in cluster complexity 

[20]. We are able to characterize the discrepancy of every 

template matching rectangular array of inverted Index 

summarization expressions in terms of threshold weight: 

NECESSARY AND SUFFICIENT CONDITION 1.5 

(discrepancy). Let N be the (@, A, �)-template matching 

rectangular array of inverted Index summarization expressions, 

for a given hybrid kernel function � ∶ {0, 1}? → {−1, +1}. Then 
disc(N) ≤  min1�
,…,? max KY 2A,(�, � − 1)Z
/� , YA@Z1/�L . 

As we show in Section 7, Necessary and sufficient condition 

1.5 is close to optimal. It is a substantial improvement on 

earlier work      [19, 21]. 

As an application of Necessary and sufficient condition 1.5, we 

revisit the discrepancy of ACh, the class of polynomial-size 

constant-depth Hadoop clusters. Using a celebrated work from 

[23], we obtained the first exponentially small upper bound on 

the discrepancy of a hybrid kernel function in ACh. We used 

this finding to prove that majority Hadoop clusters for ACh 

require exponential size. Using Necessary and sufficient 

condition 1.5, we are able to considerably sharpen the bound. 

Specifically, we prove: 

NECESSARY AND SUFFICIENT CONDITION 1.6. 

Let�(�, �) = ⋁a�
o ⋀r�
o� (�ar ∨ �ar). Then 

disc(�) = exp{−Ω(�)} . 
We defer the new cluster implications and other discussion to 

Sections 7 and 10. Independently of the work in [24], Chazelle 

et al. [27] exhibited another function in ACh with exponentially 

small discrepancy: 

NECESSARY AND SUFFICIENT CONDITION (Chazelle et 

al.). Let � ∶ {0, 1}� × {0, 1}� → {−1, +1} be given by �(�, �) = sgn`1 + ∑ (−2)a�a�
 �a�ac. Then disc(�) = exp�−Ω`@
/]c�. 
Using Necessary and sufficient condition 1.5, we give a new 

and simple proof of this finding. 

1.2 Criteria 
The setting in which to view our work is the discrepancy 

method, a straightforward but very useful principle. Let N(�, �) 

be a hybrid cost function whose bounded-capacity resizable 
Hadoop cluster’s complexity is of interest. The discrepancy 

method asks for a hybrid cost function �(�, �) and a 

distribution � on (�, �)-pairs such that: 

(1) the hybrid kernel functions N and � have correlation Ω(1) 

under �; and 

(2) all low-cost preference limitation protocols have negligible 

advantage in computing � under �. 

If such � and � indeed exist, it follows that no low-cost 

preference limitation protocol can compute N to high accuracy 

(otherwise it would be a good predictor for the hard hybrid 

kernel function � as well). This method applies broadly to 

many models of resizable Hadoop cluster, as we discuss in 

Section 2.4. It generalizes, in which � = N. The advantage of 

the generalized version is that it makes it possible, in theory, to 

prove lower bounds for hybrid kernel functions such as 

robustness, to which the traditional method does not apply. 

The hard part, of course, is finding � and � with the desired 

properties. Exception rather restricted cases; it was not known 

how to do it. As a result, the discrepancy method was of limited 

practical use prior to this paper. Here we overcome this 
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difficulty, obtaining � and � for a broad range of problems, 

namely, the resizable Hadoop cluster problems of computing �(�|>). 

Template matching rectangular array of inverted Index 

summarization expressions are a crucial first ingredient of our 

solution. We derive an exact, closed-form expression for the 

singular key-values of a template matching rectangular array of 

inverted Index summarization expressions and their 

multiplicities. This spectral information reduces our search 

from � and � to a much smaller and simpler object, namely, a 

hybrid kernel function � ∶ {0, 1}? →  ℝ with certain properties. 

On the one hand, � must be well correlated with the base 

hybrid kernel function �. On the otherhand, � must be 

orthogonal to all  low-degree polynomials. We establish the 

existence of such � by passing to the linear programming dual 

of the approximate degree of �. Although the approximate 

degree and its dual are channel notions, we are not aware of any 

previous use of this duality to prove resizable Hadoop cluster’s 

lower bounds. For the findings that feature threshold weight, 

we combine the above with the dual characterization of 

threshold weight. To derive the remaining findings on 

approximate PageRank, approximate trace distance norm, and 
discrepancy, we apply our main technique along with several 

additional rectangular arrays of inverted Index summarization 

expressions-analytic and combinatorial arguments. 

1.3 Success criterion 
We are pleased to report that this paper has enabled important 

progress in multi-cloud resizable Hadoop cluster’s complexity 

and generalized our method to more set of mappers/reducers, 

thereby improved lower bounds on the multi-cloud resizable 

Hadoop cluster’s complexity of robustness. Ingeniously 

combined this line of work with the probabilistic method, 

establishing a separation of the resizable Hadoop cluster classes NP��� and BPP��� for up to                 � = (1 − �) log @ set of 

mappers/reducers. This construction will be derandomized, 

resulting in an explicit separation. A very recent development is 

due to improved multi-cloud lower bounds for ACh hybrid 

kernel functions. 

1.4 Overall plan 
We start with a thorough look on technical preliminaries in 
Section 2. The two sections that follow are concerned with the 

two principal ingredients of our technique, the template 

matching rectangular array of inverted Index summarization 

expressions and the dual characterization of the approximate 

degree and threshold weight. Section 5 integrates them into the 

discrepancy method and establishes our main finding, 
Necessary and sufficient condition 1.1. In Section 6, we prove 

an additional version of our main finding using threshold 

weight. We characterize the discrepancy of template matching 

rectangular array of inverted Index summarization expressions 

in Section 7. Approximate PageRank and approximate trace 

distance norm are studied next, in Section 8. We illustrate our 
main finding in Section 9 by giving a new proof of lower 

bounds. As another illustration, we study the discrepancy of ACh in Section 10. We conclude with some remarks on log-

PageRank hypothesis in Section 11 and a discussion of work in 
Section 12. 

2. RESEARCH CLARIFICATION 
 We view hybrid cost functions as mappings          � →  {−1, +1} for a finite set �, where −1 and 1 correspond to 

“true” and “false,” respectively. Typically, the domain will be � = {0, 1}� or � = {0, 1}� × {0, 1}�. A conjunctive predicate 

is a mapping d ∶ {0, 1, … , @} → {−1, +1}. The notation [@] 
stands for the set {1, 2, … , @}. For a set � ⊆ [@], its 

characteristic vector �/ ∈  {0, 1}� is defined by 

(�/)a = F 1    if s ∈ �,0    otherwise.� 
For � ∈ {0, 1}, we put ¬� = 1 − �. For � ∈ {0, 1}�, we define |�| = �
 + ⋯ + ��. For �, � ∈ {0, 1}�, the notation � ∧ � ∈{0, 1}� refers as usual to the component-wise conjunction of � 

and �. Analogously, the finite string           � ∨ � stands for the 

component-wise disjunction of � and �. In particular, |� ∧ �| is 

the number of positions in which the finite strings � and � both 

have a 1. Throughout this manuscript, “log” refers to the 

logarithm to base 2. As usual, we denote the base of the natural 

logarithm by e = 2.718. . . . For any mapping ¡: � → ℝ, where � is a finite set, we adopt the standard notation ‖¡‖¤ = max9∈¥|¡(�)|. We adopt the standard intention of the finite 

string hybrid kernel function: 

sgn A = ¦−1          if A < 0,0             if A = 0,1             if A > 0.� 
Finally, we recall the Fourier transform over ℤ��. Consider the 

vector disk space of hybrid kernel functions {0, 1}� → ℝ, 

equipped with the combiner product 

〈�, ©〉 = 2z� 6 �(�)©(�)9∈{h,
}�
. 

For � ⊆ [@], define �/ ∶ {0, 1}� → {−1, +1} by �/(�) =(−1)∑ 9::∈; . Then {�/}/⊆[�] is an orthonormal basis for the 

combiner product disk space in question. As a result, every 

hybrid kernel function � ∶ {0, 1}� → ℝ has a unique 

representation of the form 

�(�) = 6 �«(�)�/(�)/⊆[�] , 
where �«(�) = 〈�, �/〉. The reals �«(�) are called the Fourier 

coefficients of �. The degree of �, denoted deg(�), is the 

quantity max {|�| ∶ �«(�) ≠ 0}. The orthonormality of {�/} 
immediately yields the identity: 

(2.1)                   6 �«(�)�
/⊆[�] = 〈�, �〉 = ­9 [�(�)�].  

The following fact is immediate from the intention of �«(�). 

NECESSARY AND SUFFICIENT CONDITION 2.1. Let � ∶ {0, 1}� → ℝ be given. Then 

max/⊆[�] |�«(�)| ≤ 2z� 6 |�(�)|9 ∈ {h,
}�
. 

A hybrid cost function � ∶ {0, 1}� → {−1, +1} is called 

symmetric if �(�) is uniquely determined by ∑ �a. 
Equivalently, a hybrid cost function � is symmetric if and only 

if 

 

�(�
, ��, … , ��) = �`�®(
), �®(�), … , �®(�)c 

for all inputs � ∈ {0, 1}� and all permutations ¯ ∶ [@] → [@]. 
Note that there is a one-to-one correspondence between 

conjunctive predicates and symmetric hybrid cost functions. 

Namely, one associates a conjunctive predicate d with the 

symmetric hybrid cost function �(�) ≡ d(∑ �a). 
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2.1 Initial reference model: I 
We draw freely on basic notions from rectangular array of 

inverted Index summarization expressions analysis. In 

particular, we assume familiarity with the singular key-value 

decomposition; positive semi-definite rectangular array of 

inverted Index summarization expressions; rectangular array 

similarity; trace distance and its properties; the spectral 
properties; the relation between singular key-values; and 

computation for rectangular array of inverted Index 

summarization expressions of simple form. The view below is 

limited to notation and the more substantial findings. The 

symbol ℝo×� refers to the family of all � × @ rectangular 

arrays of inverted Index summarization expressions with real 

entries. We specify rectangular array of inverted Index 

summarization expressions by their generic entry, e.g., 
 = [N(s, t)]a,r. In most rectangular array of inverted Index 

summarization expressions that arise in this work, the exact 

ordering of the columns (and rows) is irrelevant. In such cases 

we describe a rectangular array of inverted Index 

summarization expressions by the notation [N(s, t)]a∈°,r∈±, 

where ² and ³ are some index information sets. We denote the 

PageRank of 
 ∈ ℝo×� by rk 
. We also write 

‖
‖¤ = maxa,r |
ar|,                      ‖
‖
 = 6 |
ar|a,r .  
We denote the singular key-values of 
 by 
̄(
) ≥ ¯�(
) ≥⋯ ≥ ¯´µ¶ {o,�}(
) ≥ 0. Recall that the spectral norm, trace 

distance norm, and norm of 
 are given by ‖
‖     = max9∈ℝ�,   ‖9‖�
‖
�‖ = 
̄(
) , 
                       ‖
‖∑   = 6 ā(
) , 
                       ‖
‖·   = ¸6 
ar� = ¸6 ā(
)� . 
For a square rectangular array of inverted Index summarization 

expressions 
 ∈ ℝ�×�, its trace distance is given by  tr
 =∑ 
aa. 
Recall that every rectangular array of inverted Index 

summarization expressions 
 ∈ ℝo×� has a singular          key-

value decomposition 
 = ¹ ∑Bº, where ¹ and B are 

orthogonal rectangular array of inverted Index summarization 

expressions and ∑ is diagonal with entries 


̄(
), ¯�(
), … , ¯´µ¶ {o,�}(
). For 
, » ∈ ℝo×�, we write 〈
, »〉 = ∑
ar»ar = tr(
»º). A useful consequence of the 

singular key-value decomposition is: (2.2)               〈
, »〉 ≤ ‖
‖‖»‖∑ (
, » ∈ ℝo×�). 
We define the �-approximate trace distance norm of a 

rectangular array of inverted Index summarization expressions N ∈ ℝo×� by 

‖N‖∑,# = min�‖
‖∑  ∶  ‖N − 
‖¤ ≤ ��. 
The next Necessary and sufficient condition is a trivial 

consequence of (2.2). 

NECESSARY AND SUFFICIENT CONDITION 2.2. Let N ∈ ℝo×� and � ≥ 0. Then 

‖N‖∑,# ≥ sup½¾h
〈N, ψ〉 − �‖ψ‖
‖ψ‖ . 

  

Proof. Fix any ψ ≠ 0 and 
 such that ‖N − 
‖¤ ≤ �.Then 〈
, ψ〉 ≤ ‖
‖∑‖ψ‖ by (2.2). On the other hand, 〈
, ψ〉 ≥〈N, ψ〉 − ‖
 − N‖¤‖ψ‖
 ≥ 〈N, ψ〉 − �‖ψ‖
. Comparing these 

two estimates of 〈
, ψ〉 gives the sought lower bound on ‖
‖∑. 

We define the �-approximate PageRank of a rectangular array 

of inverted Index summarization expressions N ∈ ℝo×� by rk#  N = min{rk 
 ∶ ‖N − 
‖¤ ≤ �}. 
The approximate PageRank and approximate trace distance 

norm are related by virtue of the singular key-value 

decomposition, as follows. 

NECESSARY AND SUFFICIENT CONDITION 2.3. Let N ∈ ℝo×� and � ≥ 0 be given. Then 

rk#  N ≥  `‖N‖∑,#c�
∑ `ÀNarÀ + �c�a,r  . 

Proof. Fix 
 with ‖N − 
‖¤ ≤ �. Then 

     ‖N‖∑,# ≤ ‖
‖∑ ≤ ‖
‖·√rk 

≤ 56`ÀNarÀ + �c�

a,r 8

/�

√rk 
 . 
We will also need a well-known bound on the trace distance 

norm of a rectangular array of inverted Index summarization 

expressions product, which we state with a proof for the 

reader’s convenience. 

NECESSARY AND SUFFICIENT CONDITION 2.4. For all 

real rectangular array of inverted Index summarization 

expressions 
 and » of compatible dimensions, ‖
»‖∑ ≤ ‖
‖·‖»‖· . 
Proof. Write the singular key-value decomposition 
» =¹∑Bº. Let Á
, Á�, … and Â
, Â�, … stand for the columns of ¹ 

and B, respectively. By Intention, ‖
»‖∑ is the sum of the 

diagonal entries of ∑. We have: 

‖
»‖∑ = 6(¹º
»B)aa = 6(Áaº
)(»Âa)
≤ 6Ã
ºÁaÃ ‖»Âa‖ 

                          ≤ ¸6‖
ºÁa‖Ä ¸6‖»Âa‖Ä =  Ã¹º
Ã·‖»B‖·= ‖
‖·‖»‖· . 
2.2 Initial impact model: II 
For a hybrid kernel function �: {0, 1}� → ℝ, we define Å(�, �) = minÆ ‖� − )‖¤ , 
where the minimum is over real polynomials of degree up to �. 

The �-approximate degree of �, denoted deg#(�), is the least � 

with Å(�, �) ≤ �. In words, the �-approximate degree of � is 

the least degree of a polynomial that approximates �uniformly 

within �. 

For a hybrid cost function � ∶ {0, 1}� → {−1, +1}, the �-

approximate degree is of particular interest for � = 1/3. The 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 11 – No. 1, June 2016 – www.ijais.org 

 

27 

choice of � = 1/3 is a convention and can be replaced by any 

other constant in (0, 1), without affecting deg#(�) by more 

than a multiplicative constant. Another well-studied notion is 

the threshold degree deg±(�), defined for a hybrid cost 

function � ∶ {0, 1}� → {−1, +1}, as the least degree of a real 

polynomial ) with �(�) ≡ sgn )(�). In words, deg±(�) is the 

least degree of a polynomial that represents � in finite string. 

So far we have considered representations of hybrid cost 

functions by real polynomials. Restricting the polynomials to 
have integer coefficients yields another representation scheme. 

The main complexity measure here is the sum of the absolute 

aggregate statistical values of the coefficients. Specifically, for 

a hybrid cost function              � ∶ {0, 1}� → {−1, +1}, its 

degree-� threshold weight ,(�, �)is defined to be the 

minimum ∑ |λ/||/|01  over all integers λ/ such that 

�(�) ≡ sgn 5 6 λ/�/(�)/⊆{
,…,�},|/|01 8 . 
If no such integers λ/ can be found, we put ,(�, �) = ∞. It is 

straightforward to verify that the following three conditions are 

equivalent: ,(�, �) = ∞; Å(�, �) = 1; � < deg±(�). In all 

inverted Index summarization expressions involving ,(�, �), 

we adopt the standard convention that 1/∞ = 0 and min{A, ∞} = A for any real A. 

As one might expect, representations of hybrid cost functions 

by real and integer polynomials are closely related. In 

particular, we have the following relationship between Å(�, �) 

and ,(�, �). 

NECESSARY AND SUFFICIENT CONDITION 2.5. Let � ∶ {0, 1}� → {−1, +1} be given. Then for � = 0, 1, … , @, 11 − Å(�, �) ≤ ,(�, �)
≤ 21 − Å(�, �) FV@0X + V@1X + ⋯ + V@�XG]/�, 

with the convention that 1/0 = ∞. 

Since Necessary and sufficient condition 2.5 is not directly 

used in our derivations, we defer its proof to Appendix. We 

close this section with the approximate degree for each 

symmetric hybrid cost function. 

NECESSARY AND SUFFICIENT CONDITION 2.6. Let � ∶ {0, 1}� → {−1, +1} be a given hybrid kernel function such 
that �(�) ≡ d(∑ �a) for some conjunctive predicate d ∶{0, 1, … , @} → {−1, +1}. Then 

deg
/](�) = Θ Vf@Éh(�) + f@É
(�)X , 
where Éh(d) ∈ {0, 1, … , i@/2j}  and É
(d) ∈ {0, 1, … , k@/2l} 
are the smallest integers such that d is constant in the range [Éh(d), @ − É
(d)]. 
2.3 Initial impact model: III 
This section views the MapReduce programming model of 
resizable Hadoop cluster’s complexity. We include this view 

mainly for completeness; our proofs rely solely on a basic 

rectangular array of inverted Index summarization expressions-

analytic property of such preference limitation protocols and on 

no other aspect of resizable Hadoop cluster. 

There are several equivalent ways to describe a resizable 

Hadoop cluster’s preference limitation protocol. Let A and B be 

complex finite-dimensional disk spaces. Let C be a disk space 

of dimension 2, whose orthonormal basis we denote by |�0〉, |�1〉. 
Consider the tensor product A⊗C⊗B,which is itself a disk 

space with a combiner product inherited from A, B, and C. The 

state of a system is a unit vector in A⊗C⊗B, and conversely 

any such unit vector corresponds to a distinct state. The system 

starts in a given state and traverses a sequence of states, each 

obtained from the previous one via a unitary transformation 

chosen according to the preference limitation protocol. 

Formally, a resizable Hadoop cluster’s preference limitation 

protocol is a finite sequence of unitary transformations ¹
 ⊗ ²B,   ²A⊗ ¹�,   ¹] ⊗ ²B,   ²A⊗ ¹�,… ,¹��z
 ⊗ ²B,   ²A⊗ ¹��, 
where: ²A and ²B are the identity transformations in A and B, 

respectively; ¹
, ¹], … , ¹��z
 are unitary transformations in 

A⊗C ; and ¹�, ¹�, … , ¹��  are unitary transformations in C⊗B. 

The cost of the preference limitation protocol is the length of 

this sequence, namely, 2�. On Alice’s input � ∈ � and Bob’s 

input � ∈ �(where �, � are given finite information sets), the 

computation proceeds as follows. 

1. The system starts out in an initial state Initial (�, �). 

2.Through successive applications of the above unitary 
transformations, the system reaches the state 

Final(x, y) = (²A⊗ ¹��)(¹��z
 ⊗ ²B)… (²A⊗ ¹�)(¹
 ⊗²B)Initial(x, y). 
3. Let Â denote the projection of Final(x, y) onto A ⊗span(|�1〉) ⊗B. The output of the preference limitation protocol 

is 1 with probability 〈Â, Â〉 and 0 with the complementary 

probability 1 − 〈Â, Â〉. All that remains is to specify how the 

initial state Initial (�, �) ∈A⊗C⊗B is constructed from �, �. It 

is here that the MapReduce programming model with prior 

measurement differs from the MapReduce programming model 
without prior measurement. In the MapReduce programming 

model without prior measurement, A and B have orthonormal 

bases {|��, Î〉 ∶ � ∈ �, Î ∈ ,} and {|��, Î〉 ∶ � ∈ �, Î ∈ ,}, 

respectively, where , is a finite set corresponding to the 

private disk space of eachof the parties. The initial state is the 

pure state Initial (�, �) = |��, 0〉 |�0〉 |��, 0〉, 

where 0 ∈ , is a certain fixed element. In the MapReduce 

programming model with prior measurement, the disk spaces A 
and B have orthonormal bases {|��, Î, Ï〉 ∶ � ∈ �, Î ∈ ,, Ï ∈Å} and {|��, Î, Ï〉 ∶ � ∈ �, Î ∈ ,, Ï ∈ Å}, respectively, where , is as before and Å is a finite set corresponding to the prior 

measurement. The initial state is now the measured state 

Initial (�, �) = 1f|Å| 6 |��, 0, Ï〉 |�0〉 |��, 0, Ï〉Ð∈Ñ . 
Apart from finite size, no assumptions are made about , or Å. 

In particular, the MapReduce programming model with prior 

measurement allows for an unlimited supply of measured 

gigabits. This mirrors the unlimited supply of shared random 

compatible JAR files in the channel model. Let � ∶ � × � →{−1, +1} be a given hybrid kernel function. A preference 

limitation protocol Ò is said to compute � with capacity � if 

Ó Ô�(�, �) = (−1)Õ(9,Ö)× ≥ 1 − � 
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for all �, �, where the random variable Ò(�, �) ∈ {0, 1} is the 

output of the preference limitation protocol on input (�, �). Let $#(�) denote the least cost of a preference limitation protocol 

without prior measurement that computes � with capacity�. 

Define $#∗(�) analogously for preference limitation protocols 

with prior measurement. The precise choice of a constant 0 < � < 1/2 affects $#(�) and $#∗(�) by at most a constant 

factor, and thus the setting � = 1/3 entails no loss of 

generality. Let d: {0, 1, … , @} → {−1, +1} be a conjunctive 

predicate.We associate with d the hybrid kernel function � ∶ {0, 1}� × {0, 1}� → {−1, +1} defined by �(�, �) =d(∑ �a�a). We let $#(d) = $#(�) and $#∗(d) = $#∗(�). More 

generally, by computing d in the MapReduce programming 

model we mean computing the associated hybrid kernel 

function �. We write "#(�) for the least cost of a channel 

preference limitation protocol for � that errs with probability at 

most � on any given input. Another channel model that figures 

in this paper is the deterministic model. We let d(�) denote the 

deterministic resizable Hadoop cluster’s complexity of �. 

Throughout this paper, by the resizable Hadoop cluster’s 

complexity of a map and reduce rectangular array of inverted 

Index summarization expressions N = [Nar]a∈°,r∈±we willmean 

the resizable Hadoop cluster’s complexity of the associated 

hybrid kernel function � ∶ ² × ³ → {−1, +1}, given by �(s, t) =Nar. 

2.4 Initial criteria 
The discrepancy method is an intuitive and elegant technique 

for proving resizable Hadoop cluster’s lower bounds. 

NECESSARY AND SUFFICIENT CONDITION 2.7. Let �, � 
be finite information sets. Let Ò be a preference limitation 
protocol (with or without prior measurement) with cost Ø gigabits and input information sets � and �. Then 

Ô­[Ò(�, �)]×9,Ö = 
» 

for some real rectangular array of inverted Index 

summarization expressions 
,» with ‖
‖· ≤ 2Ùf|�| and ‖»‖· ≤ 2Ùf|�|. 
Necessary and sufficient condition 2.7 states that the 
rectangular array of inverted Index summarization expressions 

of acceptance probabilities of every low-cost preference 

limitation protocol Ò has a nontrivial factorization. This 

transition from preference limitation protocols to rectangular 

array of inverted Index summarization expressions factorization 

is now a standard technique and has been used in various 
contexts. In what follows, we propose a precise formulation of 

the discrepancy method and supply a proof. 

NECESSARY AND SUFFICIENT CONDITION 2.8 

(discrepancy method). Let �, � be finite information sets and � ∶  � × � → {−1, +1} a given hybrid kernel function. Let ψ = [ψ9Ö]9∈¥,Ö∈Ú be any real rectangular array of inverted Index 
summarization expressions with ‖ψ‖
 = 1. Then for each � > 0, 

4Ûx(�) ≥ 4Ûx∗(�) ≥ 〈ψ, N〉 − 2�3‖ψ‖f|�||�| , 
where N = [�(�, �)]9∈¥,Ö∈Ú. 

Proof. Let Ò be a preference limitation protocol with prior 

measurement that computes � with capacity � and cost Ø. Put 

∏ = Ô­[Ò(�, �)]×9∈¥,Ö∈Ú . 
Then we can write N = (³ − 2∏) + 2Å, where ³ is the all-ones 

rectangular array of inverted Index summarization expressions 

and Å is some rectangular array of inverted Index 

summarization expressions with ‖Å‖¤ ≤ �. As a result, 〈ψ, ³ − 2∏〉 = 〈ψ, N〉 − 2〈ψ, Å〉     ≥ 〈ψ, N〉 − 2�‖ψ‖
 (2.3)                       =  〈ψ, N〉 − 2�.   
 

On the other hand, Necessary and sufficient condition 2.7 
guarantees the existence of rectangular array of inverted Index 

summarization expressions 
 and » 

with
» = ∏and‖
‖·‖»‖· ≤ 4Ùf|�||�|. Therefore, 

〈ψ, ³ − 2∏〉 ≤ ‖ψ‖‖³ − 2∏‖∑ by (2.2) 

≤ ‖ψ‖ (f|�||�| + 2‖∏‖∑) since ‖³‖∑ = f|�||�| 
≤ ‖ψ‖ (f|�||�| + 2‖
‖·‖»‖·) by Prop. 2.4 

(2.4)       ≤ ‖ψ‖(2 ⋅ 4Ù + 1)f|�||�| . 
The Necessary and sufficient condition follows by comparing 

(2.3) and (2.4). 

REMARK 2.9. Necessary and sufficient condition 2.8 is not to 

be confused with multidimensional technique, which we will 

have no occasion to use or describe. We will now abstract away 

the particulars of Necessary and sufficient condition 2.8 and 

articulate the fundamental mathematical technique in question. 

Let � ∶ � × � → {−1, +1} be a given hybrid kernel function 

whose resizable Hadoop cluster’s complexity we wish to 

estimate. Suppose we can find a hybrid kernel function ℎ ∶ � × � → {−1, +1} and a distribution � on � × � that 

satisfy the following two properties. 

1. Correlation. The hybrid kernel functions � and ℎ are 

well correlated under �: (2.5)                      ­(9,Ö)∼á[�(�, �)ℎ(�, �)] ≥ �, 
where � > 0 is a given constant. 

2. Hardness. No low-cost preference limitation protocol Ò in 

the given MapReduce programming model of resizable Hadoop 

cluster can compute ℎ to a substantial advantage under �. 

Formally, if Ò ∶ � × � → {0, 1} is a preference limitation 

protocol in the given MapReduce programming model with 

cost Øcompatible JAR files, then 

(2.6)              ­(9,Ö)∼á ãℎ(�, �) ­Ô(−1)Õ(9,Ö)×ä ≤ 2å(Ù)y, 
where y = =(1). The combiner expectation in (2.6) is over the 

internal operation of the preference limitation protocol on the 

fixed input (�, �).If the above two conditions hold, we claim 

that any preference limitation protocol in the given MapReduce 

programming modelthat computes � with capacity at most �/3 

on each input must have cost Ω(log {�/y}) . Indeed, let Ò be a 

preference limitation protocol with Ó[Ò(�, �) ≠ �(�, �)] ≤ �/3 

for all �, �. Then standard manipulations reveal: 

­á ãℎ(�, �) ­Ô(−1)Õ(9,Ö)×ä ≥ ­á[�(�, �)ℎ(�, �)] − 2 ⋅ �3 ≥ �3 , 
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where the last step uses (2.5). In view of (2.6), this shows that Ò must have cost Ω(log {�/y}).We attach the term discrepancy 
method to this abstract framework. Readers with background in 

resizable Hadoop cluster’s complexity will note that the 

original discrepancy method corresponds to the case when� =ℎand theresizable Hadoop cluster takes place in the two-party 

randomized model. The purpose of our abstract discussion was 

to expose the fundamental mathematical technique in question, 

which is independent of the resizable Hadoop cluster model. 

Indeed, the resizable Hadoop cluster model enters the picture 

only in the proof of (2.6). It is here that the analysis must 

exploit the particularities of the MapReduce programming 

model. To place an upper bound on the advantage under � in 

the MapReduce programming model with measurement, as we 

seefrom (2.4), one considers the quantity ‖ψ‖f|�||�|, where ψ = [ℎ(�, �)�(�, �)]9,Ö. In the channel model, the quantity to 

estimate happens to be 

max /⊆¥,æ⊆Ú ç6 6 �(�, �)ℎ(�, �)Ö∈æ9∈/ ç , 
which is known as the discrepancy of ℎ under �. 

3. PRELIMINARY IMPACT CRITERIA: 

I 
Crucial to our work are the dual characterizations of the 

uniform approximation and finite string representation of 

hybrid cost functions by real polynomials. As a starting point, 

we recall a channel result from approximation theory on the 

duality of norms. We provide a short and elementary proof of 

this result in disk space, which will suffice for our purposes. 

We let ℝ¥ stand for the linear disk space of real hybrid kernel 

functions on the set �. 

NECESSARY AND SUFFICIENT CONDITION 3.1. Let � be 
a finite set. Fix Φ ⊆ ℝ¥and a hybrid kernel function � ∶ � →ℝ. Then 

(3.1)            miné∈êëì¶(í)‖� − ¡‖¤ = maxî ¦6 �(�)�(�)9∈¥ ï , 
where the maximum is over all hybrid kernel functions �: � →ℝ such that 

6 |�(�)| ≤ 19∈¥  

and, for each ¡ ∈ Φ, 

6 ¡(�)�(�) = 09∈¥ . 
Proof. The Necessary and sufficient condition holds trivially 

when span (Φ) = {0}. Otherwise, let ¡
, … , ¡�be a basis for span(Φ). Observe that the left member of (3.1) is the optimum 

of thefollowing linear program in the variables �, ð
, … , ð�: 

Standard manipulations reveal the dual: 

 

 

 

 

 

Both programs are clearly feasible and thus have the same 

finite optimum. We have already observed that the optimum of 

first program is the left-hand side of (3.1). Since ¡
, … , ¡� 

form a basis for span(Φ), the optimum of the second program 

is by intention the right-hand side of (3.1). As a necessary 

condition to Necessary and sufficient condition 3.1, we obtain a 

dual characterization of the approximate degree. 

NECESSARY AND SUFFICIENT CONDITION 3.2. Fix � ≥ 0. Let � ∶ {0, 1}� → ℝ be given, � = �Ï©#(�) ≥ 1. Then 
there is a hybrid kernel function �: {0, 1}� → ℝ such that 

�ñ(�) = 0                                       (|�| < �), 
6 |�(�)| 9∈{h,
}�

= 1, 
6 �(�)�(�)9∈{h,
}�

> �. 
Proof. Set � = {0, 1}� and Φ = {�ò ∶ |�| < �} ⊂ ℝ¥. Since deg#(�) = �, we conclude that 

miné∈êëì¶(í)‖� − ¡‖¤ > �. 
In view of Necessary and sufficient condition 3.1, we can take � to be any hybrid kernel function for which the maximum is 

achieved in (3.1).We now state the dual characterization of the 

threshold degree. 

NECESSARY AND SUFFICIENT CONDITION 3.3. Let � ∶ {0, 1}� → {−1, +1} be given, � = �Ï©±(�). Then there is a 
distribution � over {0, 1}� with 

­9~á[�(�)�ò(�)] = 0                             (|�| < �). 
Alternately, it can be derived as a necessary condition to 

Necessary and sufficient condition 3.1. We close this section 

with one final dual characterization, corresponding to finite 

string representation by integer polynomials. 

NECESSARY AND SUFFICIENT CONDITION 3.4. Fix a 

hybrid kernel function � ∶ {0, 1}� → {−1, +1} and an integer � ≥ �Ï©±(�). Then for every distribution � on {0, 1}�, 

(3.2)                   max|/|01 ô ­9~á[�(�)�ò(�)]ô ≥ 1,(�, �). 
Furthermore, there exists a distribution � such that 
(3.3)           max|/|01 ô ­9~á[�(�)�ò(�)]ô ≤  Y 2@,(�, �)Z
/�. 

 

4. PRELIMINARY IMPACT CRITERIA: 

II 
We now turn to the second ingredient of our proof, a certain 

family of real rectangular array of inverted Index 

summarization expressions that we introduced. Our goal here is 

to explicitly calculate their singular key-values. As we shall see 

later, this provides a convenient means to generate hard 

resizable Hadoop cluster problems. 

Let A and @ be positive integers, where A < @ and A | @. 

Partition [@] into A contiguous blocks, each with @/A elements: 

 minimize:     � 
subject to:   ø�(�) − 6 ða¡a(�)�

a�
 ø ≤ �      for each � ∈ �, 
ða ∈ ℝ                                            for each s,                            � ≥ 0. 
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[@] = F1, 2, … , @A G ∪ I@A + 1, … , 2@A J  ∪  … 
∪ K(A − 1)@A + 1, … , @L. 

Let V(@, A) denote the family of subsets B ⊆ [@] that have 
exactly one element in each of these blocks (in particular, |B| = A). Clearly, |V(@, A)|=(@/A)?. For a file finite string � ∈ {0, 1}� and a set B ∈ V(@, A), define the projection of � 
onto B by 

�|> = (�a
, �a�, … , �a?) ∈ {0, 1}? ,  
where s
 < s� < ⋯ < s?  are the elements of B. We are ready 

for a formal intention of our rectangular array of inverted Index 

summarization expressions family. 

INTENTION 4.1. For ¡ ∶  {0, 1}? → ℝ, the (@, A, ¡)-template 

matching rectangular array of inverted Index summarization 

expressions is the real rectangular array of inverted Index 

summarization expressions 
 given by 
 = [¡(�|> ⊕ Î)]9∈{h,
}�,(>,ú)∈>(�,?)×{h,
}: . 
In words, 
 is the rectangular array of inverted Index 

summarization expressions of size 2� by (@/A)?2?  whose rows 

are indexed by finite strings � ∈ {0, 1}�, whose columns are 

indexed by pairs (B, Î) ∈V(@, A) × {0, 1}?, and whose entries 

are given by 
9,(>,ú) = ¡(�|> ⊕ Î). 

The logic behind the term “template matching rectangular array 

of inverted Index summarization expressions” is as follows: a 

mosaic arises from repetitions of a template matching in the 

same way that 
 arises from applications of ¡ to various 

subsets of the variables. Our approach to analyzing the singular 
key-values of a template matching rectangular array of inverted 

Index summarization expressions 
 will be to represent it as the 

sum of simpler rectangular array of inverted Index 

summarization expressions and analyze them instead. For this 

to work, we should be able to reconstruct the singular key-

values of 
 from those of the simpler rectangular array of 

inverted Index summarization expressions. Just when this can 

be done is the subject of the following sufficient condition. 

SUFFICIENT CONDITION 4.2. Let 
,» be real rectangular 
array of inverted Index summarization expressions with 
»º = 0 and 
º» = 0. Then the nonzero singular key-values 
of 
 + », counting multiplicities, are 


̄(
), … , û̄ü ý(
), 
̄(»), … , ¯ûü þ(»). 

Proof. The claim is trivial when 
 = 0 or » = 0, so assume 

otherwise. Since the singular key-values of 
 + » are precisely 

the square roots of the key-values of                    (
 +»)(
 + »)º, it suffices to compute the spectrum of the latter 

rectangular array of inverted Index summarization expressions. 

Now, (
 + »)(
 + »)º =  

º + »»º + 
»º��h + »
º��h  

(4.1)                                     =  

º + »»º. 
Fix spectral decompositions 



º = 6 ā(
)�ÁaÁaº
ûü ý
a�
 ,         »»º = 6 r̄(»)�ÂrÂrº

ûü þ
r�
  .        

Then 

6 6 ā(
)� r̄(»)�〈Áa, Âr〉�ûü þ
r�


ûü ý
a�


=   �6 ā(
)�ÁaÁaº
ûü ý
a�
 , 6 r̄(»)�ÂrÂrº

ûü þ
r�
 � 

                                 = 〈

º, »»º〉 
                                 = tr(

º»»º) 

                                 = tr(
 ∙ 0 ∙ »º) (4.2)                       = 0. 
Since ā(
) r̄(») > 0 for all s, t, it follows from (4.2) that 〈Áa , Âr〉 = 0 for all s, t. Put differently, the vectors Á
, … , Áûü ý, Â
, … , Âûü þ form an orthonormal set. Recalling (4.1), we 

conclude that the spectral decomposition of (
 + »)(
 + »)º 
is 

6 ā(
)�ÁaÁaº
ûü ý
a�
 + 6 r̄(»)�ÂrÂrº

ûü þ
r�
  , 

and thus the nonzero key-values of (
 + »)(
 + »)ºare as 

claimed. 

We are ready for the main result of this section. 

NECESSARY AND SUFFICIENT CONDITION 4.3. Let ¡: {0, 1}? → ℝ be given. Let 
 be the (@, A, ¡)-template 
matching rectangular array of inverted Index summarization 

expressions. Then the nonzero singular key-values of  
, 
counting multiplicities, are: 

� ��2��? V@A X?
/: é	 (/)¾h

⋅ À¡ñ(�)À YA@Z|/|/�   ,            
Ï)Ï�AÏ� V@A X|/|  As�Ï�
 . 
In particular, 

‖
‖ = �2��? V@A X? max/⊆[?] KÀ¡ñ(�)À YA@Z|/|/�L . 
Proof. For each � ⊆ [A], let 
/ be the (@, A, �/)-template 

matching rectangular array of inverted Index summarization 

expressions. Thus, 

(4.3)                            
 = 6 ¡ñ(�)
/⊆[?] 
/. 

Fix arbitrary �, � ⊆ [A] with� ≠ �. Then 


/
æº = � 6 6 �/(�|> ⊕ Î)
ú∈{h,
}:>∈>(�,?) �æ(�|> ⊕ Î)�

9,Ö
 

                                                                                     
=  

���
�� 6 �/(�|>)�æ(�|>) 6 �/(Î)�æ(Î)

ú∈{h,
}:��������������h>∈>(�,?) ���
��

9,Ö
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(4.4)                                        = 0. 
 

Similarly, 

 

(4.5) 
/º
æ
=

���
���/(Î)�æ(Î�) 6 �/(�|>)�æ(�|>�)9∈{h,
}�����������������h ���

��
(>,ú),(>�,ú�)

= 0. 
By (4.3)–(4.5) and Sufficient condition 4.2, the nonzero 

singular     key-values of 
 are the union of then on zero 

singular        key-values of all ¡ñ(�)
/, counting multiplicities. 

Therefore, the proof will be complete once we show that the 

only nonzero singular key-value of 
/º
/ is2��?(@/A)?z|/|, 
with multiplicity (@/A)|/|. It is convenient to write this 

rectangular array of inverted Index summarization expressions 

as 


/º
/ = [�/(Î)�/(Î�)]ú,ú�  
⊗  � 6 �/(�|>)�/(�|>�)9∈{h,
}�

�
>,>�

 . 
The first rectangular array of inverted Index summarization 

expressions in this factorization has PageRank1 and entries ±1, 

which means that its only nonzero singular key-value is 2? with 

multiplicity 1. The other rectangular array of inverted Index 

summarization expressions, call it �, is permutation-similar to 

2� � ³ ³ ⋱ ³   , 
where ³ is the all-ones square rectangular array of inverted 

Index summarization expressions of order (@/A)?z|/|. This 

means that the only nonzero singular key-value of � is 2�(@/A)?z|/| with multiplicity(@/A)|/|. It follows from 

elementary properties of the spectrum of 
/º
/ is as claimed. 

5. DESCRIPTIVE STUDY I: I 
The previous two sections examined relevant dual 

representations and the spectrum of template matching 

rectangular array of inverted Index summarization expressions. 

Having studied these notions in their pure and basic form, we 

now apply our findings to resizable Hadoop cluster’s 
complexity. Specifically, we establish the template matching 

rectangular array of inverted Index summarization expressions 

for resizable Hadoop cluster’s complexity, which gives strong 

lower bounds for every template matching rectangular array of 

inverted Index summarization expressions generated by a 
hybrid cost function with high approximate degree. 

NECESSARY AND SUFFICIENT CONDITION 1.1 

(restated). Let N be the (@, A, �)-template matching rectangular 
array of inverted Index summarization expressions, where � ∶ {0, 1}? → {−1, +1} is given. Then for every � ∈ [0�, �1) and 
every O < �/2, 

(5.1)             $Q∗(N) ≥ 14 deg#(�)log V@A X − 12  log Y 3� − 2OZ . 
In particular, 

(5.2)                     $
/[∗ (N) > 14 deg
/](�)log V@A X − 3. 
Proof. Since (5.1) immediately implies (5.2), we will focus on 

the former in the remainder of the proof. Let � = deg#(�) ≥ 1. 

By Necessary and sufficient condition 3.2, there is a hybrid 

kernel function � ∶ {0, 1}? → ℝ such that: 

(5.3)                               �ñ(�) = 0                          (|�| < �), 
(5.4)                          6 |�(!)|"∈{h,
}:

= 1, 
 (5.5)                         6 �(!)�(!)"∈{h,
}:

> �. 
Let ψ be the (@, A, 2z�(@/A)z?�)-template matching 
rectangular array of inverted Index summarization expressions. 

Then (5.4) and (5.5) show that (5.6)                        ‖ψ‖
 = 1,            〈N, ψ〉 > �. 
Our last task is to calculate ‖ψ‖. By (5.4) and Necessary and 

sufficient condition 2.1, 

(5.7)                                 max/⊆[?] |�ñ(�)| ≤ 2z?. 
Necessary and sufficient condition 4.3 yields, in view of (5.3) 

and (5.7): 

(5.8)                   ‖ψ‖ ≤ YA@Z1/� Y2��? V@A X?Zz
/�.                           
Now (5.1) follows from (5.6), (5.8), and Necessary and 

sufficient condition 2.8. 

Necessary and sufficient condition 1.1 gives lower bounds not 

only for bounded-capacity resizable Hadoop cluster but also for 

resizable Hadoop cluster’s preference limitation protocols with 

capacity probability 

� − =(1). For example, if a hybrid kernel 

function � ∶ {0, 1}? → {−1, +1} requires a polynomial of 

degree � for approximation within 1 − =(1), equation (5.1) 

gives a lower bound for small-bias resizable Hadoop cluster. 

We will complement and refine that estimate in the next 

section, which is dedicated to small-bias resizable Hadoop 

cluster. 

We now prove the necessary condition to Necessary and 
sufficient condition 1.1 on hybrid kernel function composition, 

stated in the inception. 

Proof of Necessary condition 1.2. The (2A, A, �)-template 

matching rectangular array of inverted Index summarization 

expressions occurs as a subset of rectangular array of inverted 

Index summarization expressions of [N(�, �)]9,Ö∈{h,
}#:. 
Finally, we show that the lower bound (5.2) derived above for 

bounded-capacity resizable Hadoop cluster’s complexity is 

tight up to a polynomial factor, even for deterministic 

preference limitation protocols.  

NECESSARY AND SUFFICIENT CONDITION 5.1. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0, 1}? →{−1, +1} is given. Then 

d(N) ≤ ^(dt(�) log(@/A))  ≤ ^(deg
/](�)_ log(@/A)), 

where dt(�) is the least depth of a decision tree for �. In 
particular, (5.2) is tight upto a polynomial factor. 
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Proof. That dt(�) ≤ ^(deg
/](�)_) for all hybrid cost 

functions �. Therefore, it suffices to prove an upper bound of ^(� log (@/A))  on the deterministic resizable Hadoop cluster’s 

complexity of N, where � = dt(�). 

The needed deterministic preference limitation protocol is not 

well known. Fix a depth-� decision tree for �. Let `�, (B, Î)c 

be a given input. Alice and Bob start at the root of the decision 

tree, labeled by some variable s ∈ {1, … , A}. By exchanging klog(@/A)l + 2 compatible JAR files, Alice and Bob determine (�|>)a ⊕ Îa ∈ {0, 1} and take the corresponding branch of 

thetree. The process repeats until a leaf is reached, at which 

point both parties learn �(�|>  ⊕ Î). 

6. DESCRIPTIVE STUDY I:  II 
As we have already mentioned, Necessary and sufficient 

condition 1.1 of the previous section can be used to obtain 

lower bounds not only for bounded-capacity resizable Hadoop 

cluster but also small-bias resizable Hadoop cluster. In the 

latter case, one first needs to show that the base hybrid kernel 

function � ∶ {0, 1}? → {−1, +1} cannot be approximated point 

wise within 1 − =(1) by a real polynomial of a given degree �. 

In this section, we derive a different lower bound for small-bias 

resizable Hadoop cluster, this time using the assumption that 

the threshold weight ,(�, �)is high. We will see that this new 

lower bound is nearly optimal and closely related to the lower 
bound in Necessary and sufficient condition 1.1. 

NECESSARY AND SUFFICIENT CONDITION 6.1. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0, 1}? →{−1, +1} is given. Then for every integer � ≥ 1 and real y ∈ (0, 1), (6.1)                      $
/�z{/�∗ (N)  

≥  14 min K� log @t , log ,(�, � − 1)2A L
− 12 log 3y . 

In particular, 

(6.2)             $
/�z{/�∗ (N) ≥  14 deg±(�) log V@t X − 12 log 3y . 
Proof. Letting � = deg±(�) in (6.1) yields (6.2), since ,(�, � − 1) = ∞ in that case. In the remainder of the proof, 

we focus on (6.1) alone. 

We claim that there exists a distribution � on {0, 1}? such that 

(6.3)             max|/|$1 ô ­"~á[�(!)�ò(!)]ô ≤  Y 2A,(�, � − 1)Z
/�. 
For � ≤ deg±(�), the claim holds by Necessary and sufficient 

condition 3.3 since ,(�, � − 1) = ∞ in that case. 

For � > deg±(�), the claim holds by Necessary and sufficient 

condition 3.4. 

Now, define � ∶ {0, 1}? by �(!) = �(!)�(!). It follows from 

(6.3) that 

(6.4)                  |�ñ(�)| ≤ 2z? Y 2A,(�, � − 1)Z
/� (|�| < �), 
(6.5)                  6 |�(!)|"∈{h,
}:

= 1, 

(6.6)                  6 �(!)�(!)"∈{h,
}:
= 1. 

Let ψ be the (@, A, 2z�(@/A)z?�)-template matching 

rectangular array of inverted Index summarization expressions. 

Then (6.5) and (6.6) show that (6.7)                          ‖ψ‖
 = 1,            〈N, ψ〉 = 1. 
It remains to calculate ‖ψ‖. By (6.5) and Necessary and 

sufficient condition 2.1, 

(6.8)                                max/⊆[?] |�ñ(�)| ≤ 2z?. 
Necessary and sufficient condition 4.3 yields, in view of (6.4) 

and (6.8): (6.9)   ‖ψ‖
≤ max KYA@Z1/� , Y 2A,(�, � − 1)Z
/�L Y2��? V@A X?Zz
/�.  
Now (6.1) follows from (6.7), (6.9), and Necessary and 

sufficient condition 2.8. 

Recall from Necessary and sufficient condition 2.5 that the 

quantities Å(�, �) and ,(�, �) are related for all � and �. In 

particular, the lower bounds for small-bias resizable Hadoop 
cluster in Propositions 1.1and 6.1 are quite close, and either one 

can be approximately deduced from the other. In deriving both 

findings from scratch, as we did, our motivation was to obtain 

the tightest bounds and to illustrate the template matching 

rectangular array of inverted Index summarization expressions 

in different contexts. We will now see that the lower bound in 
Necessary and sufficient condition 6.1 is close to optimal, even 

for channel preference limitation protocols. 

NECESSARY AND SUFFICIENT CONDITION 6.2. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0, 1}? →{−1, +1} is given. Then for every integer � ≥ �Ï©±(�), 

$
/�z{/�∗ (N) ≤ "
/�z{/�(N) ≤ � log V@t X + 3, 
where y − 1/,(�, �). 

Proof. The resizable Hadoop cluster’s preference limitation 

protocol that we will describe is standard. Put , = ,(�, �) 

and fix a representation 

�(!) ≡ sgn 5 6 λ/�/(!)/⊆[?],|/|01 8 , 
where the integers λ/ satisfy ∑|λ/| = ,. On input `�, (B, Î)c, 

the preference limitation protocol proceedsas follows. Let s
 < s� < ⋯ < s? be the elements of  B. Alice and Bob use 

their shared randomness to pick a set � ⊆ [A] with |�| ≤ �, 

according to the probability distribution |λ/|/,. Next, Bob 

sends Alice the indices {sr ∶ t ∈ �} as well as the file �/(Î). 

With this information, Alice computes the product sgn(λ/)�/(�|>)�/(Î) = sgn(λ/)�/(�|> ⊕ Î) and announces 

the result as the output of the preference limitation protocol. 

Assuming an optimal encoding of the compatible JAR files, the 

resizable Hadoop cluster’s cost of this preference limitation 

protocol is bounded by 

&log V@A X1' + 2 ≤ � log V@A X + 3, 
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as desired. On each input �, B, Î, the output of the preference 

limitation protocol is a random variable that Ò(�, B, Î) ∈{−1, +1} obeys �(�|> ⊕ Î) ­[Ò(�, B, Î)]
= �(�|> ⊕ Î) 6 |λ/|,|/|01 sgn(λ/)�/(�|>
⊕ Î) 

                                = 1, ø 6 λ/�/(�|> ⊕ Î)|/|01 ø 
                                ≥ 1, , 
which means that the preference limitation protocol produces 

the correct answer with probability 

� + 
�( or greater. 

7. PRESCRIPTIVE STUDY:  I 
We now restate some of the findings of the previous section in 

terms of discrepancy, a key notion already mentioned in 

Section 2.4. This quantity figures prominently in the study of 

small-bias resizable Hadoop cluster as well as various 

applications, such as inference theory and cluster complexity 

[36]. 

For a hybrid cost function � ∶ � × � → {−1, +1} and a 

probability distribution λ on � × �, the discrepancy of � under λ is defined by 

disc)(�) = max/⊆¥,æ⊆Ú ç6 6 λ(�, �)�(�, �)Ö∈æ9∈/ ç . 
We put 

disc(�) = min) disc)(�). 
As usual, we will identify a hybrid kernel function � ∶ � × � →{−1, +1} with its resizable Hadoop cluster rectangular array of 

inverted Index summarization expressions                     N =[�(�, �)]9,Ö and use the conventions disc)(N) = disc)(�) and disc(N) = disc(�). 

The above intention of discrepancy is not convenient to work 

with, and we will use a well-known rectangular array of 

inverted Index summarization expressions-analytic 

reformulation. For rectangular array of inverted Index 

summarization expressions 
 = [
9Ö] and » = [»9Ö], recall 

that their product is given by 
 ∘ » = [
9Ö»9Ö]. 
NECESSARY AND SUFFICIENT CONDITION 7.1. Let �, � 
be finite information sets, � ∶ � × � → {−1, +1} a given hybrid 
kernel function. Then 

discÕ(�) ≤ f|�||�|‖Ò ∘ N‖, 
where N = [�(�, �)]9∈¥,Ö∈Ú and Ò is any rectangular array of 
inverted Index summarization expressions whose entries are 

nonnegative and sum to 1 (viewed as a probability 

distribution). In particular, 

 disc(�) ≤ f|�||�| minÕ‖Ò ∘ N‖, 
where the minimum is over rectangular array of inverted Index 

summarization expressions Ò whose entries are nonnegative 
and sum to 1. 

Proof. We have 

discÕ(�) = max/,æ À�/º(Ò ∘ N)�æÀ 
                               ≤ max/,æ {‖�/‖ ⋅ ‖Ò ∘ N‖ ⋅ ‖�æ‖} 

                                  = ‖Ò ∘ N‖f|�||�|, 
as claimed. 

We will need one last ingredient, a well-known lower bound on 

resizable Hadoop cluster’s complexity in terms of discrepancy. 

NECESSARY AND SUFFICIENT CONDITION 7.2. For 

every hybrid kernel function� ∶ � × � → {−1, +1} and every y ∈ (0, 1), 

"
/�z{/�(�) ≥ log γdisc(�) . 
Using Propositions 6.1 and 6.2, we will now characterize the 
discrepancy of template matching rectangular array of inverted 

Index summarization expressions in terms of threshold weight. 

NECESSARY AND SUFFICIENT CONDITION 7.3. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0,1}? → {−1, +1} 
is given. Then for every integer � ≥ 0, 

(7.1)                        disc(N) ≥ 18,(�, �) YA@Z1
 

and 

(7.2)                      disc(N)� ≤ max K 2A,(�, � − 1) , YA@Z1L . 
In particular, 

(7.3)                        disc(N) ≤ YA@Zuvw±(�)/� . 
Proof. The lower bound (7.1) is immediate from Necessary and 

sufficient condition 6.2 and Necessary and sufficient condition 

7.2. For the upper bound (7.2), construct the rectangular array 

of inverted Index summarization expressions ψ as in the proof 

of Necessary and sufficient condition 6.1. Then (6.7) shows 

that ψ = N ∘ Ò for a nonnegative rectangular array of inverted 

Index summarization expressions Ò whose entries sum to 1. As 

a result, (7.2) follows from (6.9) and Necessary and sufficient 

condition 7.1. Finally, (7.3) follows by taking � = deg±(�) in 

(7.2), since ,(�, � − 1) = ∞ in that case. 

This settles Necessary and sufficient condition 1.5 from the 

inception. Necessary and sufficient condition 7.3 follows up 
and considerably improves on the Degree/Discrepancy 

Necessary and sufficient condition. 

NECESSARY AND SUFFICIENT CONDITION 7.4. Let � ∶ {0,1}? → {−1, +1} be given. Fix an integer @ ≥ A. Let � = [�(�|/)]9,/, where the row index � ranges over {0,1}� 
and the column index � ranges over all A-element subsets of {1, 2, … , @}. Then 

disc(�) ≤ , 4ÏA�@ deg±(�)-uvw±(�)/� . 
Note that (7.3) is already stronger than Necessary and sufficient 

condition 7.4. In Section 10, we will see an example when 
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Necessary and sufficient condition 7.3 gives an exponential 

improvement on Necessary and sufficient condition 7.4. 

Threshold weight is typically easier to analyze than the 

approximate degree. For completeness, however, we will now 
supplement Necessary and sufficient condition 7.3 with an 

alternate bound on the discrepancy of a template matching 

rectangular array of inverted Index summarization expressions 

in terms of the approximate degree. 

NECESSARY AND SUFFICIENT CONDITION 7.5. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, for a given hybrid kernel 

function � ∶ {0,1}? → {−1, +1}. Then for every y > 0, 

disc(N) ≤ y + YA@Zuvw±(�)/� . 
 

Proof. Let � = deg
z{(�) ≥ 1. Define � = 1 − y and 

construct the rectangular array of inverted Index summarization 

expressions ψ as in the proof of Necessary and sufficient 

condition 1.1. Then (5.6) shows that ψ = � ∘ Ò, where � is a 

finite string rectangular array of inverted Index summarization 

expressions and Ò is a nonnegative rectangular array of 

inverted Index summarization expressions whose entries sum to 1. Viewing Ò as a probabilitydistribution, we infer from (5.8) 

and Necessary and sufficient condition 7.1 that 

(7.4)                         discÕ(�) ≤ YA@Z1/� . 
Moreover, discÕ(N) ≤ discÕ(�) + ‖(N − �) ∘ Ò‖
                 = discÕ(�) + 1 − 〈N, � ∘ Ò〉 (7.5)                            ≤ discÕ(�) + y, 
where the last step follows because 〈N, ψ〉 > � = 1 − y by 

(5.6). The proof is complete in view of (7.4) and (7.5). 
 

8. PRESCRIPTIVE STUDY: II 
We will now use the findings of the previous sections to 
analyze the approximate PageRank and approximate trace 

distance norm of template matching rectangular array of 

inverted Index summarization expressions. These notions were 

originally motivated by lower bounds on resizable Hadoop 

cluster. However, they also arise in inference theory and are 

natural analytic quantities in their own right. 

NECESSARY AND SUFFICIENT CONDITION 8.1. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0,1}? → {−1, +1} 
is given. Let � = 2��?(@/A)? be the number of entries in N. 
Then for every � ∈ [0, �1)� and every O ∈ [0, �], 
(8.1)                ‖N‖∑,Q ≥ (� − O) V@A Xuvwx(�)/� √� 

and 

(8.2)                  rkQ  N ≥ Y� − O1 + OZ� V@A Xuvwx(�) . 
Proof. We may assume that deg#(�) ≥ 1, since otherwise � is 

a constant hybrid kernel function and the claims hold trivially 

by taking ψ = N in Necessary and sufficient condition 2.2. 

Construct ψ asin the proof of Necessary and sufficient 

condition 1.1. Then the claimed lower bound on ‖N‖∑,Q follows 

from (5.6), (5.8), and Necessary and sufficient condition 2.2. 

Finally, (8.2) follows immediately from (8.1) and Necessary 

and sufficient condition 2.3. 

We prove an additional lower bound in the case of small-bias 

approximation. 

NECESSARY AND SUFFICIENT CONDITION 8.2. Let N be 
the (@, A, �)-template matching rectangular array of inverted 
Index summarization expressions, where � ∶ {0,1}? → {−1, +1} 
is given. Let � = 2��?(@/A)? be the number of entries in N. 
Then for every y ∈ (0, 1) and every integer � ≥ 1, 

(8.3)  ‖N‖∑,
z{ ≥ y min ¦V@A X1/� , ,,(�, � − 1)2A -
/�ï √� 

and 

(8.4)    rk
z{ N ≥ Y y2 − yZ� min KV@A X1 , ,(�, � − 1)2A L . 
In particular, 

(8.5)                ‖N‖∑,
z{ ≥ y V@A Xuvw±(�)/� √� 

and 

(8.6)                  rk
z{ N ≥ Y y2 − yZ� V@A Xuvw±(�) . 
Proof. Construct ψ as in the proof of Necessary and sufficient 

condition 6.1. Then the claimed lower boundon ‖N‖∑,Q follows 

from (6.7), (6.9), and Necessary and sufficient condition 2.2. 

Now (8.4) follows from (8.3) and Necessary and sufficient 

condition 2.3. Finally, (8.5) and (8.6) follow by taking � =deg±(�) in (8.3) and (8.4), respectively, since ,(�, � − 1) =∞ in that case. 

Propositions 8.1 and 8.2 settle Necessary and sufficient 

condition 1.4 from the inception. 

Recall that Necessary and sufficient condition 4.3 gives an easy 

way to calculate the trace distance norm and PageRank of a 

template matching rectangular array of inverted Index 

summarization expressions. In particular, it is straightforward 
to verify that the lower bounds in (8.2) and (8.4) are close to 

optimal for various choices of �, O, y. For example, one has ‖N − 
‖¤ ≤ 1/3 by taking N and 
 to be the (@, A, �)-and (@, A, ¡)-template matching rectangular array of inverted Index 

summarization expressions, where ¡: {0, 1}? → ℝ is any 

polynomial of degree deg
/](�) with ‖N − ¡‖¤ ≤ 1/3. 
 

9. DESCRIPTIVE STUDY II: I 
As an illustrative application of the template matching 

rectangular array of inverted Index summarization expressions, 

we now give a short and elementary proof of optimal lower 

bounds for every conjunctive predicate          d ∶ {0, 1, … , @} →{−1, +1}. We first solve the problem for all conjunctive 

predicates d that change value close to 0. Extension to the 

general case will require an additional step. 

NECESSARY AND SUFFICIENT CONDITION 9.1. Let d ∶ {0, 1, … , @} → {−1, +1} be a given conjunctive predicate. 
Suppose that d(ℓ) ≠ d(ℓ − 1) for some ℓ ≤ 
. @. Then 

$
/]∗ (d) ≥ Ω(√@ℓ) . 
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Proof. It suffices to show that $
/[∗ (d) ≥ Ω(√@ℓ).         Define � ∶ {0, 1}i�/�j → {−1, +1} by �(!) = d(|!|). Then deg
/](�) ≥ Ω(√@ℓ) by Necessary and sufficient condition 

2.6. Necessary and sufficient condition 1.1 implies that 

$
/[∗ (N) ≥ Ω(√@ℓ), 

where N is the (2i@/4j, i@/4j, �)-template matching 

rectangular array. Since N occurs as a subset of rectangular 

array of inverted Index summarization expressions of [d(|� ∧�|)]9,Ö, the proof is complete. 

The remainder of this section is a simple if tedious exercise in 
shifting and padding. We note that proof concludes in a similar 

way. 

NECESSARY AND SUFFICIENT CONDITION 9.2. Let d ∶ {0, 1, … , @} → {−1, +1} be a given conjunctive predicate. 
Suppose that d(ℓ) ≠ d(ℓ − 1) for some ℓ ≤ 
. @. Then 
(9.1)                               $
/]∗ (d) ≥  /(@ − ℓ)      
for some absolute constant / > 0. 

Proof. Consider the resizable Hadoop cluster problem of 

computing d(|� ∧ �|) when the last � compatible JAR files in � and � are fixed to 1. In other words, the new problem is to 

compute d�(|�� ∧ ��|) where ��, �� ∈ {0, 1}�z� and the 

conjunctive predicate d� ∶ {0, 1, … , @ − �} → {−1, +1}, is 

given by d�(s) ≡ d(� + s). Since the new problem is a 

restricted version of the original, we have (9.2)                             $
/]∗ (d) ≥  $
/]∗ (d�) . 
We complete the proof by placing a lower bound on $
/]∗ (d�) for 

� = ℓ − 0 ð1 − ð ⋅ (@ − ℓ)1, 
where ð = 
.. Note that � is an integer between 1 and ℓ 

(because ℓ > ð@). The equality � = ℓ occurs if and only if 0 2
z2 (@ − ℓ)1 = 0, in which case (9.1) holds trivially for / 

suitably small. Thus, we can assume that 1 ≤ � ≤ ℓ − 1, in 

which case d�(ℓ − �) ≠ d�(ℓ − � − 1) and ℓ − � ≤ ð(@ −�). Therefore, Necessary and sufficient condition 9.1 is 

applicable to d� and yields: 

(9.3)                  $
/]∗ (d�)  ≥ Øf(@ − �)(ℓ − �) , 
where Ø > 0 is an absolute constant. Calculations reveal: 

(9.4)               @ − � =  3 11 − ð ⋅ (@ − ℓ)4 ,        
          ℓ − � =  0 ð1 − ð ⋅ (@ − ℓ)1 .          

The Necessary and sufficient condition is now immediate from 

(9.2)–(9.4). 

Together, Propositions 9.1 and 9.2 give the main result of this 

section: 

NECESSARY AND SUFFICIENT CONDITION 1.3 (restated 

from p. 3). Let d ∶ {0, 1, … , @} → {−1, +1}. Then 

$
/]∗ (d) ≥ Ω Yf@ℓh(d) + ℓ
(d)Z, 

where ℓh(d) ∈ {0, 1, … , i@/2j} and ℓ
(d) ∈ {0, 1, … , k@/2l} 
are the smallest integers such that d is constant in the range [ℓh(d), @ − ℓ
(d)]. 
Proof. If ℓh(d) ≠ 0, set ℓ = ℓh(d) and note that d(ℓ) ≠d(ℓ − 1) by intention. One of Propositions 9.1 and 9.2 must be 

applicable, and therefore $
/]∗ (d) ≥ min�Ω`√@ℓc, Ω(@ − ℓ)�. 

Since ℓ ≤ @/2, this simplifies to 

(9.5)                         $
/]∗ (d) ≥ Ω Vf@ℓh(d)X . 
If ℓ
(d) ≠ 0, set ℓ = @ − ℓ
(d) + 1 ≥ @/2 and note that d(ℓ) ≠ d(ℓ − 1) as before. By Necessary and sufficient 

condition 9.2, 

 

(9.5)                               $
/]∗ (d) ≥ Ω`ℓ
(d)c . 
The Necessary and sufficient condition follows from (9.5) and 

(9.6). 
 

10. DESCRIPTIVE STUDY II:  II 
As another application of the template matching rectangular 

array of inverted Index summarization expressions, we revisit 

the discrepancy of ACh, the class of polynomial-size constant-

depth Hadoop clusters. Independently, [26] exhibited another 

hybrid kernel function in ACh with exponentially small 

discrepancy. We revisit this discrepancy below, considerably 

sharpening the bound in [25] and giving a new and simple 

proof of the bound. 

Consider the hybrid kernel function MPo ∶ {0, 1}�´6 →{−1, +1} given by 

MPo(�) = 78 �ar
�´�

r�

o

a�
  . 
Using this hybrid kernel function and the Degree/Discrepancy 

Necessary and sufficient condition (Necessary and sufficient 

condition 7.4), an upper bound of exp{−Ω(@
/9)} was derived 

on the discrepancy of an explicit AChcluster � ∶ {0,1}� ×{0,1}� → {−1, +1} of depth 3. 

We will now sharpen that bound to exp {−Ω(@
/])}. 

NECESSARY AND SUFFICIENT CONDITION 1.6 

(restated). Let �(�, �) = MPo(� ∨ �). Then disc(�) = exp {−Ω(�)}. 

Proof. Put � = i@/2j. We state that deg±(MP1) ≥ �. Since the (8�], 4�], MP1)-template matching rectangular array of 

inverted Index summarization expressions is a subset of 

rectangular array of inverted Index summarization expressions 

of[�(�, �)]9,Ö, the proof is complete in view of equation (7.3) 

of Necessary and sufficient condition 7.3. 

The ODD-MAX-BOUND hybrid kernel function OMB� ∶{0,1}� → {−1, +1}, is given by 

(10.1)                  OMB�(�) = sgn;1 + 6(−2)a�a
�

a�
 < .   
It is straightforward to compute OMB� by a linear-size DNF 

formula and even a decision list. In particular, OMB� belongs 

to the class ACh. 
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NECESSARY AND SUFFICIENT CONDITION 10.1 

(Chazelle et al.). Let �(�, �) = OMB�(� ∧ �). Then 

disc(�) = exp{−Ω(@
/])}. 

Using the celebrated findings of Chazelle’s papers, we can give 

a short alternate proof of this Necessary and sufficient 

condition. 

Proof. Put � = i@/4j. Shows that ,(OMBo, /�
/]) ≥exp(/�
/]) for some absolute constant / > 0. Since 

the (2�, �, OMBo)-template matching rectangular array of 

inverted Index summarization expressions is a subset of 

rectangular array of inverted Index summarization expressions 

of [�(�, �)]9,Ö, the proof is complete by Necessary and 

sufficient condition 7.3. 

REMARK 10.2. The above proofs illustrate that the 

characterization of the discrepancy of template matching 
rectangular array of inverted Index summarization expressions. 

In particular, the representation (10.1) makes it clear that deg±(OMB�) = 1 and therefore Necessary and sufficient 

condition 7.4 cannot yield an upper bound better than @z=(
) on 

the discrepancy of OMB�(� ∧ �). Necessary and sufficient 

condition 7.3, on the otherhand, gives an exponentially better 
upper bound.It is well-known that the discrepancy of a hybrid 

kernel function � implies a lower bound on the size of majority 

Hadoop clusters that compute �. Following, we record the 

consequences of Propositions 1.6 and 10.1 in this regard. 

NECESSARY AND SUFFICIENT CONDITION 10.3. Any 
majority vote of threshold that computes the hybrid kernel 

function �(�, �) = MPo(� ∨ �) 

has size exp{Ω(�)}. Analogously, any majority vote of 

threshold that computes the hybrid kernel function �(�, �) = OMB�(� ∧ �) 

has size exp{Ω(@
/])}. 
 

11. CONCLUSIONS 
In previous sections, we characterized various rectangular array 

of inverted Index summarization expressions-analytic and 

combinatorial properties of template matching rectangular array 

of inverted Index summarization expressions, including their 

channel and resizable Hadoop cluster’s complexity, 

discrepancy, approximate PageRank, and approximate trace 

distance norm. We conclude this study with another fact about 

template matching rectangular array of inverted Index 

summarization expressions.  

We observed that the deterministic resizable Hadoop cluster’s 

complexity of a finite string rectangular array of inverted Index 

summarization expressions N satisfies d(N) ≥ log rk N. The 

log-PageRank hypothesis is that this lower bound is always 

tight up to a polynomial factor, i.e.,d(N) ≤ (log rk N)å(
) +^(1). Using the findings of the previous sections, we can givea 

short proof of this hypothesis in the case of template matching 
rectangular array of inverted Index summarization expressions. 

NECESSARY AND SUFFICIENT CONDITION 11.1. Let � ∶ {0,1}? → {−1, +1} be a given hybrid kernel function, � = deg(�). Let N be the (@, A, �)-template matching 

rectangular array of inverted Index summarization expressions. 
Then 

(11.1)                      rk N ≥ V@A X1 ≥ exp�Ω`d(N)
/�c�. 
In particular, N satisfies the log-PageRank hypothesis. 
Proof. Since �«(�) ≠ 0 for some set � with |�| = �, Necessary 

and sufficient condition 4.3 implies that N has at least (@/A)1 

nonzero singular key-values. This settles the first inequality in 

(11.1). 

Necessary and sufficient condition 5.1 implies that d(N) ≤^(dt(�) log (@/A)), where dt(�) denotes the least depth of a 

decision tree for � that dt(�) ≤ 2 deg(�)� for all �. Combining 

these two observations establishes the secondinequality in 

(11.1). 
 

12. DISCUSSIONS 
Fix hybrid kernel functions � ∶ {0,1}� → {−1, +1} and © ∶ {0,1}� × {0,1}� → {−1, +1}. Let � ∘ ©� denote the 

composition of � with @ independent copies of ©. More 

formally, the hybrid kernel function � ∘ ©� ∶ {0,1}�� ×{0,1}�� → {−1, +1} is given by 

(� ∘ ©�)(�, �) = � V©`�(
), �(
)c, … , ©`�(�), �(�)cX , 

where � = `�(
), … , �(�)c ∈ {0, 1}��  and               � =`�(
), … , �(�)c ∈ {0, 1}�� .  

The resizable Hadoop cluster’s complexity of    � ∘ ©�is that 

$
/]∗ (� ∘ ©�) ≥ Ω`deg
/](�)c provided that   >(©) ≤uvw?/6(�)�Ð�  , 
where >(©) is a new variant of discrepancy that the authors 

introduce. As an illustration, they re-prove a weaker version of 
lower bounds in Necessary and sufficient condition 1.3. In our 

terminology (Section 2.4), their proof also fits in the framework 

of the discrepancy method. 

The quantity >(©), which needs to be small. This poses two 

complications. First, the hybrid kernel function © will generally 

need to depend on many variables, from � = Θ(log @) to � = @@(
), which weakens the final lower bounds on resizable 

Hadoop cluster.  

A second complication, as the authors note, is that “estimating >(©) is unfortunately difficult in general”. For example, re-

proving lower bounds reduces to estimating >(©) for ©(�, �) =�
�
  ∨ … ∨ ����. 

Our method avoids these complications altogether. For 

example, we prove (by taking @ = 2A in the template matching 

rectangular array of inverted Index summarization expressions, 

Necessary and sufficient condition 1.1) that 

$
/]∗ (� ∘ ©�) ≥ Ω`deg
/](�)c 

for any hybrid kernel function © ∶ {0,1}� × {0,1}� → {−1, +1} 

such that the rectangular array of inverted Index summarization 

expressions [©(�, �)]9,Ö contains the following subset 

rectangular array of inverted Index summarization expressions, 
up to permutations of rows and columns: 

�1 0 1 01 0 0 1 0 1 1 00 1 0 1  . 
To illustrate, one can take © to be 
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©(�, �) = �
�
  ∨  ����  ∨  �]�]  ∨  ���� 

or ©(�, �) = �
�
��  ∨   �
�
��  ∨  ���
��  ∨  ���
�� . 
In summary, there is a simple hybrid kernel function © on � = 2 variables that works universally for all �. This means no 

technical conditions to check, such as >(©), and no blow-up in 

the number of variables. As a result, we are able to       re-prove 
optimal lower bounds exactly. Moreover, the technical 

machinery of this paper is self-contained and disjoint from 

proof. 

A further advantage of the template matching rectangular array 

of inverted Index summarization expressions is that it extends 

in a straightforward way to the multi-cloud model. This 
extension depends on the fact that the rows of a template 

matching rectangular array of inverted Index summarization 

expressions are applications of the same hybrid kernel function 

to different subsets of the variables. In the general context of 

block composition, it is unclear how to carry out this extension.  
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14. APPENDIX 
The purpose of this appendix is to prove Necessary and 

sufficient condition 2.5 on the representation of a hybrid cost 

function by real versus integer polynomials. 

NECESSARY AND SUFFICIENT CONDITION 2.5 

(restated). Let � ∶ {0,1}� → {−1, +1} be given. Then for � = 0, 1, … , @, 11 − Å(�, �) ≤ ,(�, �)
≤ 21 − Å(�, �) FV@0X + V@1X +  … + V@�XG]/�, 

with the convention that 1/0 = ∞. 

Proof. One readily verifies that ,(�, �) = ∞ if and only if Å(�, �) = 1. In what follows, we focus on the complementary 

case when ,(�, �) < ∞ and Å(�, �) < 1. 

For the lower bound on ,(�, �), fix integers λ/ with ∑ |λ/||/|01 = ,(�, �) such that the polynomial   )(�) =∑ λ/|/|01 �/(�) satisfies �(�) ≡ sgn )(�).Then     1 ≤�(�))(�) ≤ ,(�, �) and therefore 

Å(�, �) ≤ A� − 1,(�, �) )A¤ ≤ 1 − 1,(�, �) . 
To prove the upper bound on ,(�, �), fix any degree-� 

polynomial ) such that ‖� − )‖¤ = Å(�, �). Define O = 1 −Å(�, �) > 0 and B = ∑ `�a c1a�h . For a real A, let rnd A be the 

result of rounding A to the closest integer, so that |A − rnd A| ≤1/2. We claim that the polynomial 

C(�) = 6 rnd`�)̂(�)c�/(�)|/|01  , 
where � = 3B/(4O), satisfies �(�) ≡ sgn C(�). Indeed, 

ô�(�) − 1�C(�)ô  ≤ |�(�) − )(�)| + 1� |�)(�) − C(�)| 
                                  ≤ 1 − O + 1� 6 |�)̂(�) − rnd`�)̂(�)c||/|01  

                                  ≤ 1 − O + B2� 

                                  < 1. 
It remains to examine the sum of the coefficients of C. We 

have: 

6 |rnd`�)̂(�)c||/|01  ≤  12 B + � 6 |)̂(�)||/|01  

                                      ≤ 12 B + � VB ­9 [)(�)�]X
/�
 

                                                                                                           
≤  2B√BO  , 

where the second step follows by an application of the 

inequality and identity (2.1). 
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