

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

37

Test Case Generation from UML Sequence Diagram for

Aadhaar Card Number based ATM System

Wasiur Rhmann
Deptt. of Computer Science
B. B. Ambedkar University

(A Central University)
Lucknow, U. P., India

Prof. Vipin Saxena
Deptt. of Computer Science
B. B. Ambedkar University

(A Central University)
Lucknow, U. P., India

ABSTRACT

Software testing plays an important role to uncover the errors

during the programming phase of the software development.

It is also used for validation of the software. For representing

the dynamic behavior of the software system, a sequence

diagram from Unified Modeling Language is used. In the

present work, test cases are generated from sequence diagram

by converting it into the Sequence Flow Graph. Test scenarios

are generated from Sequence Flow Graph by defining pre and

post conditions using Object Constraint Language. Test case

outputs are determined from the final message in the test

scenario. A real case study for cash withdraw from Aadhaar

card based ATM is considered. In India, Aadhaar card number

is mandatory for every citizen and it increases security during

transaction of cash from ATM machine. Generated test cases

from the present study satisfy message path coverage criteria.

Finally, cyclomatic complexity is also computed for

optimizing or validating the generated test cases.

Keywords

UML, Sequence Diagram, Test Case, OCL, Sequence Flow

Graph.

1. INTRODUCTION
Software testing is the primary and core activity for the

development of a high quality software. In software testing, a

program is executed with the intent to find errors and correct

them [1]. Reliability of the system is fully dependent on the

software testing. Software quality assurance activities are

performed to review and verify the software but these

activities are not sufficient to produce good quality software.

Effective testing strategy reduces the development cost of the

software. In software testing, a set of test cases are designed

to execute the program and verify the output with expected

output. Generation of test cases is very crucial activity.

Generation of test cases mainly involve test case design and

execution of designed test cases. With increasing in

functionality of software caused more complexity in the

development of the software. Object-oriented analysis and

design strategy are used to reduce the software development

cost and increase the reusability of the developed software.

Object-oriented software needs different type of testing

strategy as these types of software use the concept of class,

object, inheritance, polymorphism, etc. UML is used for

analysis and design of object-oriented software system. For

testing the object-oriented software system, test cases may be

designed from UML models. UML models are developed at

the early stage of software development process. So, errors

may be available during early stages of the development

process. Since test case generation is a time consuming

activity, so, there is need of automatic test case generation

strategy. In automatic test case generation, different UML

diagrams are used by researcher for testing purpose. Design

models in software testing are used to finds defects at early

stage of the software development. Quality of generated test

cases depends on which extent they cover the functionality of

the system under test. UML is used to model the requirements

of the system. UML sequence diagrams are important for

visualizing the dynamic aspects of the system. Sequence

diagram represents the flow of control among objects during

interaction between objects. Sequence diagram is an

interaction diagram and can be viewed as a table in which

objects are placed at X axis and messages are in increasing

order of time at Y axis [2]. Sequence diagram contains

different flow of control elements like alt, par, loop, etc.

Various researchers have proposed many test case generation

techniques from different UML diagrams. Initially, OCL is an

extension of UML and a formal language. OCL may now be

used with OMG meta model including UML [3]. OCL

describes rule that are applied to UML. OCL is an extension

to UML as a formal specification language. OCl is a précised

text based language which provides constraint and object

query expression for any UML models. OCL provides

expressions without ambiguity which usually occurs in using

natural language. Liet al. [4] presented a new approach of test

case generation from UML sequence diagram and OCL

expression. Authors constructed a tree from the sequence

diagram. Then they traversed the tree to find out conditional

predicates. OCL is used to define the pre and post conditions.

Function minimization techniques are applied to generate test

data on conditional predicates. This method covers message

coverage and constraint attribute coverage of all objects which

relate to the message. Ali et al. [5] used state diagram for

generating the test cases. Here, authors first transform state

diagram into finite state machine then information mined from

OCL expression is used to build test cases. Generated test

cases achieve transition coverage, state coverage and

transition pair coverage. Swain et al. [6] have presented a

novel approach to test the object-oriented software based on

UML interaction diagram. Authors used message guards of

interaction diagram and created conditional slice with respect

to each conditional predicate. Message Flow Graph (MFG) is

created from UML sequence diagram then applied

conditioned slicing on predicate node. Generated test cases

satisfy message path coverage and slice coverage criteria.

Tonella and Potrich [7] have generated test cases from reverse

engineering of the sequence diagram.

In the present work, we presented a novel approach for the

generation of test cases from UML Sequence diagram.

Sequence diagram is used to model the dynamic behavior of

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

38

the system and it is transformed into Sequence Flow Graph

(SFG) which is traversed to generate different paths. OCL is

used for pre and post conditions on a study of cash withdrawal

from Aadhaar Card Number enabled ATM. Aadhaar card

number is issued by Government of India which is used as

unique identity number for Indian Citizen. Generated test

cases satisfy message path coverage criteria and validated

through the cyclomatic complexity of the flow graph.

2. PROPOSED METHODOLOGY
Different activities are performed for the generation of test

cases; represented through the UML activity diagram which is

shown in figure 1 and steps are given below:

Step 1. Design a UML Sequence Diagram;

Step 2. Design a Sequence Flow Graph (SFG) from UML

Sequence Diagram;

Step 3. The parallel activities are to be performed like

(a) Identification of Pre and Post conditions and design of

UML Use case diagram; (b)Traverse different paths of SFG.

Step 4. Further two parallel activities are to be performed like

(a) Use Pre and Post conditions for Test cases;

(b) Write output for last message from each path.

Step 5. The resultant of Steps 3 and 4 is used for writing test

cases.

The above five steps are represented in Fig. 1. In SFG, each

message and conditions are represented by nodes and

transition between nodes is represented by the edge. Let us

explain proposed methodology on alt, loop and nested if. Let

us construct a sequence diagram for alt which is used to

represent parallel activity. It is represented in Fig. 2 which is

converted into SFG represented in the Fig. 3.

Fig. 2. UML Sequence diagram for alt

Fig. 3 SFG from UML sequence diagram for alt

In a Fig. 4, a sequence diagram for loop is constructed which

is used to represent iteratively sending of messages. SFG of

the sequence diagram for loop is shown below in figure 5.

Fig. 4 UML Sequence for loop

In sequence flow graph each message and conditions are

represented by a nodes and transition between nodes is

Fig. 5. SFG from UML sequence diagram for loop

loop

m3

alt

m1 m2

If a>b else

alt

Fig.1. UML Activity Model for Generation of Test Cases

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

39

Fig. 6. UML Sequence diagram of nested if else

Fig. 6 represents the nested if else message sending statement

in the form of sequence diagram. In nested if else message

sending statement, there may be more than one alt statement

within single alt statement. Fig. 7 shows the SFG from Fig. 6

for the nested if else statement. These three constructs are

used in the real case study demonstrated in the next section.

Fig. 7. SFG from UML Sequence diagram for nested if else

The above sequence diagrams cover interaction faults at the

cluster level testing of the software system. In the present

work, sequence diagram is converted into flow graph which is

traversed to generate different combinations of message paths

to ensure maximum coverage. The steps for generation of test

cases are proposed below in brief:

Input: Sequence Flow Graph (SFG)
Output: Test _Cases, where Test _Case t=

{Pre_condition, Input, Output, Post_ condition}
1. Start

2. generate all paths from start to end represented as P= {P1,

P2,…….Pn}, where n=numbers of paths;

3. for each path, use OCL and Use Case diagram for pre

and post condition to generate Pre and post condition of

test case;

4. for each path i.e. Pi (i=1(1)n)

5. Let s=starting node, f=final node, cn=current node

while(cn!=f) print the input as cn end while

if (cn==f) print the output of cn end if

6. For this path print Pre and Post conditions from OCL

expressions

7. end for

8. Print the test cases as {pre condition, input, output, post

condition}

3. CASE STUDY:Aadhaar Card Number

(ACN) Enabled ATM
Let us consider a real case study of the ACN based ATM

system. ACN is issued by Unique Identification Authority of

India (UIAI) which is a central agency of India. It consists of

12 digit number provided to each Aadhaar card holder and

based on biometric and demographic data [8]. In ACN

enabled ATM, Personnel Identification Number (PIN) number

and fingerprint with Aadhaar card number are used for

authentication. PIN number entered by customer is verified

from Bank while Fingerprint and Aadhaar card number are

verified from Central Identities Data Repository. Fig. 8 shows

UML Use Case diagram for cash withdrawal from the ATM.

Here customer can perform three different activities. We will

consider pre and post conditions for Use Case withdrawal for

which we have drawn a sequence diagram. Pre conditions of a

Use Case are set of states in which system remains. Post

conditions are states that may exist after Use Case finished. A

sequence diagram for cash withdrawal from ACN enabled

ATM is presented in the Fig. 9. In this diagram, there are five

objects Customer, ATM, Bank, ASA, and CIDR. Personal

identity data of all account holders is contained by Central

Identities Data Repository (CIDR). Authentication User

agency (AUA) connects CIDR through Authentication

Service Agency (ASA). Here AUA is Bank Authentication

Service Agency which has secured connectivity with CIDR

[9].

Customer first swipe ATM card inside the ATM machine and

enters PIN number. It is to be verified by the Bank

controlled by the Bank object. If PIN number is correct then

customer enters ACN and finger print. ACN and fingerprint of

customer are further verified by the Bank. Customer’s Bank

then passes these to CIDR for verification through ASA. If

ACN and fingerprint are correct then CIDR sends clearance

message to Bank through ASA. After clearance of dual

verifications, Customer enters amount of cash withdrawal. If

entered amount is less than the available balance then ATM

displays “not sufficient amount” message else requested

amount is dispensed.

These communications are represented in Fig. 9 through

message passing techniques among the said five objects. The

designed sequence diagram is converted into the SFG where

messages are transformed into nodes and edges represent

transfer of information flow between them. It is represented in

Fig. 10 and it consists of four independent paths which will

generate four test scenarios. From these one can write test

alt

m1 m2

If a>b else

alt

C>m else

m3 m4

alt
alt

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

40

cases from these test paths. Pre and Post conditions are

derived from OCL for each testing path.

Pre conditionATM is working well and displaying Welcome

message

Post condition Display Welcome message

Pre condition

Context SATM::withdraw (amount)

* pre: Bank.atm.valid=true;

Post condition

If PIN number=wrong

* It should give message “Wrong PIN number”

If (ACN and Fingerprint=wrong)

* Display Message “Wrong ACN or Fingerprint”

If (Amount>Customer.Account.Balance)

* Display Message “Not Sufficient Amount”

If (Amount<=Customer.Account.Balance)

* Then Customer.Account.Balance@Pre-Amount

and result=Transaction successful

4. CYCLOMATIC COMPLEXITY
Cyclomatic complexity is software metric. Minimum number

of test cases for sequence diagram can be calculated from

cyclomatic complexity. Sequence flow graph is used to

evaluate the cyclomatic complexity.

Cyclomatic complexity can be calculated by following ways.

V(G)=number of bounded region+1

Where bounded regions are area in flow graph which is

surrouned by node and edges

V(G)=3+1=4

V(G)=n-e+2=23-21+2=4

Cyclomatic complexity is equal to predicate node plus one. A

node which contains more than one branch out coming from

that node in flow graph is called predicate node. Here there

are three predicate nodes.

V (G) =Predicate node+1=3+1=4

From all three ways, cyclomatic complexity for SFG as shown

in Fig. 9 is computed as 4 which shows that there are 4

independent paths which are as follows:

Path P1: Insert Atm card, Request for Pin, Enter Pin,Verify

Pin, alt, Pin is not OK, Pin number is wrong, Pin number is

wrong, alt, End

Path P2: Insert Atm card, Request for Pin,Enter Pin, Verify

Pin, alt, Pin is OK, Enter Aadhaar card number and

Fingerprint, Aadhaar card number and Fingerprint entered,

Aadhaar card number and Fingerprint entered, Aadhaar card

number and Fingerprint entered, Verify Aadhaar card number

and Fingerprint, alt, Aadhaar card number and Fingerprint not

OK,Aadhaar card number and Fingerprint not OK Adhaar

card number and Fingerprint not OK, alt, alt, End

Path P3: Insert Atm card, Request for Pin, Enter Pin Verify

Pin, alt, Pin is OK, Enter, Aadhaar card number and

Fingerprint, Aadhaar card number and Fingerprint entered,

Aadhaar card number and Fingerprint entered, Aadhaar card

number and Fingerprint entered, Aadhaar card number and

Fingerprint entered, Verify Aadhaar card number and

Fingerprint, alt, Aadhaar card number and Fingerprint OK,

Enter Amount, Amount Entered, Verify Amount, alt,

Amount>Balance, Insufficient amount, alt, alt, alt End

Path P4: Insert Atm card, Request for Pin, Enter Pin

Verify Pin, alt, Pin is OK,EnterAadhaar card number and

Fingerprint, Aadhaar card number and Fingerprint

entered,Aadhaar card number and Fingerprint entered,

Aadhaar card number and Fingerprint entered, Aadhaar card

number and Fingerprint entered, Verify Aadhaar card number

and Fingerprint, alt, Aadhaar card number and Fingerprint

OK, Enter Amount, Amount Entered, Verify Amount, alt,

Amount<Balance, Receive Cash, alt, alt, alt, End

Generated test cases using java programming are presented in

Fig. 11.

5. CONCLUSIONS
From the above work it is observed that Aadhaar number

enhance the security of the cash withdrawal from ATM.

Sequence diagram is used to model the Aadhaar number

enabled Atm. Then we generated test cases from the sequence

diagram. OCL used for pre and post condition. Here we used

UML Sequence diagram to model the dynamic behavior of

Aadhaar number enabled ATM for cash withdrawal activity.

This sequence diagram is then converted into flow graph

which then is used to generate test cases. Generated test cases

satisfy message coverage and can be used for cluster level

testing of objects. Generated test cases are validated with

cyclomatic complexity metric. It is also observed that

cyclomatic complexity can be helpful in estimating the

maximum number of test cases required to achieve complete

message coverage for UML Sequence diagram.

Fig. 8 . Use Case Diagram for ATM

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

41

Fig. 11 Generated test cases using java programming

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

42

Fig 9: UML Sequence diagram of cash withdrawal from ACN enabled ATM

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 4, September 2016 – www.ijais.org

43

Fig 10: Sequence Flow Graph from Sequence diagram

6. REFERENCES
[1] Pressman, R. S. 2005. Software Engineering: A

Practitioner’s Approach. Mc-Graw Hill.

[2] Object Management Group (OMG). 2006. Object

Constraint language (OCL) OMG, http://www.omg.org

[3] Booch G., Jacobson I. and Rambaugh G. 2009. The

Unified Modeling Language Guide. Pearson.

[4] Li, L.B., Shu, L. Z. and Chen, Y. H. 2007. Test Case

Automate Generation from UML Sequence Diagram

and OCL Expression’. International Conference on

Computational Intelligence and Security, Harbina, China,

pp. 1048-1052

[5] Ali, M.A., Shaik, S. and Kumar, S. 2014. Test Case

generation using UML State diagram and OCL

Expression’, International Journal of Computer

Applications, Vol. 95, No. 12, pp. 7-11

[6] Swain, R. K., Panthi V. and Behera, P. K. 2012. Test

Case design using Slicing of UML Sequence diagram’,

Second International Conference on Communication,

Computing and Security, pp. 136-144

[7] Tonella, P., Potrich. A. 2003. A Reverse Engineering of

the Interaction Diagram from C++ code’, Proc. of IEEE

third International Conference on Software Maintenance,

pp. 159-168.

[8] https://en.wikipedia.org/wiki/Unique_Identification_Aut

hority_of_India.

[9] https://uidai.gov.in/authentication-2/operation-

model.html

