

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

10

Introduction to Software Defined Networks (SDN)

Ominike Akpovi A.
ICT Department

Petroleum Training Institute
Delta State, Nigeria.

Ebiesuwa Seun
Comp. Sc. Dept.

Babcock University
Ogun State, Nigeria.

Adebayo A. O
Comp. Sc. Dept.

Babcock University
Ogun State, Nigeria.

Osisanwo F. Y.
Comp. Sc. Dept.

Babcock University
Ogun State, Nigeria.

ABSTRACT

Legacy IP networks are complex, difficult to manage and are

also vertically integrated i.e. the control and data planes are

bundled together. The concept behind Software Defined

Networks (SDN) is to break the vertical integration, by

separating the network control logic from its underlying

hardware, (routers and switches) promoting (logical)

centralization of network control, and introducing the ability

to program the network. In this paper, we start by introducing

the motivation for SDN, its architecture and how it differs

from traditional networking. Open flow is discussed next and

SDN simulation tools are also discussed. The applications and

main ongoing research efforts and challenges of SDN are also

mentioned.

General Terms

Software Defined Networks (SDN), Openflow, Controllers

Keywords

Software Defined Networks (SDN), Programmable Networks

1. INTRODUCTION
The definition of Software Defined Networks SDN by the

Open Network foundation (ONF) is the most acceptable [1].

In the SDN architecture, the control and data planes are

decoupled, network intelligence and state are logically

centralized and the underlying network infrastructure is

abstracted from the application. SDN focuses on separation of

the control plane from the data plane, centralized controller

and view of the network, open interfaces between the devices

in the control plane (controllers) and those in the data plane

and programmability of the network by external applications.

[2]

Legacy data and communications networks are complex and

difficult to manage. They involve different equipment that run

complex distributed control software that is closed and

proprietary. Traditional IP networks are vertically integrated,

that is, they have the control and data plane bundled together.

The goal of Software Defined Networks, SDN is to make

networks more programmable. [3]. The programmability of

the network is achieved by means of software applications

which run on top the network operating system (NOS)

SDN separates the control and data plane and it promotes

logical centralization of network control and introduces the

ability to program the network. SDN also makes it easier to

create and introduce new abstractions in networking,

simplifying network management and facilitating network

evolution. In addition, SDN breaks vertical integration by

separating the two planes; The control plane – which decides

how to handle network traffic, and the data plane – which

forwards traffic according to the decisions made by the

control plane. [4]

The control plane sometimes called the controller, has the

logic of controlling and forwarding behavior like tracking

topology changes, installing forwarding rules, computing

routes etc. The control plane can be implemented completely

in software and installed on commodity hardware The data

plane on the other hand forwards traffic based on rules as

dictated by control plane logic like forward, filter, buffer, rate-

limit and measure packets. Some of the benefits of separating

the data and control plane (SDN) are:

1. Global network view- the controller can see the status of

all routes and switches quickly deciding the best route

2. Horizontal Integration- Separate and independent growth

of hardware and software and flexibility in choosing

hardware and software by customer.

3. Elimination of Middleboxes (Middleboxes are devices

that manipulate traffic for purposes other than packet

forwarding e.g. firewalls, server load balancers, network

address translators etc.)

4. Easier deployment of new network services and protocol

[5]

2. RELATED WORKS
Nunes, B.A. a. et al., 2014, discussed early programmable

networks that laid the foundations for the SDN of today.

Some of the early programmable networks discussed included

(i) Open Signaling- which allowed the deployment of new

services through a distributed programming environment (ii)

Active Networking- that proposed the idea of a network

infrastructure that would be programmable for customized

services. (iii) The 4D Project- that advocated a clean slate

design that emphasized separation between the routing

decision logic and the protocols governing the interaction

between network elements and (iv) Ethane- which was the

immediate predecessor to OpenFlow. Ethane’s focus was on

using a centralized controller to manage policy and security in

a network. Ethane laid the foundation for what would become

Software-Defined Networking.

Fei Hu et al, 2014, discussed other SDN Standards besides

OpenFlow (the most popular SDN protocol/standard). For

instance, ForCES (Forwarding and Control Element

Separation) which proposes the models to separate IP control

and data forwarding, Transport Mapping layer for the

forwarding and control elements, logical function block

library for such a separation, etc. and SoftRouter, which

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

11

defines clearly the dynamic binding procedure between the

network elements located in control plane (software-based)

and data plane.

Feamster, N., Rexford, J. & Zegura, E., 2013. discussed the

history of programmable networks. In this paper, they divided

the history into three stages, each with its own contributions:

(1) active networks (from the mid-1990s to the early 2000s),

which introduced programmable functions in the network,

leading to greater innovation; (2) control- and data-plane

separation (from around 2001 to 2007), which developed open

interfaces between the control and data planes; and (3) the

OpenFlow API and network operating systems (from 2007 to

around 2010), which represented the first widespread adoption

of an open interface and developed ways to make control- and

data-plane separation scalable and practical.

Kreutz et al., 2014, summarized different instances of SDN-

related work prior to SDN, splitting it into five categories-data

plane programmability, control and data plane decoupling,

network virtualization, network operating system and

technology pull initiatives.

3. SDN ARCHITECTURE
As shown in Fig. 1 below, the bottom tier involves the

physical network equipment including Ethernet switches and

routers and this forms the data plane. The central tier consists

of the controllers that facilitate setting up and tearing down

flows and paths in the network. The central tier (control

layer) links with the bottom tier (infrastructure layer) via an

application programming interface (API) referred to as the

southbound API. OpenFlow, sFlow and NetFlow are such

protocols which are used for traffic analysis and monitoring in

a network. Connections between controllers operate with east

and westbound APIs. The controller application interface is

referred to as the northbound API. [2]

Figure 1: SDN Architecture [2]

The management application defines the policies, which are

translated to southbound instructions that program the

behavior of the forwarding devices. [4] The northbound API

can be used to develop applications for network management,

load balancing etc. There is no generally accepted standard

protocol for the northbound API. The most common and

accepted standard for southbound communication is

OpenFlow.

In legacy networks (closed to innovations in the

infrastructure) as shown in Fig. 2 below, the system is closed

with custom hardware features and applications. i.e. you have

specialized applications, operating systems and hardware and

this slows down innovations in the network.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

12

Figure 2: Legacy Network [11]

In a software defined network however, devices are

horizontally integrated, we have open interfaces and there are

huge opportunities for rapid innovations. Fig. 3 describes the

SDN approach to open networks. It shows a bunch of

switches connected by network cables. The network operating

system is then built (which is essentially software running on

servers). The servers talk to other switches using open flow

and the servers use the information they get from the switches

to build a global network view (i.e. to know the topology).

Figure 3: SDN approach to Open Networks [10]

The control programme is then built on top of that topology

(routing, access control etc.). The control program expresses

the operators’ goals e.g. connectivity, isolation etc.

implemented on top the global network view. The Network

Operating System (NOS) links global view and physical

switches i.e. gathers information for the global network view

while the switches / routers follow orders from the NOS [12]

Fig. 4 shows a software defined network with an open

interface to packet forwarding, the network OS and a well

defined API.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

13

Figure 4: The Software Defined Network [10]

3.1 SDN and Openflow
The Openflow architecture consists of three principal

elements: An Openflow switch, an external controller and the

Openflow Protocol which establishes the communication

between switch and controller through a secure channel. The

data plane and the control plane communicate over a secure

channel over a standard protocol called OpenFlow [5]. The

OpenFlow switch has flow tables and an abstraction layer that

securely communicates with a controller via OpenFlow

protocol. The flow table contains flow entries that determine

how packets belonging to a flow will be processed and

forwarded. Flow entries consist of

 Matching rules – to match incoming packets

 Counters – to collect statistics of the flow

 Set of instructions / actions - to be applied upon a match

When a packet arrives at an OpenFlow switch, the packet

header fields are extracted and matched against the matching

rules. If a match is found, the switch applies the appropriate

action. If there is no match, the action taken by the switch

depends on the instruction defined by the table-miss flow

entry. Every flow table must have a table-miss entry in order

to handle table misses. Examples of actions that can be carried

out when no match is found are – drop packet, continue

matching process on next flow table, forward packet to

controller etc [6] Table miss – if a packet does not match a

flow entry in a flow table. The implication is that the packet

could be dropped, passed on to another table or sent to a

controller. [7]

3.2 SDN Simulation Tools
Mininet is the first open source simulator for Openflow

networks. It is an inexpensive and quickly configurable

network testbed. It is the most well known tool for SDN

OpenFlow network research. The virtual switches in Mininet

are a kind of software OpenFlow switches called “Open

vSwitch” [8] With mininet the entire network can be

packaged as a virtual machine so that others can download,

run, examine and modify it. The major strengths of mininet

are – it is good for prototyping, it is easily deployed and easily

shared. [9]. Other prominent SDN platforms are estinet, NS-3

and Trema.

3.3 Applications of SDN
SDN can be used to improve network management by

eliminating middle boxes and carry out flexible network

configuration changes in in enterprise and data centre

networks, telecommunications and Internet service provider

(ISP) networks. SDN can also be deployed in backbone

networks.

4. CHALLENGES
Despite the numerous benefits derivable form SDNs, a few

challenges also exist:

1. Controller Design / Performance- SDN control

plane may have multiple controllers depending on

the network design and topology. If the controller is

not properly designed, there could be failure in the

network and this can adversely affect the resilience

of the network.

2. Integration of SDN with Legacy Networks-

Traditional network equipment could be enhanced

or out rightly replaced to support SDN and

OpenFlow. It is importance that efforts are made to

efficiently integrate SDN devices with legacy

networks for optimal network performance.

3. Migration to SDN- Asides the technical and cost

implications involved, there is also the challenge of

convincing users to switch from legacy networks to

SDN especially if the networks are performing

optimally. In some quarters, SDN could also be

viewed as a threat to their jobs.

4. Security- The controller is the key device in the

SDN model and thus securing the controller is

important because if the controller is breached, then

there is the risk of a total network outage. It is

important to note however that security concerns are

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

14

not peculiar to SDN alone.

5. CONCLUSION
SDN has gained significant momentum in both the research

community and in the industry. It is going to become the new

approach for networking. Although SDN has its own

limitations and challenges, it offers other significant benefits

and cost savings such as its programmability, providing a

global view of the whole network, providing more flexibility

& control to researchers & network administrators, network

equipment vendor independency and eliminating

middleboxes. Future work can involve improving security of

SDN and enhancing the controller design for scalability,

resilience and robustness.

6. REFERENCES
[1] W. Braun and M. Menth, “Software-Defined Networking

Using OpenFlow: Protocols, Applications and

Architectural Design Choices,” Futur. Internet, vol. 6,

no. 2, pp. 302–336, May 2014.

[2] S.Sakir, S.Sandra, C. Kaur, B. Fraser, D. Lake, J.

Finnegan, N. Viljoen, M. Marc, and N.Rao “Are We

Ready for SDN ? Implementation Challenges for

Software-Defined Networks,” no. July, pp. 36–43, 2013.

[3] N. Feamster, J. Rexford, and E. Zegura, “The Road to

SDN,” Queue, vol. 11, no. 12, pp. 20–40, Dec. 2013.

[4] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E.

Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-

Defined Networking: A Comprehensive Survey,” p. 49,

Jun. 2014.

[5] P. Ranjan, “A Survey of Past , Present and Future of

Software Defined Networking,” vol. 7782, pp. 238–248,

2014.

[6] B. A. a. Nunes, M. Mendonca, X.-N. Nguyen, K.

Obraczka, and T. Turletti, “A Survey of Software-

Defined Networking: Past, Present, and Future of

Programmable Networks,” IEEE Commun. Surv.

Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[7] K. Bakshi, “Considerations for Software Defined

Networking (SDN): Approaches and use cases,” 2013

IEEE Aerosp. Conf., pp. 1–9, Mar. 2013.

[8] S.-Y. Wang, “Comparison of SDN OpenFlow network

simulator and emulators: EstiNet vs. Mininet,” 2014

IEEE Symp. Comput. Commun., pp. 1–6, Jun. 2014.

[9] B. Lantz, B. Heller, and N. Mckeown, “A Network in a

Laptop : Rapid Prototyping for Software-Defined

Networks,” pp. 1–6, 2010.

[10] Munakami, M (2014), Software Defined Networking

[Power Point Slides] Presented at Boise State University.

[11] Fan, S (n.d), Software Defined Networking [Power Point

Slides] Presented at Duke University.

[12] Stanford Seminar. (2013, May 9). Software-Defined

Networking at the Crossroads. [YouTube video].

Available:

http://www.youtube.com/watch?v=WabdXYzCAOU.

Accessed July 27, 2016.

