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ABSTRACT 

The present paper deals with the open-shop scheduling 

problem using a manual tuning of a genetic algorithm’s 

parameters. A comparison has been performed between 

Taillard’s Benchmarks for 60 instances, 2 dispatching rules 

and 198 variants from the GA algorithm obtained by changing 

the population size, the generation’s number, the crossover 

probability, and the mutation probability. Interesting results 

were obtained leading to some conclusions for the best choice 

of the parameters. 
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1. INTRODUCTION 
Scheduling belongs to the most important features of 

productivity improvement. It is a decision-making’s form that 

plays a crucial role in industries. [1] 

In shop scheduling problem, a set of jobs has to be processed 

on a set of machines by defining the time intervals in which 

the operations have to be processed. 

There are three basic types of shops: a flow-shop (each job is 

characterized by the same technological route), a job-shop 

(each job has a specific route) and an open-shop (no 

technological route is imposed on the jobs). [2] 

However there exist different objectives in scheduling 

optimization. The most known objective is the makespan or 

Cmax minimization which is the time’s span required to 

process all the jobs, i.e. the time from the beginning of the 

first operation until the end of the last operation. The second 

one is to minimize the flowtime, denoted by ∑Cj, which is the 

sum of completion times of all the jobs. Other objectives are 

the tardiness’s minimization, the number of tardy jobs, etc. 

In the last decades, many researchers, engineers and 

mathematicians have been interested by solving the shop 

scheduling problem. Complex problems were first developed 

by mathematical models. Because of the time consuming of 

these models, most of researchers developed heuristic 

methods  [3]. However those heuristics are limited to some 

specific problems and can’t be generalized to all shop 

scheduling problems. Actually the best way to resolve this 

kind of complex problem is the use of metaheuristics. These 

stochastic methods are inspired by analogies from nature like 

evolutionary algorithms, tabu search, simulated annealing, ant 

colony optimization, particle swarms, etc. [4] 

The genetic algorithm proposed in [5] is used in this article to 

resolve the problem of minimizing the makespan in an open-

shop O||Cmax [6] by tuning its parameters manually. And 

compared the results obtained with Taillard’s benchmarks in 

60 instances where the jobs’ number is equal to the machines’ 

number. 

This paper contains four sections organized as follow: Some 

works related to this subject have been reviewed in the first 

section, in section two the method used to resolve this 

problem has been presented, then the gotten results are given 

with some discussions in section three. Finally at the end of 

this article some conclusions and some perspectives for future 

works are given.  

2. LITERATURE REVIEW 
There are several works that treated the resolution of the 

open-shop scheduling by genetic algorithms. Among them 

one can find those of Liaw [7] who proposed a hybrid genetic 

algorithm (HGA) to resolve the open shop scheduling 

problem. The hybrid algorithm incorporates a local 

improvement procedure based on tabu search (TS) into a basic 

GA. The algorithm developed has been tested on randomly 

generated instances and on the benchmarks sets by Taillard 

[8] and Brucker et al. [9]. It has been found that this HGA 

outperformed other existing algorithms from the literature, 

and some benchmarks’ instances have been solved to 

optimality for the first time. 

Fang et al. [10] suggested an algorithm which combines a GA 

with heuristic rules for the schedule construction. The 

algorithm has been tested on the benchmark instances from 

[8] using ten runs for each instance. By their tests, they 

discovered one new best known solution for a problem with 7 

machines and 7 jobs and a problem with 10 machines and 10 

jobs instance. 

Khuri and Miryala [11] presented three GA’s variants for the 

problem O||Cmax : a permutation GA (PGA), a hybrid GA 

(HGA) and a selfish gene (FGA) algorithm. The three 

algorithms have been tested on the benchmark instances from 

[8]. Prins [12] gave a GA for the problem O|| Cmax. He made 

some tests for the benchmarks instances from [8]. The GA, he 

proposed, yielded competitive results. 

Senthilkumar and Shahabudeen [13] presented a GA for the 

problem O||Cmax. The authors used a chromosome with 

length equal to the operations’ number which is split into sub-

chromosomes each of them representing the machine 

sequence of a job. In their article they compared the GA with 

a particular heuristic on small instances. Andresen et al. [5] 

presented a GA for the problem O||∑Ci. They used the rank 

matrix to encode an individual on their algorithm. 
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There is a detailed survey for shop scheduling problems using 

GA on [2]. 

Another metaheuristic usually used in scheduling problem is 

the simulated annealing algorithm. This algorithm has shown 

good results in different optimization problems e.g. Chaouqi 

et al [3] used the SA in hybridization within the intuitive 

heuristic to perform a joint scheduling of production and 

maintenance in the job shop problem. On the same topic the 

authors used the Johnson’s algorithm combined with a genetic 

algorithm and the intuitive heuristic to optimize three 

objectives of the flow shop problem. [14] 

Recently Bai et al [15] used a heuristic called general dense 

scheduling to solve the static and dynamic versions of the 

flexible open shop scheduling problem. The heuristic 

proposed brings forth some interesting results. 

Naderi et al [16] studied the scheduling open shop problem 

with no intermediate buffer, called no-wait open shops under 

makespan minimization. They developed three mathematical 

models and proposed metaheuristics based on genetic and 

variable neighborhood search algorithms. The results they got 

show that the models and metaheuristics are effective to deal 

with the no-wait open shop problems. 

3. GENETIC ALGORITHM AND 

PARAMETERS TUNING 
Genetic algorithms belong to the evolutionary algorithms’ 

class. There exist four kind of evolutionary algorithms which 

are based on the natural evolution’s principles: genetic 

algorithms (GA), genetic programming, evolution strategies 

and evolutionary programming. These algorithms have been 

applied to many optimization problems or learning, and 

perform good results.[4] 

Genetic algorithms (GA) are metaheuristics which generate 

from a population of starting solutions new solutions by 

means of random changes. Indeed, they imitate the biological 

concepts of two individuals’ mutation and recombination. 

They usually start from a population of randomly generated 

individuals, and follow an iterative process. In each iteration a 

new population also called a generation is created. In general, 

a population contains individuals where each individual is 

usually identified with a chromosome which is further split 

into a number of genes. These new individuals are included 

into the next generation if, according to a fitness function, 

they are not less fit than their corresponding predecessors. 

This process terminate when a maximum number of 

generations has been produced, or a satisfactory fitness level 

has been reached. 

A basic genetic algorithm can be presented by the following 

organigram (figure 1): 

 

Figure 1: Genetic algorithm 

Before starting a population’s generation, a representation of 

its individuals must be done. There exist different 

representations also known as chromosome’s encoding. In this 

study the representation proposed by Andersen et al. [5] is 

reused. Thus the individuals are encoded by a Rank matrix R= 

(rij) that describes a sequence graph G(MO, JO) which is a 

feasible combination of machine orders and job orders. The 

rank rij is the maximal number of operations on a longest path 

ending in operation (i, j) [2] 

The mutation used in this algorithm is performed as follow: 

Let rij=l from R the rank of a random operation (i,j). In the 

first place the mutation operator changes this rank by a new 

value k* where k*                    and k is the 

maximal rank in row i and column j of R. Then it puts the 

operations on a linear order to construct a new correct rank 

matrix. In the case of ties, a lexicographical order is applied 

with one exception: The mutated operation gets the smallest 

number in the linear order among all operations with the same 

rank. [5][2] 

The figure 2 illustrates an example of the mutation operator. 

Parent Proto-child 

Linear 

order of 

operations 

Offspring 

2 1 4

1 2 3

3 4 1

 
 
 
 
 

  

2 1 4

1 2 1

3 4 1

 
 
 
 
 

 

5 2 8

3 6 1

7 9 4

 
 
 
 
 

 

3 1 4

2 3 1

4 5 2

 
 
 
 
 

 

Figure 2: Mutation operator 

In the crossover step, two individuals from the current 

population are chosen. Then the ranks of random operations 

from those individuals are exchanged. Usually the two gotten 

proto-children are infeasible. Thus one can use the similar 

method as the mutation described above: The relative order of 

Begin 

Generate random population of n 

chromosomes 

Generate a new population by applying 

selection, crossover and mutation 

Stopping criterion is 

reached? 

End 

Yes 

No 

Evaluate the fitness function 

 

Replace all or some of the old 

individuals by the new generated ones 
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the remaining operations from the parent is maintained, and 

both parts are now combined to a feasible rank matrix. To this 

end, a linear order is put on the operations in such a way that a 

smaller number in the linear order indicates that the rank of 

this operation is not greater than the rank of an operation with 

a larger number. In the case of ties, a lexicographical order is 

applied with the following exception: The operations for 

which the exchange of the ranks takes place get the smallest 

possible numbers among all operations with the same 

rank[11][12]. The following example (figure 3) illustrates the 

crossover operator. 

The selection: In this paper the adopted selection scheme is a 

combination of two strategies; the 2/4 selection developed by 

Shi [17] and an elitist strategy. [7] 

Parents 
Proto-

children 

Linear orders 

of operations 
Offsprings 

2

1

4 1

3 2

1 4 3

 
 
 
 
 

 

3

2

4 1

3 1

1 4 3

 
 
 
 
 

 

5

4

8 2

6 1

3 9 7

 
 
 
 
 

 

3

2

4 2

3 1

2 4 3

 
 
 
 
 

 

3

2

1 4

3 1

4 1 2

 
 
 
 
 

 

2

1

1 4

3 2

4 1 2

 
 
 
 
 

 

4

1

2 8

7 5

9 3 6

 
 
 
 
 

 

3

1

1 5

4 3

5 2 4

 
 
 
 
 

 

Figure 3: Crossover operator 

The selection scheme is described by the following steps: 

- Step 1: From the current population select the best 

solution and insert it directly into the next population. 

- Step 2: With an equal probability choose randomly two 

different solutions from the current population. 

- Step 3: Two new offsprings will be generated from those 

two solutions by applying crossover and mutation 

operators to them. 

- Step 4: Replace each offspring with a local optimum 

solution by applying local improvement. 

- Step 5: Select the better two solutions with different 

makespans if possible from the four solutions generated 

in the previous steps (the two old ones and the two new 

ones). 

- Step 6: Insert the two solutions selected in Step 5 into the 

next generation. 

- Step 7: Repeat Steps 2-6 until the next population is full. 

[7] 

4. RESULTS AND DISCUSSION 
The computational results for the genetic algorithm is 

presented in this section. One can note that the parameters 

used in this study are: num_gen {100, 200}, pop_size {50, 

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, 

c_prob {0.1, 0.2, 0.5, 0.8} and  m_prob {0, 0.1, 0.2}. The 

cases where (num_gen, pop_size, m_prob, c_prob)  {(-, -, 

0.2, 0.2), (-, -, 0.1, 0.1), (-, -, 0, 0.1)} are avoided here. Thus 

the total variants’ number is 198. The time limit is set to 10s 

as a stopping criterion. The generation of the first population 

was randomly. 

4.1 Case n° 1: Cmax = Optimum 
Here is described the frequencies of variants which solved a 

certain number of problems out of the sixty instances given by 

Taillard, i.e. the final makespan calculated for these variants 

has reached the optimum of the corresponding problem. 

Table. 1: number of variants by the number of solutions 

where Cmax=Opt 

Variants’ number 1 3 3 8 8 12 

Solutions’ number 14 13 12 11 10 9 

Variants’ number 23 28 24 27 21 23 

Solutions’ number 8 7 6 5 4 3 

 

The table n°1 presents the results of this first case. 

As shown in figure 4, the graph corresponds to a positive 

skew with a small tail on the right and three pics. This effect 

is undesirable, i.e. the tuning is not as good as expected. The 

best configuration which gives the most number of optimums 

(i.e. 14 out of 60) is GA1 where (pop_size=800, 

num_gen=200, m_prob=0, c_prob=0.2). Also 13 optimal 

solutions out of 60 are found for the three following 

configurations: (1000, 100, 0, 0.2), (700, 200, 0, 0.2) and 

(1000, 100, 0.1, 0.5). 

 

Figure 4: Variants’ number by the solutions’ number 

where Cmax=Opt 

To avoid any confusion two other cases of a deep analyze of 

these data are given in the following sections. In one case the 

ratio Optimum/Cmax is greater than or equal to 0.99 and in 

the other one it is greater than or equal to 0.98. 

4.2 Case n° 2: Optimum/Cmax>=0.99 
According to the figure 5 one can notice a huge modification 

of the distribution. The highest number of solutions where 

Optimum/Cmax>=0.99 is 38 out of 60. This number was 

reached for two variants followed by 37 solutions out of 60 

for 2 configurations. These four variants are: (900, 100, 0.2, 

0.5) denoted by GA2, (700, 200, 0, 0.2), (1000, 200, 0, 0.2) 

and (700, 200, 0.2, 0.1). 
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Figure 5: Number of variants by the number of solutions 

where Optimum/Cmax>=0.99 

4.3 Case n° 2: Optimum/Cmax>=0.98 
As showen in the figure 6, the graph obtained for this case 

contains multiple pics. However one can observe that the 

results here are more interesting than before.  

Most of variants give solutions with Optimum/Cmax>=0.98. 

The maximal number of solutions with Opt/Cmax>=0.98 is 56 

out of 60 reached by one variant: (1000, 200, 0.2, 0.5) denoted 

by GA3, followed by 54 out of 60 obtained for (900, 100, 0.2, 

0.5), (1000, 100, 0.2, 0.1) and (700, 200, 0.2, 0.1). 

 

Figure 6: Number of variants by the number of solutions 

where Optimum/Cmax>=0.98 

All the results of GA1, GA2 and GA3 for the benchmark 

problem from Taillard, are regrouped on table n° 2 with those 

given by SPT and LPT rules. The abbreviation LB means the 

lower bound and Opt stands for the optimum found in the 

literature. 

Table 2: Results for the benchmark problems from 

Taillard 

 i LB Opt SPT LPT GA1 GA2 GA3 

(4
x
4

) 

1 186 193 228 219 193 196 195 

2 229 236 276 256 247 247 239 

3 262 271 304 299 272 272 272 

4 245 250 307 260 254 253 254 

5 287 295 348 317 298 301 299 

6 185 189 225 239 189 189 189 

7 197 201 247 218 201 203 203 

8 212 217 233 248 217 217 217 

9 258 261 282 282 267 261 261 

10 213 217 235 225 221 221 221 

         

(5
x
5

) 

11 295 300 333 344 303 303 302 

12 255 262 297 297 269 265 266 

13 321 323 404 364 335 335 335 

14 306 310 317 369 316 316 316 

15 321 326 392 358 330 330 330 

16 307 312 353 360 320 320 318 

17 298 303 340 357 308 308 308 

18 292 300 369 343 304 304 304 

19 349 353 372 418 362 362 362 

20 321 326 375 371 333 329 328 

         

(7
x
7

) 
21 435 435 507 465 445 440 436 

22 443 443 485 526 449 454 454 

23 468 468 538 527 484 474 473 

24 463 463 492 527 466 466 466 

25 416 416 461 443 416 416 420 

26 451 451 518 494 455 455 455 

27 422 422 464 451 432 432 429 

28 424 424 482 494 427 427 427 

29 458 458 520 488 458 460 459 

30 398 398 435 445 402 403 403 

         

(1
0
x

1
0

) 

31 637 637 685 661 646 642 647 

32 588 588 658 643 592 591 594 

33 598 598 679 672 600 605 606 

34 577 577 632 591 582 580 580 

35 640 640 693 701 640 644 650 

36 538 538 559 556 541 538 540 

37 616 616 672 637 626 620 622 

38 595 595 651 686 602 601 604 

39 595 595 655 621 602 597 595 

40 596 596 633 636 606 604 605 

         

(1
5
x

1
5

) 

41 937 937 987 972 939 939 943 

42 918 918 937 972 922 922 920 

43 871 871 891 878 873 874 873 

44 934 934 975 965 934 935 934 

45 946 946 959 999 952 950 946 

46 933 933 981 952 935 935 936 

47 891 891 919 955 896 896 897 
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48 893 893 928 929 893 894 893 

49 899 899 990 927 911 909 918 

50 902 902 922 943 905 905 905 

         

(2
0
x

2
0

) 

51 1155 1155 1194 1200 1158 1162 1161 

52 1241 1241 1296 1296 1249 1248 1249 

53 1257 1257 1304 1258 1257 1258 1258 

54 1248 1248 1312 1274 1248 1248 1248 

55 1256 1256 1277 1262 1256 1257 1256 

56 1204 1204 1219 1215 1206 1208 1206 

57 1294 1294 1407 1317 1302 1301 1299 

58 1169 1169 1205 1216 1183 1189 1184 

59 1289 1289 1306 1293 1289 1289 1289 

60 1241 1241 1272 1265 1241 1241 1241 

 

These data are summarized in table n°3. One can observe that 

the problem’s size has an impact on the number of solutions. 

For example optimum solutions are found for 5 out of 10 

where n=m=20 and none where n=m=5 for GA1. 

Table n°3: Summary of the results in table2 

(nxm)_i SPT LPT GA1 GA2 GA3 

(4x4) - - 4 3 3 

(5x5) - - - - - 

(7x7) - - 2 1 - 

(10x10) - - 1 1 1 

(15x15) - - 2 - 3 

(20x20) - - 5 4 4 

5. CONCLUSION 
In this paper a computation has been performed between 

Taillard’s Benchmarks for 60 instances in the open shop 

problem, the SPT and the LPT dispatching rules and 198 

variants from the GA algorithm obtained by changing the 

population size, the generations’ number, the crossover 

probability, and the mutation probability. 

The results are interesting in the most cases. However they 

still far away from those obtained by Liaw [7] where he finds 

an optimum solution for 58 out of 60 problems using HGA. 

This difference is maybe due to the time limit set as a 

stopping criterion or it is due to the chosen GA 

implementation which needs some improvements. 

As a perspective on future studies, one can use some tools on 

tuning the GA’s parameters like neural networks or Bayesian 

networks and a hybridization in between different algorithms 

then try new tests to get an optimum makespan for all 

instances. 
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