

International Journal of Applied Information Systems (IJAIS) - ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 11 – No. 6, November 2016 – www.ijais.org

Separation of Fuzzy Topological Space

Mohammad Arshaduzzaman, PhD M.Sc (Mathematics) Associate Professor Department of Mathematics Al Baha University, Al Baha Kingdom of Saudi Arabia (KSA)

ABSTRACT

In this paper I discussed about some separation properties of fuzzy topological space. The definition of fuzzy compactness does not hold good on the definition of fuzzy Hausdorff space, we introduce a new definition of proper compactness and prove some interesting results related with it.

Keywords

Fuzzy set, Fuzzy topological space, Fuzzy Hausdorff space, compactness, T2- space.

1. INTRODUCTION

Let X be any set. A fuzzy set A in X is characterized by membership function $\mu_A: X \rightarrow [0,1]$ A fuzzy singleton p in X is a fuzzy set with the membership function μ_p defined by $\mu_{p}(X) = y \text{ if } x = x_{0}_{0} = 0 \text{ otherwise}$

where
$$y \in (0, 1)$$
. $x_0 |_{\text{fuzzy set in } X, \text{ if }} \mu_p(x_0) < \mu_A(x_0)$

 $p \not\in Aiff \ \mu_{p} \big(x_{0} \big) \ge \mu_{A} \big(x_{0} \big)$ Hence

Definition 1 :

A fuzzy topological space is said to be Housdorff of fuzzy T2 if the following conditions are satisfied :

For any **p**,**q** ∉X

(i) If
$$^{p \neq n_q}$$
 then there exist open sets and Gp and $p \in \overline{G}_{p}$ and $q \in G_{p}$

$$_{Gq,} p \in G_p and q \in G_q, p \in G_p$$

(ii)
$$xp = xq \text{ and } \mu_p(\mathbf{x}_p) < \mu_q(\mathbf{x}_p)$$

 $p{\in} G_{_p} \ but q{\not\in} G_{_p}$ open Gp with

By Srivastava & Lal [8].

Definition 2 :

A fuzzy set A is said to be open for each , there exists an open $p{\in}G{\subseteq}A$. Out definition of open set is set G with equivalent to that given by Change [1].

Definition 3 :

A fuzzy topological space is said to be a fuzzy T_1 - space if the singletons are closed. By Hutton & Reilly [2].

2. THEOREM (I)

Every fuzzy T₂- space is a fuzzy T₁- space. **Proof :** Let (X, T) be a fuzzy T_2 - space.

Case (i) : Let p be a fuzzy point in X, and let $q \in \{p\}'$ be arbitrary. Then, there exist an open set G_q containing q such that

$$\mu_{(p)}(\mathbf{x}_{p}) \geq \mu \mathbf{G}_{q}(\mathbf{x}_{p})$$

Hence $G_q \{p\}$. So, $\{p\}$ being the union of open sets, is an open set. This implies that {p} is closed.

Case (ii) : Let p be a crisp point and converges to zero, then we can find a sequence of open sets $\left\{G_{pq_n}\right\}_{n\in N} \underset{\text{with}}{p \in G_{pq_n}}$ $\label{eq:qn} and \ \boldsymbol{G}_{pq_n} \ \boldsymbol{G}_{pq_n} \ \text{for all } n, \text{ as } (X,T) \text{ is fuzzy } \boldsymbol{T}_2.$

If
$$P = \bigcap G_{pq_n}$$
 then p is a closed set with $\mu_p(x_q) = 0$ and $\mu_p(x_p) = 1$

$$p \in V_{pq_n}$$

So, P' is an open set with
$$q \in P'\{p\}'$$
 Consequently, $\{p\}'$ is

an open set i.e. (\mathbf{P}) is closed. So, (\mathbf{X}, \mathbf{T}) is fuzzy \mathbf{T}_1 -space.

We now introduce the concept of properly compact space in a fuzzy

topological space and prove an analogous result of general topology which holds for a compact Hausdroff space.By Palaniappan[3] & Zadeh[4]

Definition 4 :

there exist an

A family $\{G_1: i \in I\}$ open sets in fuzzy topological space X is called a proper open cover of a fuzzy set A in X if for every $x \in X$ there exists a member G_{i_x} of this family such that of this family such that $\mu G_{i_x}(x) \ge \mu_A(x)$ The family $\{G_i: i \in I\}$ is called a proper open sub cover of

 $\{G_i: i \in I\}$ if it is itself a proper open cover of A. By Lowen[5].

International Journal of Applied Information Systems (IJAIS) - ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 11 - No. 6, November 2016 - www.ijais.org

Definition 5 :

A fuzzy set A in a fuzzy topological space X is said to be properly compact if every proper open cover of A is reducible to a finite proper open sub cover.

By Lowen [6] & Rodabaugh[7].

3. THEOREM 2

Every properly compact set in a fuzzy T₂- space is closed.

Proof : Let A be a properly compact set in a fuzzy T₂-space X. We choose a point with

 $\mu_{\rm p}(\mathbf{x}_{\rm p}) > \mu_{\rm A}(\mathbf{x}_{\rm p})$

since X is T₂, there exists an open G_p with $\mu_{A}(\mathbf{x}_{p}) < \mu_{G_{p}}(\mathbf{x}_{p})$ (ii)

(i)

and
$$\mu_{p}(\mathbf{x}_{p}) \ge \mu_{G_{p}} - (\mathbf{x}_{p})$$
 (iii)

Thus, for each such $\in X$ there exists a family $\left\{ \mathbf{G}_{pq}: \mathbf{x}_{q} \in \mathbf{X} \right\}_{\text{of open sets}}$

 $\begin{array}{c} \mu_{A}\left(\mathbf{x}_{q}\right) < \mu_{G_{pq}}\left(\mathbf{x}_{q}\right) & \mathbf{x}_{q} \in \mathbf{X} \\ \text{family} \quad \left\{\mathbf{G}_{pq}: \mathbf{x} \in \mathbf{X}\right\}_{\text{of open sets}} \quad \mathbf{x}_{q} \in \mathbf{X} \\ \end{array}$ with (iv)

$$\sup_{\text{So,}} \mu_{A}(\mathbf{x}_{q}) \leq \mathbf{x}_{q} \in \mu_{G_{pq}}(\mathbf{x}_{p})$$

This implies that

$$\{ G_{pq} : x_q \in X \}$$
 is a proper cover of A. Since A is properly compact, there exists a finite subfamily, say,

 $\overline{\mathbf{x}_q} \in \mathbf{X}$

$$\{G_{pq1}, G_{pq2}, \dots, G_{pqm}\} of \{G_{pq}: xq \in X\} of \{G_{pq}: x_q X\} with$$

$$A \subset \cup G_{pqk}. Then A \subset \bigcup_{K=1}^{m} \bar{G}_{pqk} = F_{p} (suppose)$$

Then F_p is closed and $\mu_p(\mathbf{x}_p) \leq \mu_{Fp}(\mathbf{x}_p)$ for all $\mathbf{x}_q \in X_{(v)}$

We also have
$$\mu_{p}(\mathbf{x}_{p}) \ge \mu_{Fp}(\mathbf{x}_{p})$$
 (iv)

(i), the family
$$\{F_p\}$$
 where

Then, for all satisfying the condition F' p is open in X satisfies the conditions (y) & (yi).

Consequently
$$\mu_{A}(\mathbf{x}_{q}) = \lim_{p \to \infty} \mu_{Fp}(\mathbf{x}_{q})$$
 for all $\mathbf{x}_{q} \in \mathbf{X}$.

$$A = \bigcap_{p} F_{p}$$

Then, р with establishes that A is closed.

4. CONCLUSION

From the above theorems and definitions it is clear that A fuzzy set in a fuzzy topological space is said to be properly compact if every proper open cover of a fuzzy set is reducible to a finite proper open sub cover and every properly compact set in a fuzzy T₂-space is closed. Thus the definition of fuzzy compactness does not hold good on the definition of fuzzy Hausdorff space.

5. REFERENCES

- [1] Chang, C.L. : Fuzzy topological spaces, J.Math. Anal. Appl. 24, 182-190, 1960.
- [2] Hutton, B & Reilly, I. : Seperation axioms in fuzzy topological space, Fuzzy Sets & systems 3, 99-104, 1980.
- [3] Palaniappan, N. : Fuzzy topology, Narosa Publ. House, New Delhi, 2002.
- [4] Zadeh, L.A.: Fuzzy sets, Inform, Control, 8, 338-353.
- [5] Lowen R : Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), pp.621-633.
- Lowen R: Compact Hausdorff fuzzy topological spaces are topological, Topology and Appl., 12 (1981), pp. 65-74.
- [7] Rodabaugh S : The Hausdorff separation axiom for fuzzy topological spaces, Topol. Appl., 11 (1980), pp. 319-334.
- Srivastava R, Lal S N, and Srivastava A K, "Fuzzy [8] Hausdorff topological spaces," Journal of Mathematical Analysis and Applications, vol. 81, no. 2, pp. 497-506, 1981.