

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

26

An Application of Genetic Algorithm for University

Course Timetabling Problem

Sanjay R. Sutar
Asso.Professor, Dr. B. A. T. University, Lonere &

Research Scholar, SGGSIET, Nanded, India

Rajan S. Bichkar
Professor, E&TC and Dean R&D,

G.H.Raisoni College of Engg. & Mgt.,
Pune, India

ABSTRACT
Timetabling problem is a process of assigning given set of

events and resources to the limited space and time under

hard constraints which are rigidly enforced and soft

constraints which are satisfied as nearly as possible. As a

kind of timetabling problems, University course timetabling

is a very important administrative activity for a wide variety

of institutes. Genetic algorithm is an advanced heuristics

method which is very effective in many areas. It is

frequently deployed meta-heuristics algorithm to solve

difficult combinatorial optimization problems. In this paper,

genetic algorithm is used to solve university course

timetabling problem. At first, a model of problem to be

solved is defined. Then, the genetic representation is

determined and a fitness function is established according to

the constraints. Finally, a case of university course

timetabling from real-world is discussed and solved. It is

demonstrated that the method proposed in this paper is

feasible and efficient.

Keywords
Timetabling problems, Genetic algorithm, Optimization,

Heuristic method

1. INTRODUCTION
The course timetabling is one of the major administrative

activities for a wide variety of institutions. A scheduling

problem can be defined as the problem of assigning a

number of events into a number of time periods or time

slots. The standard definition is “Timetabling is the

allocation, subject to constraints, of given objects in time

space, in such a way to satisfy a set of desirable objectives”.

Real timetabling problems have many forms like educational

timetabling (course and exam), employee timetabling, sports

timetabling, timetabling of transportation means, etc.

Timetabling problems are scheduling problems, which are

computationally complex, constrained optimization

problems. They are classified as constraint satisfaction

problems, where the main objective is to assure all problem

constraints, rather than optimizing a number of objectives.

Automated timetabling is of great importance to institutions

and organizations, as it can save a lot of man-hours and

provide optimal solutions with constraint satisfaction within

minutes that can boost productivity, quality of education,

quality of services and finally quality of life. High quality

large-scale timetables, such as University course timetabling

may need great efforts and many hours of work spent by a

qualified person or a team. Number of methods had been

already proposed in the literature for solving timetabling

problems.

In this paper, a genetic algorithm (GA) is proposed to solve

a real world university course timetabling problem. It has

been used to solve such problems; however, there is no

universal timetabling model which can be applied

everywhere. The constraints in different universities and

academic institutions may vary depending on the respective

schemes. In this research work, the model of university

course timetabling problem is defined. Then a process of

using genetic algorithm to solve this problem is described. A

genetic representation is determined to reflect the

relationship of teachers, courses, classes, classrooms and

time periods and a fitness function is established according

to the constraints. Finally, a university course timetabling

problem from real-world is solved and analyzed.

2. RELATED WORK
There have been many attempts to solve the course

timetabling problem, some examples can be found in [1] [2].

Timetabling is NP-hard problem in a number of ways, as

shown in [3]. The potential of the genetic algorithm (GA) in

solving highly constrained problems is found in [4]. Hitoshi

Kanoh proposed both knowledge and constraints based

method to solve the university course timetabling problem

efficiently [5]. Alexander Brownlee investigated the

problem of class timetabling and attempted to reproduce

three different approaches to solve it [6]. An extension of

genetic algorithm known as memetic algorithm is also

applied to the problem. Maciej Norberciak describes a

universal method for solving large, highly constrained

timetabling problems from different domains [7]. The

solution is based on evolutionary algorithm’s framework and

employs tabu search to speed up the solution finding

process. Hyperheuristics are used to establish operating

parameters of the algorithm. The method has been used to

solve three different timetabling problems with promising

results from preliminary experiments. Results look

appealing but it needs improvement in the algorithm such as

employing some form of local search.

Mihaela Oprea presented the current state of a research work

that involves the development of a multiagent system for

University course timetable scheduling [8]. The purpose of

the work was to analyze the benefits of using an agent-based

approach for the University course timetable scheduling,

which involves many communication, cooperation and

negotiation processes. He described an architecture of a

multi-agent system for University course timetable

scheduling, MAS_UP-UCT and briefly discussed an

evaluation of the multi-agent system.

Adilah Binti Abdullah provided a review of the current

manual timetable systems and developed a web based

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

27

timetable system using genetic algorithm [9]. Pariwat

Khonggamnerd proposed a genetic algorithm model for

improving effectiveness of automated University timetable

[10].Hard constraints and soft constraints for the specific

problem were discussed, the genetic elements were designed

and the fitness function was proposed. Three genetic

operators: crossover, mutation, and selection were employed

to obtain optimized results. The results show that the

proposed GA model works well in making the University

timetable; no hard constraints appeared in the timetable with

crossover probability 0.70. However, modifications are

required to satisfy the soft constraints.

Nabeel R. established a new hybrid algorithm to solve

course timetabling problem based on genetic algorithm and

Great Deluge algorithm [11].He applied the method on

standard benchmark problems and were able to produce

promising results. The experiments carried out in the work

demonstrated that the method obtained better results. The

proposed method produced a feasible and good quality

timetable. Moreover, it gave consistently good results across

various benchmark problems.

3. PROBLEM STATEMENT
In order to compete with various large scale institutions,

small academic infrastructure faces bigger challenges due to

their limited number of classrooms, instructors, resources

etc. for meeting student’s interest. As curriculum keeps

changing, a course timetable must be updated appropriately

to reflect changed conditions. It is a very tedious and time

consuming task due to inadequate resources (rooms, faculty

and time). A complete and efficient timetable must meet as

many requirements of students, courses and instructors as

possible, if not all. University course timetabling problem

can be defined as a combinatorial optimization problem of

assigning a given set of teachers, classes, courses, and

classrooms into a limited number of time slots to satisfy

almost all constraints. Generally, the constraints represent

the limitations on resources, time slots and equipments. The

constraints are divided into two categories: hard constraints

and soft constraints. Hard constraints are rigidly enforced

and soft constraints are a series of optimized conditions

which is not absolutely essential. Examples of soft

constraints include: senior teachers’ such as professors and

associate professors, demands are preferred, the classroom

of all courses for a class should be same, the course should

not be scheduled in the evening for effective teaching, the

teachers’ demands should be satisfied as many as possible,

the courses shouldn’t be scheduled in the weekends, etc.

The University course timetabling is one of the common

educational timetabling problems. Since it is NP-hard, a

variety of approaches have been adopted, achieving varying

levels of success. It is a search problem, in which courses

must be arranged around a set of time slots, in order to

satisfy given constraints and optimize a set of objectives.

The NP-hard problems are very difficult to solve using

conventional techniques. Therefore a better solution could

be achieved using evolutionary algorithm.

4. PROPOSED METHODOLOGY
The proposed model is designed using genetic algorithm

employing a constructive heuristic approach. Although

Genetic Algorithm is a search technique used to find exact

or approximate solutions, the results are often not the best

but generally “acceptably good” solutions.

Genetic algorithm (GA) is a heuristic search technique to

solve the optimization and search problems. It is the

simulation for the process of natural selection and biological

evolution. Specially, the process of solving problem using

genetic algorithm is described as follows.

Before starting the genetic evolution, a genetic

representation and a fitness function should be determined.

Genetic representation, called chromosome, expresses mode

of the solution. The fitness function which is based on the

problem is defined to measure the quality of the represented

solution. It is always genetic representation dependent. Once

the genetic representation and the fitness function are

defined, the evolution which is an iterative process would

start.

Initialization- This is a process to initialize the population

formed by many individual solutions.

Selection- In this step, a proportion of the existing

population in current generation is selected to breed a new

generation.

Reproduction- Once those individual solutions to breed a

new generation are selected, the next generation population

of solutions would be generated through genetic operators:

crossover and mutation.

Termination- The above evolutionary process is repeated

until a termination condition is reached.

Replace_By_Generation parents are selected randomly for

crossover. Crossover randomly selects crossover points in

two chromosomes. The information is swapped between the

parents, rendering an offspring.

The parameters Replace_By_Generation and Best_

Chromosomes in population are provided along with number

of chromosomes, number of crossover points, mutation size

and crossover, mutation probabilities.

Replace_By_Generation parents chosen randomly are

replaced by the offspring produced by crossover operation.

Best_ Chromosomes will be retained in the population. The

timeslots under each timetable forms the alleles of the

chromosome. The different combination of alleles gives the

chromosome its distinct identity, shown in Figure-1.

Organization of information into a hash structure helps the

Genetic Algorithm to perform operations very quickly.

Since the entire timetable is stored in a hash structure, the

retrieval of an individual class timetable or individual

timeslot may be performed by manipulation of array index.

This enables a direct addressing and exchange of

information during crossover operation. The use of pointers

also helps in a quick exchange.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

28

Figure 1: Schematic chromosome representation of a

class timetable added to a hash map

Representation of chromosome for a class schedule will

need a slot (time-space slot) for each hour (the class time is

one hour), for every room, every day. Also, classes begin at

9am, and should finish before or at 6pm (9 hours total) and

working days are from Monday to Friday (5 days total). A

standard vector with a size 9x5x (Number_of_rooms) is

used. The slot is a standard list because during the execution

of algorithm, multiple classes during the same time-space

slot are allowed. There is an additional hash map which is

used to obtain the first time-space slot at which a class

begins (its position in vector) from the address of the class

object.

Each hour of a class has a separate entry in the vector, but

there is only one entry per class in the hash map. For

instance, if a class starts at 1pm and lasts for two hours, it

has entries in 1pm and 2pm slots.

5. IMPLEMENTATION SCENARIO
The proposed algorithm is implemented using VC++ on

Intel Core2 Duo and 32-bits Windows OS. The code given

in code project has been customized to solve the problem. A

configuration file consists of various input parameters e.g.

names of professors, course names, and number of rooms,

lab resources and available seats. The population operated

by genetic algorithm is maintained in memory. Hard

constraints are used for evaluating each generated time table

by estimating number of times it breaches them. Therefore,

each generation will provide a new time table with minimum

number of constraint violations. A class is a structure with

three fields’ information, where each class will have a

certain size and faculty number and the group to which it

belongs.

The initial population will comprise of a number of

chromosomes equal to the population size. Each

chromosome will be designed using the constructive

heuristic approach and is represented as a three-dimensional

matrix. Then, the value of each slot of the matrix represents

allotment scheduled on a day in the corresponding room and

period. The initialization procedure uses the input data for

chromosome representation. The result of initialization

process is to obtain possible chromosomes that may meet the

requirements of several hard constraints. A course can be

scheduled only once in a day and student’s conflict is

defined as a student should not be assigned for more than a

course at the same slot. In professor’s conflict, he/she should

never be allotted with more than one class including labs at

the same slot. In class-room conflict, classes and

laboratories of various courses scheduled at physical

location must not overlap. Also, laboratory periods should

come in the continuous timeslots.

The program is designed in such a way that the goodness of

the chromosomes increases with the increase in the fitness

score i.e. the chromosome having the highest score is said to

be more optimal than others. The mathematical notation of

the fitness score calculation based on soft constraints can be

represented as:

SCn

j

jVjptfMinimize
1

)(*)()(

Where

p (j) - Penalty cost of soft constraint j on T.

V (j) - Number of violations of Soft constraint j.

If jSC on T is satisfied, then V (j) = 0.

Only hard constraints are used to calculate the fitness of a

class schedule as follows:

Each class can have 0 to 5 points.

 If a class uses a spare classroom, its score is

incremented.

 If a class requires computers and it is located in the

classroom with them, or it doesn't require them,

increment the score of the class.

 If a class is located in a classroom with enough

available seats, increment its score.

 If a professor has no other classes at the time,

increment the class's score once again.

 If the student group has no other class at the same time,

increment the score of the class.

 If a class violates constraints at any time slot that it

occupies, its score is not incremented.

 The total score of a class schedule is the sum of scores

of all classes.

 The fitness value is calculated as schedule

score/maximum score, and maximum score is

number_of_classes*5.

The fitness values are represented by single precision

floating point numbers (float) in the range 0 to 1.

Replace_By_Generation parents are selected randomly from

the generated population in order to undergo genetic

operations like mutation or cross-over. This phase will

maintain the diversity of the population and avoids

premature convergence.

A crossover 'splits' hash maps of both parents in random

sized parts. The number of parts is number of crossover

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

29

points plus one. It copies parts from parents to the offspring,

and forms a new vector of slots, Figure-2.

Figure 2: Schematic representation of crossover method

The mutation operation makes a random change in the

chromosomes selected to undergo the alterations. Mutation

is applied to prevent premature convergence and to find the

optimal results.

The algorithm is as follows-

Initialize new population with chromosomes randomly built.

Generation=0.

Repeat

Select parents for crossover Replace_By_Generation times.

Produce the same number of offsprings.

Apply mutation to all.

Select Replace_By_Generation chromosomes and replace

them with offsprings by protecting best chromosomes.

Try to add new chromosomes in best chromosomes group.

Generation=Generation+1.

Until an algorithm has reached the criteria.

The generations will continue until one of the possible

termination criteria is met, i.e. basically a known optimal or

acceptable solution is achieved or maximum number of

generations has been performed.

6. RESULTS
The genetic algorithm described above has been tested on

the real world dataset of Dr.B.A.Technological University,

Lonere, INDIA. It has eight departments, thirty two classes,

around two hundred theory and practical courses, hundred

teaching and nonteaching staff, twenty four classrooms and

various laboratories. Each class is divided into four groups

A, B, C, D. All groups in a class attend the respective theory

courses together in a classroom, while each group performs

the practical course independently in a laboratory. The

maximum group and class sizes are twenty five and hundred

respectively.

Configuration file specifies the details of professors’

workload, group’s enrolment, each classroom’s capacity,

their type etc.

The application tested with different values of the

parameters i.e. population size, crossover and mutation

probabilities, number of crossover points, mutation size,

number of generations, number of chromosomes to be

replaced by generation, best chromosomes to be retained in

a generation. Finally, a solution which has an optimal fitness

is obtained. It has been found that on University

departments’ dataset the algorithm gives an optimal

timetable with 13000 generations, population size 100, 2

crossover points, 40 replacements by generations and

mutation size equal to 2. The crossover and mutation

probabilities kept constant, 0.8 and 0.03 respectively.

Algorithm with more number of replacements converges

faster (Figure-3). The population size 100 yields better result

than 200 and more (Figure-4). Genetic algorithms

effectively demonstrated an ability to solve complex

optimization problem.

Figure 3: Generations vs. Fitness (Different

Replacements)

Figure 4: Generations vs. Fitness (Different Population

Sizes)

7. CONCLUSIONS AND FUTURE

WORK
Timetabling problem is a NP-hard problem. In this paper,

university course timetabling problem is discussed in detail

from several aspects such as the definition of problem,

constraint conditions and the goal of optimization, etc. As an

effective heuristic method, genetic algorithm is widely used

to solve the optimization problems. Genetic algorithm is

applied to solve university course timetabling problem.

During the process, a genetic representation and a fitness

0.9

0.92

0.94

0.96

0.98

1

1.02

0 10000 20000 30000 40000

40 Replacements 20 Replacements

0.92

0.94

0.96

0.98

1

1.02

0 10000 20000 30000 40000

Popsize 100 Popsize 200

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 3, August 2016 – www.ijais.org

30

function are defined according to the problem. It is

demonstrated to be feasible for solving a real-world

university course timetabling problem. There are still some

points need to be considered in future research although a

solution of university course timetabling problem is obtained

by using genetic algorithm. First, as genetic algorithm is an

iteration based search technique with high computational

complexity, it is necessary to improve the performance as

much as possible. Second, since there exist other approaches

which also can be used to solve this problem, a hybrid

method will be studied to solve timetabling problems in the

future research.

8. REFERENCES
[1] Burke E.K. and Newall J., “Enhancing Timetable

Solutions with Local Search Methods,” Burke E.K. and

De Causmaecker P. (eds.), Selected Papers from the 4th

International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes in Computer

Science, 2740, pp. 195-206, 2002.

[2] E.K. Burke, S. Petrovic and R. Qu, “Case Based

Heuristic Selection for Examination Timetabling,”

Proceedings of the Seal'02, 277-281, 18-22, Orchid

Country Club, Singapore, 2002.

[3] T. B. Cooper and J. H. Kingston, “The Complexity of

Timetable Construction Problems,” Proceedings of the

1st International Conference on Practice and Theory of

Automated Timetabling (PATAT 1995), LNCS-1153,

pages 283–295. Springer Verlag, 1996.

[4] Colorni A., Dorigo and M. Maniezzo, “Genetic

Algorithms and Highly Constrained Problems: The

Time-Table Case,” Parallel Problem Solving from

Nature, Goos and Hartmanis (eds.), Springer-Verlag,

pp. 55-59, 1990.

[5] Hitoshi Kanoh and Yusuke Sakamoto, “Interactive

Timetabling System Using Knowledge Based Genetic

Algorithms,” IEEE, International Conference on

Systems, Man and Cybernetics, 2004.

[6] Alexander Brownlee, “An application of Genetic

Algorithms to University Timetabling,” Honors Project,

2005.

[7] Maciej Norberciak, “Universal Method for Solving

Timetabling Problems Based on Evolutionary

Approach,” Proceedings of the International

Multiconference on Computer Science and Information

Technology, pp. 149 – 157, 2006.

[8] Mihaela Oprea, “MAS_UP-UCT: A Multi-Agent

System for University Course Timetable Scheduling,”

International Journal of Computers, Communications

and Control, Vol. II , No. 1, pp. 94-102, 2007.

[9] Adilah Binti Abdullah, “Timetable Management

System Using Genetic Algorithm,” Technical Report

submitted at University of Malaya, May, 2008.

[10] Pariwat Khonggamnerd and Supachate Innet,

“Improvement of Effectiveness in Automatic

University Timetabling Arrangement with Applied

Genetic Algorithm,” 4th International Conference on

Computer Sciences and Convergence Information

Technology, 2009.

[11] Nabeel R., “Hybrid Genetic Algorithms with Great

Deluge for Course Timetabling,” IJCSNS, International

Journal of Computer Science and Network Security,

Vol.10, No.4, April, 2010.

