

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

44

Preventing SQLIA using ORM Tool with HQL

Siddhesh Bhagat
M.E. Scholar

Computer Engineering
Department,

Thakur College of Engineering
and Technology, Mumbai

R. R Sedamkar, PhD

Professor
Computer Engineering

Department,
Thakur College of Engineering

and Technology, Mumbai

Prachi Janrao

Assistant Professor
Computer Engineering

Department,
Thakur College of Engineering

and Technology, Mumbai

ABSTRACT

Web based systems nowadays follow 3-tier architecture for

implementation of enterprise application. But these

applications are more prone to security breach and loss of

confidential information stored in database. One of the more

serious attacks is known as Structured Query Language

Injection (SQLI).This attack retrieves data without leaving

any trace behind. This paper proposes an efficient solution

called Object Relational Mapping technique for such kind of

attack in a novel way. ORM maps the table architecture with

corresponding Objects and uses those objects to retrieve data

instead of getting data directly from database .Therefore it

creates a indirect barrier from firing SQL query preventing

direct access to database. In addition ORM Methodology

satisfies desired criteria of loose coupling while coding.

Keywords

T-SQL, ORM, LDAP SQLIA, FCD, SSC, HQL, MIS, CBS

1. INTRODUCTION

We access many applications called web applications over

internet with the help of any of the web compliant browsers

like Google chrome ,Safari, Internet explorer etc. These are

constantly available due to their convenient accessibility and

interoperability. But nothing is secure over a network.

Therefore web applications are vulnerable to various security

threats. SQL Injection Attacks (SQLIAs) are one of the more

serious kind of threats [1].

SQLIAs have become increasingly frequent. They pose very

serious security risks because they provide attackers unlimited

access to the databases that trigger web applications. Web

applications interface with databases containing confidential

information such as employee names, preferences, credit card

numbers, purchase orders etc. Web applications create SQL

queries to access these databases using user-provided input.

The belief is that Web applications will limit the kind of

queries that can be generated to a safe subset of all potential

queries, regardless of kind of input by users. However,

incomplete input validation can enable attackers to gain

complete access to databases. One way in which this occurs is

that attackers insert input strings that contain specially built

queries. Using these strings the query is sent to the underlying

database where the attacker’s embedded commands are now

driven by the database. the attack now takes place. The fallout

are often devastating and can range from theft of sensitive

data (for example, employee data) to the destruction of

database contents. Web security experts have proposed a wide

range of alternative techniques to counter SQLIAs, but most

of these solutions have certain limitations that affect their

effectiveness. For example, one of the solutions which is

based on defensive coding application has been less than

successful for three main reasons. First, it is not easy to

implement. Second, it deals with only a subset of the possible

attacks. Third, the cost and complexity of modifying existing

code so that it is compliant with defensive coding practices is

very prohibitive. In this paper, we propose a extremely

automated method for dynamic detection and prevention of

SQLIA. Its approach works by recognizing “trusted” strings

in an application and allowing only these trusted strings to be

used to create the explanation for the relevant parts of a SQL

query such as keywords or operators. The general mechanism

utilizing this technique is based on dynamic tainting which

marks and tracks certain data in a program at runtime. The

type of dynamic tainting used in this approach has several

important advantages over other approaches. Many of these

other methods depend on complex static analysis in order to

find potential risks in the code. Also they produce big rates of

false positives and have scalability issues when size of

application increases. Therefore to make web application

more secure we recommend ORM hibernate tool.

2. LITERATURE SURVEY
In this method, to make SQLIA, it is essential for an attacker

to use a space, double quotes and double dashes in his input.

The approach is to detect one of the above symbols has been

discussed. This approach is a series of tokenizing original

query and a query with injection and after if it is found that

extra symbols used in user input, so the injection is detected.

This approach uses the process of tokenizing the original

query and the query with sql injection attack and after tokens

are generated they form arrays' elements. On comparing

lengths of the output arrays from the two queries SQLIA can

be detected. The work given in this method has been

implemented using java codes.[4]

In this author have bestowed a novel fully automated

technique, T-SQL, for preventing SQLIA. The method is

based on the intuition that injection codes implicitly perform a

various meaning from general queries. They presented an

detailed environment based on LDAP for differentiate

legitimate and malicious queries. To sheer this task T-SQL is

consisted with preprocessing step and runtime step. In the

preprocessing step, the method uses an existing SQL

command to passage from SQL database a file which contains

whole information of SQL database. According to the

sqldump file, T-SQL generates a duplicated database in

LDAP form. In runtime step, T-SQL supervisors connection

between web applications and SQL databases. Every query

would be iterated into a LDAP-equivalent query, and then

they defined some states to identify malicious queries.[2]

In this approach they depict two character distribution models,

the FCD and SCC models. They have demonstrated that the

SCC model is good at detecting SQL injection attacks in

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

45

general, as well as being more accurate than the FCD model

in overall comparison. It also evaluate the models'

effectiveness at detecting the UNION and Tautology classes

of SQLIA. While the SCC model is better than FCD model at

detecting both of these types of SQLIA They have also

explained that character distribution models are much better

for detecting UNION attacks than this Tautology attacks.

This conclusion was not completely unexpected due to the

precise nature of Tautology attacks. It also showed that the

SCC model is best for detecting muddle attacks. The method

handled by parsing the query part of HTTP requests and

generates view for each output file. It does not required access

to the source code and modification of existing software

modules. In addition to that they explain the proposed

approach does not need user interaction or the introduction of

user defined data types to reduce false alerts.[3]

This method states that many web applications employ a

middle-ware technology designed to request information from

a relational database management system in SQL. SQLI is a

one of the techniques hackers enlist to attack underlying

databases. These attacks reshape the SQL queries, thus

altering the behavior of the program for the use of the hacker.

Several solutions exist to prevent SQLIAs at the application

layer, but no fix solution other than using parameters while

coding exist to protect stored procedures in the database layer

against SQLIAs. In this paper, it present a fully automated

technique for detecting, preventing and result of SQLIA

attacks in stored procedures. The technique explains the

intended SQL query behavior in an application in the form of

an SQL-graph, as a one-time offline steps using static analysis

of the stored procedure present in the source code.[6]

 In this method, they proposed a structure for development of

run-time monitors used to do post-deployment observation of

the software to detect and prevent tautology based SQLIAs.

Thus using this planned model this ensure that the quality and

security of software is achieved not only through its pre-

deployment phase also during its post-deployment phase and

any possible misuse of vulnerability in the software by an

outsider attacker is found and prevented. it further intend to

automate the entire process of using the proposed structure to

develop the run-time monitors and also extend this structure

to detect and prevent the other types of attacks.[11]

3. PROPOSED METHODOLOGY
It is a two-step procedure which is explained with the help of

activity flow mentioned in the below figures.

First is an application without preventing SQLIA which is

developed by traditional way of implementation using 3-tier

architecture of client server database model where SQL

injection is detected with the help of test cases and it is

observed that many of the confidential data can be fetched by

breaking authentication process.

Figure 1: Without Prevention of SQLIA

Second is a secured way of architecture where SQL Preventer

plays vital role by not allowing direct access and filter all

queries which can rupture security and cause sql injection.

This application is consisting of an Object relational Mapping

tool called as ORM Hibernate tool.

Figure 2: Preventing access to Database using SQLIA

3.1 Hibernate

It is a ORM tool used to map the objects in java into its

corresponding table automatically without righting a single

endemic SQL Query. It helps in making your system

independent of database merchants. It reduces the coding by

removing iterative codes called as boilerplate codes that are

used for database connection every time whenever it require

fetching or inserting data inside database. Its configuration

file helps us to create tables for mapping the required Objects.

Creating relationship among Objects automatically and most

importantly it provides facility of caching data, which saves

frequently used data items also in database.

Figure 3: Hibernate Block Diagram

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

46

4. RESULT ANALYSIS

4.1 Performance Analysis
Here first without prevention of SQLIA with timings and data

fetch timing readings are taken and its impact on increasing

number of users is observed and then next with an overhead

of SQL preventer it is again check to see performance

changes.

Here it has been observed that after introducing SQL

preventer tool it’s a reasonable amount of delay occurs as

compare to without prevention of SQLIA which is acceptable

for standard development. And in any case it is preventing

data by not allowing SQL injection based data and makes it

more efficient by storing or caching frequently used data.

Table I: Without Preventing SQLIA

Without

Secured

Access to

database

Timing in

Miliseconds

Verify

Data

Insert

Data

Fetch

Data

1st 470 25 21

2nd 320 23 3

3rd 234 27 6

4th 145 21 5

5th 130 29 3

6th 123 27 6

7th 121 23 5

8th 125 21 7

9th 116 23 6

10th 123 21 5

11th 110 22 4

Figure 4: Without Preventing SQLIA

Figure 5: Retrieving Data for without preventing SQLIA

Table 2: Secured Access to Database using ORM Tool

Protected

Query

Miliseconds

Verify

Data

Fail try

for SQL

Injection

Insert

Data

Fetch

Data

1st 390 11 296 23

2nd 134 9 25 4

3rd 112 8 23 4

4th 100 7 26 5

5th 113 8 27 4

6th 123 12 26 7

7th 121 10 24 5

8th 115 9 27 8

9th 116 8 23 5

10th 105 7 25 4

11th 102 9 23 5

Figure 7: SQLIA by time prevention

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

47

Figure 6: Secured Access to Database

Figure 8: Retrieving data for Secured Access to Database

5. CONCLUSION
This paper proposed a framework based solution which

conforms with coding standards adopted by current

developers for protecting web application from SQLIA. Its

Solution consists of indirect access of database to prevent

SQLIA by using any of the ORM tools. This treats tables as

synonymous Objects and provides alternatives of native SQL

queries to protect sensitive data. Hibernate Object Relational

Mapping(ORM) tool supports HQL by automatically

converting persistent objects into a tables required for any

database. Tests results have shown that there is a marginal

overhead in timing consumed by SQL Preventer which first

intercepts any direct request to fetch data from database which

filters SQLIA. This is acceptable for any kind of real time

Enterprise application development.

6. FUTURE SCOPE
Nowadays hibernate is prevalent in big projects. Testing was

confined to medium sized web applications. In future one can

test this method with big projects like core banking

applications (CBS), MIS Systems and other real enterprise

applications requiring high level of web security designing.

7. REFERENCES
[1] Nuno Antunes and Marco Vieira. Detecting SQL

Injection vulnerabilities in web services. IEEE,2009.

[2] Kai-Xiang Zhang, Chia-Jun Lin Engineering, Shih-Jen

Chen, Inst Yanling, Hao-Lun Huang, Fu-Hau Hsu

Computer Science & Info. Engineering TransSQL:” A

Translation and Validation-based Solution for SQL-

Injection Attacks”, 2011 First International Conference

on Robot, Vision and Signal Processing

[3] Mehdi Kiani, Andrew Clark and George Mohay,”

Evaluation of Anomaly Based Character Distribution

Models in the Detection of SQL Injection Attacks”, The

Third International Conference on Availability,

Reliability and Security

[4] NTAGWA BIRA Lambert,KANG Song Lin,” Use of

Query Tokenization to detect and prevent SQL Injection

Attacks”,IEEE2010.

[5] William G.J. Halfond, Alessandro Orso, Member, IEEE

Computer Society, and Panagiotis Manolios,”WASP:

Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation”, Member, IEEE Computer

Society IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 34, NO. 1,

JANUARY/FEBRUARY 2008.

[6] Ke Wei, M. Muthuprasanna, Suraj Kothari,” Preventing

SQL Injection Attacks in Stored Procedures”,
Proceedings of the 2006 Australian Software

Engineering Conference (ASWEC’06) 1530-0803© 2006

IEEE.

[7] C. Anley. Advanced SQL Injection In SQL Server

Applications. White paper, Next Generation Security

Software Ltd., 2002.

[8] W. Halfond and A. Orso, "Combining Static Analysis

and Runtime Monitoring to Counter SQL-Injection

Attacks," Proceeding of the Third International ICSE

Workshop on Dynamic Analysis (WODA 2005), 2005.

[9] J Saltzer and M. Schroeder, “The Protection of

Information in Computer Systems,” Proc. Fourth ACM

Symp. Operating System Principles, Oct. 1973.

[10] Ramya Dharam and Sajjan G. Shiva,” Runtime Monitors

for Tautology based SQL Injection Attacks”,ICS 2002.

[11] Y. Xie and A. Aiken, “Static Detection of Security

Vulnerabilities in Scripting Languages,” Proc. 15th

Usenix Security Symp., Aug. 2006.

[12] C. Anley, “Advanced SQL Injection In SQL Server

Applications,” white paper, Next Generation Security

Software, 2002.

[13] J. C. Anderson & D. W. Gerbing. “Structural equation

modeling in practice: A review and recommended two-

step approach”. Psychological Bulletin, vol.103, no.3,

pp.411-423. 1988.

