

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

21

Genetic Algorithm Tuning Applied to the Open Shop

Scheduling Problem

Chaouqi Mohsine
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

Benhra Jamal
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

My Ali El Oualidi
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

ABSTRACT

The present paper deals with the open-shop scheduling

problem using a manual tuning of a genetic algorithm’s

parameters. A comparison has been performed between

Taillard’s Benchmarks for 60 instances, 2 dispatching rules

and 198 variants from the GA algorithm obtained by changing

the population size, the generation’s number, the crossover

probability, and the mutation probability. Interesting results

were obtained leading to some conclusions for the best choice

of the parameters.

General Terms

Scheduling, Genetic Algorithms

Keywords

Scheduling, Open shop, Genetic Algorithms, Tuning,

Benchmarks

1. INTRODUCTION
Scheduling belongs to the most important features of

productivity improvement. It is a decision-making’s form that

plays a crucial role in industries. [1]

In shop scheduling problem, a set of jobs has to be processed

on a set of machines by defining the time intervals in which

the operations have to be processed.

There are three basic types of shops: a flow-shop (each job is

characterized by the same technological route), a job-shop

(each job has a specific route) and an open-shop (no

technological route is imposed on the jobs). [2]

However there exist different objectives in scheduling

optimization. The most known objective is the makespan or

Cmax minimization which is the time’s span required to

process all the jobs, i.e. the time from the beginning of the

first operation until the end of the last operation. The second

one is to minimize the flowtime, denoted by ∑Cj, which is the

sum of completion times of all the jobs. Other objectives are

the tardiness’s minimization, the number of tardy jobs, etc.

In the last decades, many researchers, engineers and

mathematicians have been interested by solving the shop

scheduling problem. Complex problems were first developed

by mathematical models. Because of the time consuming of

these models, most of researchers developed heuristic

methods [3]. However those heuristics are limited to some

specific problems and can’t be generalized to all shop

scheduling problems. Actually the best way to resolve this

kind of complex problem is the use of metaheuristics. These

stochastic methods are inspired by analogies from nature like

evolutionary algorithms, tabu search, simulated annealing, ant

colony optimization, particle swarms, etc. [4]

The genetic algorithm proposed in [5] is used in this article to

resolve the problem of minimizing the makespan in an open-

shop O||Cmax [6] by tuning its parameters manually. And

compared the results obtained with Taillard’s benchmarks in

60 instances where the jobs’ number is equal to the machines’

number.

This paper contains four sections organized as follow: Some

works related to this subject have been reviewed in the first

section, in section two the method used to resolve this

problem has been presented, then the gotten results are given

with some discussions in section three. Finally at the end of

this article some conclusions and some perspectives for future

works are given.

2. LITERATURE REVIEW
There are several works that treated the resolution of the

open-shop scheduling by genetic algorithms. Among them

one can find those of Liaw [7] who proposed a hybrid genetic

algorithm (HGA) to resolve the open shop scheduling

problem. The hybrid algorithm incorporates a local

improvement procedure based on tabu search (TS) into a basic

GA. The algorithm developed has been tested on randomly

generated instances and on the benchmarks sets by Taillard

[8] and Brucker et al. [9]. It has been found that this HGA

outperformed other existing algorithms from the literature,

and some benchmarks’ instances have been solved to

optimality for the first time.

Fang et al. [10] suggested an algorithm which combines a GA

with heuristic rules for the schedule construction. The

algorithm has been tested on the benchmark instances from

[8] using ten runs for each instance. By their tests, they

discovered one new best known solution for a problem with 7

machines and 7 jobs and a problem with 10 machines and 10

jobs instance.

Khuri and Miryala [11] presented three GA’s variants for the

problem O||Cmax : a permutation GA (PGA), a hybrid GA

(HGA) and a selfish gene (FGA) algorithm. The three

algorithms have been tested on the benchmark instances from

[8]. Prins [12] gave a GA for the problem O|| Cmax. He made

some tests for the benchmarks instances from [8]. The GA, he

proposed, yielded competitive results.

Senthilkumar and Shahabudeen [13] presented a GA for the

problem O||Cmax. The authors used a chromosome with

length equal to the operations’ number which is split into sub-

chromosomes each of them representing the machine

sequence of a job. In their article they compared the GA with

a particular heuristic on small instances. Andresen et al. [5]

presented a GA for the problem O||∑Ci. They used the rank

matrix to encode an individual on their algorithm.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

22

There is a detailed survey for shop scheduling problems using

GA on [2].

Another metaheuristic usually used in scheduling problem is

the simulated annealing algorithm. This algorithm has shown

good results in different optimization problems e.g. Chaouqi

et al [3] used the SA in hybridization within the intuitive

heuristic to perform a joint scheduling of production and

maintenance in the job shop problem. On the same topic the

authors used the Johnson’s algorithm combined with a genetic

algorithm and the intuitive heuristic to optimize three

objectives of the flow shop problem. [14]

Recently Bai et al [15] used a heuristic called general dense

scheduling to solve the static and dynamic versions of the

flexible open shop scheduling problem. The heuristic

proposed brings forth some interesting results.

Naderi et al [16] studied the scheduling open shop problem

with no intermediate buffer, called no-wait open shops under

makespan minimization. They developed three mathematical

models and proposed metaheuristics based on genetic and

variable neighborhood search algorithms. The results they got

show that the models and metaheuristics are effective to deal

with the no-wait open shop problems.

3. GENETIC ALGORITHM AND

PARAMETERS TUNING
Genetic algorithms belong to the evolutionary algorithms’

class. There exist four kind of evolutionary algorithms which

are based on the natural evolution’s principles: genetic

algorithms (GA), genetic programming, evolution strategies

and evolutionary programming. These algorithms have been

applied to many optimization problems or learning, and

perform good results.[4]

Genetic algorithms (GA) are metaheuristics which generate

from a population of starting solutions new solutions by

means of random changes. Indeed, they imitate the biological

concepts of two individuals’ mutation and recombination.

They usually start from a population of randomly generated

individuals, and follow an iterative process. In each iteration a

new population also called a generation is created. In general,

a population contains individuals where each individual is

usually identified with a chromosome which is further split

into a number of genes. These new individuals are included

into the next generation if, according to a fitness function,

they are not less fit than their corresponding predecessors.

This process terminate when a maximum number of

generations has been produced, or a satisfactory fitness level

has been reached.

A basic genetic algorithm can be presented by the following

organigram (figure 1):

Figure 1: Genetic algorithm

Before starting a population’s generation, a representation of

its individuals must be done. There exist different

representations also known as chromosome’s encoding. In this

study the representation proposed by Andersen et al. [5] is

reused. Thus the individuals are encoded by a Rank matrix R=

(rij) that describes a sequence graph G(MO, JO) which is a

feasible combination of machine orders and job orders. The

rank rij is the maximal number of operations on a longest path

ending in operation (i, j) [2]

The mutation used in this algorithm is performed as follow:

Let rij=l from R the rank of a random operation (i,j). In the

first place the mutation operator changes this rank by a new

value k* where k* and k is the

maximal rank in row i and column j of R. Then it puts the

operations on a linear order to construct a new correct rank

matrix. In the case of ties, a lexicographical order is applied

with one exception: The mutated operation gets the smallest

number in the linear order among all operations with the same

rank. [5][2]

The figure 2 illustrates an example of the mutation operator.

Parent Proto-child

Linear

order of

operations

Offspring

2 1 4

1 2 3

3 4 1

 
 
 
 
 

2 1 4

1 2 1

3 4 1

 
 
 
 
 

5 2 8

3 6 1

7 9 4

 
 
 
 
 

3 1 4

2 3 1

4 5 2

 
 
 
 
 

Figure 2: Mutation operator

In the crossover step, two individuals from the current

population are chosen. Then the ranks of random operations

from those individuals are exchanged. Usually the two gotten

proto-children are infeasible. Thus one can use the similar

method as the mutation described above: The relative order of

Begin

Generate random population of n

chromosomes

Generate a new population by applying

selection, crossover and mutation

Stopping criterion is

reached?

End

Yes

No

Evaluate the fitness function

Replace all or some of the old

individuals by the new generated ones

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

23

the remaining operations from the parent is maintained, and

both parts are now combined to a feasible rank matrix. To this

end, a linear order is put on the operations in such a way that a

smaller number in the linear order indicates that the rank of

this operation is not greater than the rank of an operation with

a larger number. In the case of ties, a lexicographical order is

applied with the following exception: The operations for

which the exchange of the ranks takes place get the smallest

possible numbers among all operations with the same

rank[11][12]. The following example (figure 3) illustrates the

crossover operator.

The selection: In this paper the adopted selection scheme is a

combination of two strategies; the 2/4 selection developed by

Shi [17] and an elitist strategy. [7]

Parents
Proto-

children

Linear orders

of operations
Offsprings

2

1

4 1

3 2

1 4 3

 
 
 
 
 

3

2

4 1

3 1

1 4 3

 
 
 
 
 

5

4

8 2

6 1

3 9 7

 
 
 
 
 

3

2

4 2

3 1

2 4 3

 
 
 
 
 

3

2

1 4

3 1

4 1 2

 
 
 
 
 

2

1

1 4

3 2

4 1 2

 
 
 
 
 

4

1

2 8

7 5

9 3 6

 
 
 
 
 

3

1

1 5

4 3

5 2 4

 
 
 
 
 

Figure 3: Crossover operator

The selection scheme is described by the following steps:

- Step 1: From the current population select the best

solution and insert it directly into the next population.

- Step 2: With an equal probability choose randomly two

different solutions from the current population.

- Step 3: Two new offsprings will be generated from those

two solutions by applying crossover and mutation

operators to them.

- Step 4: Replace each offspring with a local optimum

solution by applying local improvement.

- Step 5: Select the better two solutions with different

makespans if possible from the four solutions generated

in the previous steps (the two old ones and the two new

ones).

- Step 6: Insert the two solutions selected in Step 5 into the

next generation.

- Step 7: Repeat Steps 2-6 until the next population is full.

[7]

4. RESULTS AND DISCUSSION
The computational results for the genetic algorithm is

presented in this section. One can note that the parameters

used in this study are: num_gen {100, 200}, pop_size {50,

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000},

c_prob {0.1, 0.2, 0.5, 0.8} and m_prob {0, 0.1, 0.2}. The

cases where (num_gen, pop_size, m_prob, c_prob) {(-, -,

0.2, 0.2), (-, -, 0.1, 0.1), (-, -, 0, 0.1)} are avoided here. Thus

the total variants’ number is 198. The time limit is set to 10s

as a stopping criterion. The generation of the first population

was randomly.

4.1 Case n° 1: Cmax = Optimum
Here is described the frequencies of variants which solved a

certain number of problems out of the sixty instances given by

Taillard, i.e. the final makespan calculated for these variants

has reached the optimum of the corresponding problem.

Table. 1: number of variants by the number of solutions

where Cmax=Opt

Variants’ number 1 3 3 8 8 12

Solutions’ number 14 13 12 11 10 9

Variants’ number 23 28 24 27 21 23

Solutions’ number 8 7 6 5 4 3

The table n°1 presents the results of this first case.

As shown in figure 4, the graph corresponds to a positive

skew with a small tail on the right and three pics. This effect

is undesirable, i.e. the tuning is not as good as expected. The

best configuration which gives the most number of optimums

(i.e. 14 out of 60) is GA1 where (pop_size=800,

num_gen=200, m_prob=0, c_prob=0.2). Also 13 optimal

solutions out of 60 are found for the three following

configurations: (1000, 100, 0, 0.2), (700, 200, 0, 0.2) and

(1000, 100, 0.1, 0.5).

Figure 4: Variants’ number by the solutions’ number

where Cmax=Opt

To avoid any confusion two other cases of a deep analyze of

these data are given in the following sections. In one case the

ratio Optimum/Cmax is greater than or equal to 0.99 and in

the other one it is greater than or equal to 0.98.

4.2 Case n° 2: Optimum/Cmax>=0.99
According to the figure 5 one can notice a huge modification

of the distribution. The highest number of solutions where

Optimum/Cmax>=0.99 is 38 out of 60. This number was

reached for two variants followed by 37 solutions out of 60

for 2 configurations. These four variants are: (900, 100, 0.2,

0.5) denoted by GA2, (700, 200, 0, 0.2), (1000, 200, 0, 0.2)

and (700, 200, 0.2, 0.1).

8 9

23
21

27
24

28

23

12

8 8

3 3
1

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
U

M
B

ER
 O

F
V

A
R

IA
N

TS

NUMBER OF SOLUTIONS

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

24

Figure 5: Number of variants by the number of solutions

where Optimum/Cmax>=0.99

4.3 Case n° 2: Optimum/Cmax>=0.98
As showen in the figure 6, the graph obtained for this case

contains multiple pics. However one can observe that the

results here are more interesting than before.

Most of variants give solutions with Optimum/Cmax>=0.98.

The maximal number of solutions with Opt/Cmax>=0.98 is 56

out of 60 reached by one variant: (1000, 200, 0.2, 0.5) denoted

by GA3, followed by 54 out of 60 obtained for (900, 100, 0.2,

0.5), (1000, 100, 0.2, 0.1) and (700, 200, 0.2, 0.1).

Figure 6: Number of variants by the number of solutions

where Optimum/Cmax>=0.98

All the results of GA1, GA2 and GA3 for the benchmark

problem from Taillard, are regrouped on table n° 2 with those

given by SPT and LPT rules. The abbreviation LB means the

lower bound and Opt stands for the optimum found in the

literature.

Table 2: Results for the benchmark problems from

Taillard

 i LB Opt SPT LPT GA1 GA2 GA3

(4
x
4

)

1 186 193 228 219 193 196 195

2 229 236 276 256 247 247 239

3 262 271 304 299 272 272 272

4 245 250 307 260 254 253 254

5 287 295 348 317 298 301 299

6 185 189 225 239 189 189 189

7 197 201 247 218 201 203 203

8 212 217 233 248 217 217 217

9 258 261 282 282 267 261 261

10 213 217 235 225 221 221 221

(5
x
5

)

11 295 300 333 344 303 303 302

12 255 262 297 297 269 265 266

13 321 323 404 364 335 335 335

14 306 310 317 369 316 316 316

15 321 326 392 358 330 330 330

16 307 312 353 360 320 320 318

17 298 303 340 357 308 308 308

18 292 300 369 343 304 304 304

19 349 353 372 418 362 362 362

20 321 326 375 371 333 329 328

(7
x
7

)
21 435 435 507 465 445 440 436

22 443 443 485 526 449 454 454

23 468 468 538 527 484 474 473

24 463 463 492 527 466 466 466

25 416 416 461 443 416 416 420

26 451 451 518 494 455 455 455

27 422 422 464 451 432 432 429

28 424 424 482 494 427 427 427

29 458 458 520 488 458 460 459

30 398 398 435 445 402 403 403

(1
0
x

1
0

)

31 637 637 685 661 646 642 647

32 588 588 658 643 592 591 594

33 598 598 679 672 600 605 606

34 577 577 632 591 582 580 580

35 640 640 693 701 640 644 650

36 538 538 559 556 541 538 540

37 616 616 672 637 626 620 622

38 595 595 651 686 602 601 604

39 595 595 655 621 602 597 595

40 596 596 633 636 606 604 605

(1
5
x

1
5

)

41 937 937 987 972 939 939 943

42 918 918 937 972 922 922 920

43 871 871 891 878 873 874 873

44 934 934 975 965 934 935 934

45 946 946 959 999 952 950 946

46 933 933 981 952 935 935 936

47 891 891 919 955 896 896 897

1 1 1

6
3

5
2

5

10

4

8
5 6

11
13

26

16
13

16 16

8 9 8

1 2 2

0

5

10

15

20

25

30

13 15 17 19 21 23 25 27 29 31 33 35 37

N
U

M
B

ER
 O

F
V

A
R

IA
N

TS

NUMBER OF SOLUTIONS

2

5 6
4

1 2

7

3 2

6
4 3

12

6 7

21

13

9

22

12

18

11
9

5
7

1

0

5

10

15

20

25

30 32 34 36 38 40 42 44 46 48 50 52 54

N
U

M
B

ER
 O

F
V

A
R

IA
N

TS

NUMBER OF SOLUTIONS

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

25

48 893 893 928 929 893 894 893

49 899 899 990 927 911 909 918

50 902 902 922 943 905 905 905

(2
0
x

2
0

)

51 1155 1155 1194 1200 1158 1162 1161

52 1241 1241 1296 1296 1249 1248 1249

53 1257 1257 1304 1258 1257 1258 1258

54 1248 1248 1312 1274 1248 1248 1248

55 1256 1256 1277 1262 1256 1257 1256

56 1204 1204 1219 1215 1206 1208 1206

57 1294 1294 1407 1317 1302 1301 1299

58 1169 1169 1205 1216 1183 1189 1184

59 1289 1289 1306 1293 1289 1289 1289

60 1241 1241 1272 1265 1241 1241 1241

These data are summarized in table n°3. One can observe that

the problem’s size has an impact on the number of solutions.

For example optimum solutions are found for 5 out of 10

where n=m=20 and none where n=m=5 for GA1.

Table n°3: Summary of the results in table2

(nxm)_i SPT LPT GA1 GA2 GA3

(4x4) - - 4 3 3

(5x5) - - - - -

(7x7) - - 2 1 -

(10x10) - - 1 1 1

(15x15) - - 2 - 3

(20x20) - - 5 4 4

5. CONCLUSION
In this paper a computation has been performed between

Taillard’s Benchmarks for 60 instances in the open shop

problem, the SPT and the LPT dispatching rules and 198

variants from the GA algorithm obtained by changing the

population size, the generations’ number, the crossover

probability, and the mutation probability.

The results are interesting in the most cases. However they

still far away from those obtained by Liaw [7] where he finds

an optimum solution for 58 out of 60 problems using HGA.

This difference is maybe due to the time limit set as a

stopping criterion or it is due to the chosen GA

implementation which needs some improvements.

As a perspective on future studies, one can use some tools on

tuning the GA’s parameters like neural networks or Bayesian

networks and a hybridization in between different algorithms

then try new tests to get an optimum makespan for all

instances.

6. REFERENCES
[1] M. L. Pinedo, Scheduling, vol. 1. Boston, MA: Springer

US, 2012.

[2] F. Werner, “Genetic algorithms for shop scheduling

problems: A survey,” Preprint, 2011.

[3] M. Chaouqi and J. Benhra, “Recuit simulé hybride pour

un ordonnancement conjoint de la production et de la

maintenance dans un atelier job-shop,” Int. Work. Theory

Appl. Logist. Transp. TALT15, 2015.

[4] P. S. J. Dréo, A. Pétrowski, E. Taillard, Metaheuristics

for Hard Optimization, vol. 53, no. 9. Berlin/Heidelberg:

Springer-Verlag, 2006.

[5] M. Andresen, H. Bräsel, M. Mörig, J. Tusch, F. Werner,

and P. Willenius, “Simulated annealing and genetic

algorithms for minimizing mean flow time in an open

shop,” Math. Comput. Model., vol. 48, no. 7–8, pp.

1279–1293, Oct. 2008.

[6] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G.

Rinnooy Kan, “Optimization and approximation in

deterministic sequencing and scheduling : a survey,”

1979.

[7] C.-F. Liaw, “A hybrid genetic algorithm for the open

shop scheduling problem,” Eur. J. Oper. Res., vol. 124,

no. 1, pp. 28–42, Jul. 2000.

[8] Taillard E., “Benchmarks for basic scheduling

problems,” Eur. J. Oper. Res., vol. 64, pp. 1–17, 1993.

[9] P. Brucker, J. Hurink, B. Jurisch, and B. Wöstmann, “A

branch & bound algorithm for the open-shop problem,”

Discret. Appl. Math., vol. 76, no. 1–3, pp. 43–59, Jun.

1997.

[10] H. Fang and P. Ross, “A Promising Hybrid GA/Heuristic

Approach for Open-Shop Scheduling Problems In

Proceedings of the 11th European Conference on Arti

cial Intelligence, John Wiley and Sons, 1994, pages

590{594.,” no. 699, 1994.

[11] S. Khuri and S. R. Miryala, “Genetic Algorithms for

Solving Open Shop Scheduling Problems,” in

Proceedings of the 9th Portuguese Conference on

Artificial Intelligence: Progress in Artificial Intelligence

(EPIA ’99), 1999, pp. 357–368.

[12] C. Prins, “Competitive genetic algorithms for the open-

shop problem,” Math. Methods Oper. Res., vol. 52, no. 3,

pp. 389–411, 2000.

[13] P. Senthilkumar and P. Shahabudeen, “GA based

heuristic for the open job shop scheduling problem,” Int.

J. Adv. Manuf. Technol., vol. 30, no. 3–4, pp. 297–301,

2006.

[14] M. Chaouqi, J. Benhra, and A. Zakari, “Agile Approach

for Joint Scheduling of Production and Maintenance in

Flow Shop,” Int. J. Comput. Appl., vol. 59, no. 11, pp.

29–36, Dec. 2012.

[15] D. Bai, Z.-H. Zhang, and Q. Zhang, “Flexible open shop

scheduling problem to minimize makespan,” Comput.

Oper. Res., vol. 67, pp. 207–215, Mar. 2016.

[16] B. Naderi and M. Zandieh, “Modeling and scheduling

no-wait open shop problems,” Int. J. Prod. Econ., vol.

158, pp. 256–266, Dec. 2014.

[17] G. SHl, “A genetic algorithm applied to a classic job-

shop scheduling problem,” Int. J. Syst. Sci., vol. 28, no.

1, pp. 25–32, Apr. 2007.

