

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

15

Risk based Test Case Prioritization using UML State

Machine Diagram

Gufran Ahmad Ansari,
PhD

Assistant Professor,
Department of Information

Technology, College of
Computer, Qassim University,
Al-Qassim, Kingdom of Saudi

Arabia(KSA)

Wasiur Rhmann
Department of Computer

Science, Babasaheb Bhimrao
Ambedkar University (A

Central University), Lucknow,
India

Vipin Saxena
Department of Computer

Science, Babasaheb Bhimrao
Ambedkar University (A

Central University), Lucknow,
India

ABSTRACT

Time and budget constraints are two main factors which affect

the quality of software products. Testing is the last activity

that performed in the software development life cycle which

suffers more. Test cases are designed to find the bugs in the

software. Prioritization of test cases is used to execute test

cases earlier which are of high probability of finding bugs.

Testing with all possible test cases is not possible even for

trivial software. Testing of safety critical systems require

more effort to identify the critical components. In the present

work, authors proposed, a novel technique of test cases

prioritization from UML state diagram by taking account risk.

State machine diagram is transformed into WEFSM

(Weighted Extended Finite State Machine) and a case study of

ATM system is used to evaluate the proposed approach. A

new metric based on risk called APRC (Average Percentage

of Risk Covered) is proposed and used to demonstrate the

effectiveness of proposed approach.

Keywords

Software Testing, Test Cases, State Diagram, Risk Exposure,

UML

1. INTRODUCTION
Now a day’s safety critical systems are heavily used in

different domain of life like health, real-time embedded and

financial systems. Some functions of these critical systems are

more important and error prone than other and these critical

functions are needed to be tested properly to ensure the

correctness of the functionality. Test cases should be designed

in such a way that can expose the defects in these critical

functions of the software. Software testing is a validation

activity of the software product. Test cases are designed with

the intention of fault detection. Test case is defined [1] as

triplet [I, S, O] where I is input to the system, S is state of the

system at which input is given and O is expected output. Test

cases can be designed from either code of the software or

design and specification documents. As software testing is

usually last activity performed in the software development

process and it is often performed in the pressure. Risk

management process which takes earlier the preventive

measures cost negligible compared to huge cost that may

incurred when use of proper risk management techniques is

neglected [2]. Risk based testing considers both time and risk

related to the software component. It focuses on the activities

of the functionality of the software which can trigger hazard

condition for a software system [3]. Risk based testing is

emphasized on allocation of large time in testing of critical

components of the software [4]. Unified modeling language is

process-independent standard language for modeling object-

oriented systems. It has become standard for designing high

quality software and it is also used for security analysis along

with the designing the software systems [5]. Different UML

diagrams are used to model different views of the system.

State machine represents the sequences of states of an object

in which it goes through during its lifetime in response to

events together with its responses to those events [6]. State

diagram consists of states and transitions between different

states. States are represented by rounded rectangle and

transition between different states is represented by arrow

connecting them. Objects which behave differently based on

its state can be suitably model with the state diagram [7].

Prioritization of test cases schedules the execution of test

cases in such a way that test cases with high probability of

fault detection are executed first. Test cases prioritization can

detect fault earlier. UML models are used by researchers and

industry person in different domains for different purpose. In

[8-9] UML models are used for effort estimation and in [10-

11] risk estimation is performed. In this article, we used UML

state diagram to model the software system and attached risk

information associated with different states of the system. The

risk information is calculated based on risk exposure. Each

risk is associated with different state. After that UML state

diagram is converted into weighted extended finite state

machine (WEFSM) and prioritized test cases are generated

using risk exposure information.

2. RELATED WORK
Hettiaracchichi et al. [12] have used system requirements and

risk associated with the requirements for identification of

important test cases. Fuzzy expert system is used to make the

risk estimation less subjective. Risk modification, complexity,

security and size of software requirements are used as risk

indicators. Proposed approach can identify the faults in the

system earlier. Stallbaum et al. [13] presented a risk based

testing called RiteDAP. Authors used UML activity diagram

and prioritized the generated test cases based on risk. Test

cases are prioritized based on fault probability and damage

due to that fault. Proposed technique is applied on a real

example. Gebizi et al. [14] have used an iterative method for

model based testing using risk information. Authors used

Morkov chain model for system under test. Initially equal

probabilities are assigned to each transition. Memory leaks are

used to assign updated transition probabilities based on

failure. Smart TV system is used to validate the proposed

approach. Shirole et al. [15] have demonstrated UML state

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

16

diagram as specification of the system. State diagram is used

to represent the dynamic aspect of the system. Authors

converted the diagram into extended flow graph and from

extended flow graph feasible paths are generated using

genetic algorithm. Mohanty et al. [16] presented a regression

test case prioritization technique for component based

software using models. Authors used state chart diagram for

representation of components and changes of components.

State chart diagram is converted into component interaction

graph (CIG). CIG and old test suite is taken as input and used

information about total state changes direct and indirect

access of database from test cases is used for test cases

prioritization. Proposed approach minimized the cost of

system testing. Samuel et al. [17] have presented an approach

of automatic test cases generation from UML state diagram.

Authors utilized the control and data flow information of the

state diagram. State diagram is traversed and conditional

nodes are selected. Functional minimization technique is used

for generation of test data from the selected conditional nodes.

Cluster level behavior can be tested with the generated test

cases.

3. BACKGROUND

3.1 Risk Measurement
Risk is an expectation of loss that may or may not occur for

any project. Software risk is due to the possibility of suffering

loss in software projects. Loss can result the poor quality

product, high cost and delay in completion of projects. In risk

assessment different situations of systems and risk associated

with those situations is determined. For quantitative

calculation of risk, probability of a risk occurrence (P) and

possible loss (L) due to that risk are use.

Mathematically risk exposure is calculated by the following

formula:

RE=P*L

(1)

Where RE is risk exposure, P is probability of risk/ hazard

occurrence and L is loss due to hazard.

Some risks are tolerable as damage caused by that risk is less

compared to applying effective measure to tackle that risk. In

similar way some function or component of the software may

be more prone to risk. Risk with high probability of

occurrence and damage cost are treated in different way in

comparison to lower probability of occurrence and damage

cost.

Risk assessment categorized the following processes:

Identify the risks, Analyze the risk, Evaluate and prioritize the

risk and Tackle the risk.

a. Identify the risks In this phase, external and internal

events that can pose threat to projects are identified.

b. Analyze the risks Analyze various factors contributing

to the risks.

c. Evaluate and prioritize the risks Prioritize and

characterize risk in different categories.

d. Tackle the risks Identify different options to tackle the

risk and implement the best one with the available

resources.

3.2 UML Elements used for Risk

Information Representation
It is not possible from limited elements of UML to facilitate

the sufficiently express the entire model across different

domain. UML provides mechanism to extend the vocabulary

of UML for creation of new model elements. These new

elements are derived from exiting elements of UML and are

very useful for particular domain. There are three types of

extensible mechanism in UML namely: Stereotype, Tags and

Constraints. In the present work Stereotype and Tag values

are used for representation of risk information.

3.2.1 Stereotypes
Unified Modeling Language provides the concept of

stereotypes which can be used to modify the meaning of an

element in UML and assign it to new role. It helps to create

new types of building blocks from existing. Different

stereotypes are used to represent different category of risk.

3.2.2 Tag Values
Properties of a UML building block can be extended with the

tagged value. New information in an element specification

can be created by tagged value. In the presented work

probability of risk occurrence and damage cost is represented

in tag values for each category of risk.

3.3 Weighted Extended Finite State

Machine (WEFSM)
A WEFSM (Weighted Extended Finite State Machine) is in

which nodes are used to represent states of the system and

edges represent the transition between states. A WEFSM

consists of the following elements:

States- States are conditions of the system

Extended States- States with associated variable or memory

is extended state.

Guards-Guards are Boolean conditions attached with

transitions which enable the change of states.

Events- Events are incidents which change the state of the

system.

Actions- Actions are performed when an event occurs.

Transitions-Transitions from one state to other state occur

due to events and may have guards.

Weights- A weight (risk exposure) is associated with each

transition edge.

4. PROPOSED METHODOLOGY
The presented approach is summarized in the following steps:

1. Draw a UML state diagram of the software system;

2. Identify the states of UML state diagram from which risk

may be associated and identify the risk;

3. Categorize the risk and compute the risk exposure for

each risk;

4. Redraw the UML state diagram and attach the risk

associated with each state using tags and stereotypes of

the UML diagram.

5. Transform the UML state diagram obtained in step4 to

WEFSM (Weighted Extended Finite State Machine).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

17

Risk information is used to assign weights to the

WEFSM.

6. From the weighted extended finite state machine draw

weighted state transition table. Weighted State Transition

Table (WSTT) contains the risk exposure information for

each state.

7. Use the weighted state transition table (WSTT) for

generation of test cases.

8. Sort the test cases in descending order of risk exposure.

5. A CASE STUDY: ATM
In the present work we skipped the normal UML state

diagram without the risk information and UML state diagram

with risk information attached with different state is presented

in Figure 1. Risk information attached with different states is

represented with Stereotypes and Tags. Customer can enquiry

balance and withdraw balance.

Figure 1. UML State Machine Diagram of ATM with risk information

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

18

In the Table 1. risk is categorized based on Schaefer [18].

Risk types are written in descending order of severity [19]. If

system is not performing balance enquires then it will be least

damaging and risk will be attached with the state balance

enquiry. If someone other than customer withdraws money for

customer account above the withdrawal limit then it will be of

highest severity and customer will be highly affected by it and

such types of risk will be associated with the verifying

balance state. Similarly, Normal withdrawal and Invalid

ATM and Pin entry failure are categorized in Damaging and

hindering type of risk.

Table 1. Representation of risk and risk type associated

with the state

Risk Type Risk State

Catastrophic Invalid withdrawal Verifying balance

Damaging Normal

withdrawal

Process

transaction

Hindering Invalid ATM, Pin

entry failure

Request pin,

verify card

Annoying Balance enquires Balance enquiry

High damaging cost is assigned to catastrophic risk and low

cost is assigned for annoying risk while probability of

occurrence of catastrophic risk is low and high for annoying

risk types. In Table 2. different states with associated risks

and their risk exposure is calculated, probability of risk

occurrence is given as 2, 3, 3, 4 and cost of damage is given

as 10, 7, 5, 3 for catastrophic, damaging, hindering and

annoying.

Table 2. Representation of state and associated risk with

state with risk exposure

State Risk types RE=P*C

Verifying balance Catastrophic 2*10=20

Process transaction Damaging 3*7=21

Request pin, verify

card

Hindering 3*5=15

Balance enquiry Annoying 4*3=12

Figure 2 represents the WEFSM (Weighted Extended Finite

State Machine). It is a directed graph drawn from UML State

Diagram of Figure 1. For each state of the state diagram there

is a node in WEFSM and edge represents the events that

trigger the transfer from one state to other state. Edges of the

directed graph are assigned weight based on risk exposure

value of the states. There are 12 states in the state diagram in

Figure. 1 these states are represented as nodes of the directed

graph. States 2 and 5 contains two outgoing edges so in
WEFSM there are two nodes with out-degree of 2.

Figure 2. Weighted Extended Finite State Machine

(WEFSM)

Weighted state transition table is drawn from WEFSM. States

are written in left most column and events are written in upper

most row of the table and for each state risk exposure is

written in corresponding row. Risk exposure values are taken

from UML state diagram.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

19

Table 3. Weighted State Transition Table (WSTT)

Events 1 2 3 4 5 6 7 8 9 10 11 12 13 RE

States Next States

1 2 0

2 3 4 15

3 5 15

4 0

5 4 6 15

6 7 0

7 8 12

8 9 0

9 10 20

10 11 21

11 12 0

12 1 0

Test cases are designed from WSTT and presented in Table 4.

Each test case consists of test case id, state, Event and next

state and output of the next state and weight of each test case.

Table. 4 Test Cases

Test

case

State Event\State Output Next

State

Weight

TC1 1 1 2 0

TC2 2 2 3 15

TC3 2 3 Please

enter

valid

card

4 15

TC4 3 4 Please

enter

valid pin

5 15

TC5 5 5 6 15

TC6 5 6 4 15

TC7 6 7 7 0

 TC8 7 8 8 0

TC9 8 9 9 12

TC10 9 10 10 20

TC11 10 11 Collect

cash and

receipt

11 21

TC12 11 12 12 0

TC13 12 13 Collect

card

1 0

Prioritized order of test cases will be T11, T10, T2, T3, T4, T5,

T6, T9, T1, T7, T8, T12, and T13.

A new metric called APRC (Average Percentage of Risk

Covered) is proposed to demonstrate the effectiveness of the

proposed approach and given below;

 𝐴𝑃𝑅𝐶 = 1−
𝑇𝑅1+𝑇𝑅2+⋯𝑇𝑅𝑚

𝑛𝑚
+

1

2𝑛
 (2)

 Where m-> Total number of risk

n-> Number of test cases, TRi (The position of first test that

covers the risk i)where i=1, 2,..,m

APFC (Average Percentage of Risk Covered For

Prioritized Test Suite)

n=13, m=8

APFC=1 −
1+2+3+4+5+6+7+8

8∗13
+

1

26
=0.6153 (3)

APFC (Average Percentage of Risk Covered For Non-

Prioritized Test Suite)

 APFC=1 −
11+10+2+3+4+5+6+9

8∗13
+

1

26
=0.480769 (4)

Hence risk covered by prioritized test suite is larger than non-

prioritized test suite which will increase the confidence in

testing.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

20

Figure 3. Number of test cases executed vs. risk covered

for prioritized test suite

Figure 3. and Figure 4. represent the number of test cases

executed and percentage of risk covered by executed test

cases in the graphical form. In case of prioritized test suite

total risk is covered by executing only 8 test cases while in

case of non-prioritized test suite, total risk is covered with the

execution of 11th test case. Figure 3 shows that risk is covered

earlier in comparison to non-prioritized test suite which is

presented in Figure 4.

Figure 4. Number of test cases executed vs. risk covered

for non-prioritized test suite

6. CONCLUSIONS
Risk analysis is inevitable for safety critical applications. If

risk analysis can be done earlier in the development process

then suitable risk mitigation approach can be applied to

reduce the damage. UML is used by software engineer to

design high quality software and risky components can easily

identify by using UML. In the present work UML state

machine diagram is used represent various states of the

system. Various researchers used UML state diagram for test

cases generation but very few work has been reported by

taking into account the risk associated with the project. Risk is

identified for each state and these risks are attached with those

states and risk exposure values are computed for each those

state. Test cases with higher risk are given higher priority.

Results indicate that risk covered by test cases generated by

presented approach is higher than the non-prioritized test

suite. Identification of risky components earlier will boost the

confidence of tester and also improve the reliability of the

software. Proposed approach will be suitable for testing safety

critical applications and application in which some functions

are more error and risk prone. This technique may also helpful

for health related software where hazard may injure patient

and sometime life may be put in danger. In future cluster level

test cases from UML interaction diagram with consideration

of risk may be designed and a fully automatic tool may also

be design.

7. REFERENCES
[1] Mall, R. 2009. Fundamental of Software Engineering, 3rd

Edition, Prentice Hall.

[2] McManus, J. 2004. Risk Management in Software

Development Projects, First Edition, Elsevier.

[3] Amland, S. 2000. Risk Based Testing: Risk Analysis

Fundamentals and Metrics for Software Testing

including a Financial Application Case Study, Journal of

Systems and Software, Vol. 53, No. 3, pp. 287-295.

[4] Wendland, M. F., Kranz, M. and Schieferdecker, I. 2012.

A Systematic Approach to Risk-Based Testing Using

Risk-annotated Requirements Models, International

Conference on Software Engineering Advances, pp. 636-

642.

[5] Bar, T., Strohmeier, A., Moreira, A. and Mellor, S. J.

2004. The Unified Modeling Language: Modeling

languages and applications, International Conference on

Lisbon, Portugal, Springer.

[6] Booch, G., Raumbagh, J. and Jaobson, I. 1998. The

Unified Modeling Language User Guide, Addison

Wesley.

[7] Hamilton, K. and Miles, R. 2006. Learning UML 2.0, O

Reilly.

[8] Zivkovic, A., Rozman, I. and Hericko, M. 2005.

Automated Software Size Estimation Based on Function

Points using UML Models, Information and Software

Technology, Vol. 47, pp. 881–890.

[9] Hakim, A. S. H., Abran, A. and Abdallah, H. B. 2015. A

Measurement Method for Sizing the Structure of UML

Sequence Diagrams, Information and Software

Technology, Vol. 59, pp. 222-232.

[10] Popstoiannova, K. G., Hassan, A., Guedem, A.,

Abdelmoez, W., Nassar, D. E. M., Ammar, H. and Milli,

A. 2003. Architecture Level Risk Analysis using UML,

IEEE Transaction on Software Engineering, Vol. 29, No.

10, pp. 2003.

[11] Wang, T., Hassan, A., Guedem, A., Popstojanaova, K.

G. and Ammar, H. 2003. Architectural Level Risk

Assessment Tool Based on UML Specification,

International Conference on Software Engineering,

IEEE, pp. 808-809.

[12] Hettiarachichi, C., Do, H. and Choi, B., 2016. Risk

Based Test Case Prioritization Using a Fuzzy Expert

System, Information and Software Technology, Vol. 69,

pp. 1-15.

[13] Stallbaum, H., Metzqer, A. and Pohl, K. 2008. An

Automated Technique for Risk-Based Test Case

Generation and Prioritization, Proceedings of 3rd

International Workshop on Automation of Software Test,

pp. 67-70.

0

20

40

60

80

100

120

0 5 10 15

P
er

ce
n
ta

g
e

o
f

R
is

k
 C

o
v
er

ed

Numbèr of Test Cases Executed

Prioritized Test Suite

0
20
40
60
80

100
120

0 5 10 15

P
er

ce
n

ta
g

e
o

f
R

is
k

 C
o

v
er

ed

Number of Test Cases Executed

Non Prioritized Test Suite

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 – No. 7, December 2016 – www.ijais.org

21

[14] Gebizi, C. S., Metin, D. and Sozer, H. 2015. Combining

Model Based Testing and Risk Based Testing for

Effective Test Case Generation, Eighth International

Conference on Softwate Testing, Verification and

Validation Workshop, pp. 1-4.

[15] Shirole, M., Suthar, A. and Kumar, R. 2011. Generation

of Improved Test Cases from UML State Diagram using

Genetic Algorithm, Proceeding of Indian Software

Engineering Conference, ACM, pp. 125-134.

[16] Mohanty, S., Acharya, A. A. and Mohpatra, D. P. 2011.

A Model Based Prioritization Technique for Component

Based Software Retesting using UML State Chart

Diagram, International Conference on Electronics

Computer Technology, pp. 364-368.

[17] Samuel, P., Mall, R. and Bothra, A. K. 2008. Automatic

Test Cases Generation From Unified Modeling Language

(UML) State Diagrams, IET Software, Vol. 2, No. 2, pp.

79-93.

[18] Schaefer, H., Risk Based Testing, Strategies for

Prioritizing Tests against Deadlines, Software Test

Consulting, http://home.c2i.net/schaefer/testing.html,

2005.

[19] Jorgensen, P. C. 2014. Software Testing a Craftsman’s

Approach, 4th edition, CRC Press.

