Foundation of Computer Science FCS, New York, USA

I‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868
Volume 11 - No. 7, December 2016 - www.ijais.org

Modelling and Congestion Detection of Wireless
Sensor Networks: A Concurrent-based Approach
using Coloured Petri Nets

Giang Trinh Khanh Le Tam Bang Quan Tram Thang Bui Tho Quan
Hochiminh City University of Technology
Hochiminh City, Vietnam
ABSTRACT whether a WSN satisfies certain constraints is a challenging

Congestion in Wireless Sensor Networks (WSNs for short)
causes not only packet loss and but also leads to excessive
energy consumption. Therefore, congestion needs to be detected
as well as controlled in order to prolong system lifetime.
There are two streams to concern congestion detection including
simulation-based and model-based. Following the second
stream, formal modelling techniques are used for analysis of
WSNs. Coloured Petri nets (CPNs for short) that combines
Petri nets with programming languages is a powerful modelling
technique. This paper presents a CPN-based approach for formal
modelling and congestion detection of WSNs. The proposed
model describes parameters and behaviours of a WSN. Then
the congestion detection problem is reduced to a reachability
problem on the state space of the CPN-based model. Moreover,
the CPN-based model uses the hierarchical modelling capability
of CPNs, including different levels of abstraction (sub-modules).
This helps easily handling and extending the model.

In reality, WSN components (sensors and channels) can execute
a number of concurrent operations. This is called concurrency
of WSNs. The CPN-based model is extended to express the
concurrency, thus improving the congestion detection results.

General Terms:

System Modelling, System Verification

Keywords

Wireless Sensor networks, Congestion detection, Concurrency
architecture, Petri nets, Coloured Petri nets

1. INTRODUCTION

A Wireless Sensor Network (WSNs for short) is a collection
of hundreds or thousands of sensor nodes (sensors for short).
Sensors are characterised as cheap, low energy consuming,
with limited memory and processing capabilities [1]. Basically,
sensors in a WSN can communicate with one another using
WiFi signals. There are three types of sensors: source, sink
and intermediate. These sensors can be connected in unicast,
multicast, or broadcast mode, each of which specifies whether
certain pairs of sensors can exchange information or not. If
two sensors can communicate, a channel is established between
them. Information on sensors and channels form the topology of
a WSN.

WSNs have distributed on different applications such as
military target tracking and surveillance, biomedical health
monitoring [2]. Although convenient, using WSNs raises several
challenges since their constraints must be handled (e.g. energy
consumption, transmission rate, memory, location sensing,
unreliable communications, population density). Checking

issue. A difficult task called congestion handling has attracted
much attention [3, 14, |S) 16]. The task relates to constraints
verification and includes congestion detection and congestion
mitigation. [3] shows that congestion occurs if buffer overload,
i.e. the rate of incoming packets is large than its processing. This
paper focuses on congestion detection based on buffer overload.

Nowadays, there are two main approaches to address congestion
detection including simulation-based [7} 18] and model-based [4].

In the first case, a simulator is used to mimic the operations of the
WSN, measure the performance, and check congestion occurs
or not. Widely used simulators include ns-2 [7] and Omnet++
[8]. In these, a WSN is considered as a network with sensors,
channels and their activity (protocols). The activity of protocols
in network is programmed based on the help of simulator
frameworks. For example, in Omnet++, the mf framework was
used first, and then changed to the inet framework.

In the second case, the model-based approach shows two
immediate advantages against simulator approaches:

(1) alleviates the dependence on the simulator framework since
the WSN is modelled at a higher level of abstraction, which
only includes sensors and channels. Thus, the WSN model
is always the same, whatever the framework being used.

(2) verifies the properties by a logic formula via model checking
techniques while simulators must be done by programming,
thus this approach may define all scenarios.

Formal modelling techniques have proved the advantages
for analysis of WSNs. To the best of our knowledge, [4]
is the sole framework so far supports both modelling and
congestion detection of WSNs by Petri nets. However, [4] used
Place/Transition nets which is classical Petri nets with limited
modelling powerful, thus existing following drawbacks. First,
parameters of a sensor is expressed by variables embedded in
the analysis tool. Second, the semantics of WSN operations
are expressed by using code program associated to transitions.
These code are in form of C# language, thus forcing the human
modeller must get meanings of both Petri nets and C# language.
Moreover, the human modeller also difficultly maps components
of the modelled PN to corresponding parts of these code. These
drawbacks force us remodel WSN by using other advanced kinds
of Petri nets, Coloured Petri nets (CPNs for short) [9]. CPNs that
combines Petri nets with programming languages is a powerful
modelling technique. CPNs also has been applied widely for
modelling and analysis of complex systems, especially networks
[9} 110} (11} 1124 [13]. It provides parameterised representations
which allow easily keeping and handling all parameters of WSN
components without interaction to code on every transition.
Therefore, this paper focuses on using CPNs for modelling of
Wireless Sensor networks and detection of congestion on the
CPN modelled WSN. Such model has the following objectives:

International Journal of Applied Information Systems (IJALS) i£; ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 11 - No. 7, December 2016 - www.ijais.org

—representing all WSN components and their operations;
—defining a clear operation semantics of the modelled CPN;

—supporting an easy method to detect congestion.

In reality, the sensor node executes a number of concurrent
operations: generating packets (capturing information),
processing, and sending packets; while the channel concurrently
receives and transmits packets [[14]. Moreover, a component
(sensor or channel) can operate independently with each others.
So operations of sensors and channels in a WSN should
be performed concurrently. This is called concurrency of
WSNSs. Since all tools supporting Petri nets implemented only
sequential semantic of firing rule, it is too difficult to express the
concurrency of WSNs on the CPN modelled WSN. Therefore,
the model is extended by changing semantic of firing rule. This
makes behaviour of the model becomes more realistic, thus
improving the congestion detection results.

CPN Toolsﬂ is the most popular and powerful tool for
constructing and analysing CPNs. Especially, it supports timed
colour set, hierarchical net. It can investigate the behaviour
of the modelled system using simulation. It can also verify
properties by means of state space methods and model checking
[15]. Therefore, CPN Tools is used to implement the proposed
approach.

1.1 Related Work

First, we consider generally some network modelling approaches
based on Petri nets.

Petri nets is used to model a LAN switched network architecture
[16]. This model includes three components (switches, servers,
and clients) and interaction between these components. The
influence of the switch buffer size is verified. The rate of packets
loss on the quality of the transmission is also considered. [17]
uses Stochastic Petri nets to model and analyse ad-hoc wireless
networks.

Then, we consider particularly modelling of WSNs based on
Petri nets.

There are many approaches which have used PNs and its
extensions to model and analyse protocols in WSNs. Coloured
Petri nets (CPNs) that is an extension of PNs is a powerful
modelling technique. In [18]], a CPN model is presented for
modelling and performance evaluation of a medium access
control protocol in WSNs named sensor-medium access control
protocol (S-MAC). The proposed model for this protocol uses
hierarchical CPNs (HCPNs), which extends CPNs with modules.
In [13]], a HCPN model is exploited to analyse the behaviour
for one of the routing protocols (Vector Based Forwarding) in
WSNs. Verification of this model is performed by analysing
the state space statistics. These statistics include liveness,
responsiveness, and free from deadlocks.

The authors of [11] use generalised stochastic Petri nets (GSPNs)
to describe the data flow of WSN. The obtained model is used to
analyse the impact of data aggregation on network latency and
consequently in sensor’s battery life.

In [19] authors propose an approach for evaluating the WSN
lifetime by simulating its power consumption using CPNs. This
approach includes three main parts such as a fully automated
process for evaluating the WSN lifetime, a set of reusable
CPN models expressing the power consumption of WSN
communication protocols, and a strategy for composing CPN
models of WSN applications and protocols.

Thttp://cpntools.org/

[12] presents a CPN-based model using hierarchical CPNs.
The model can present a large class of WSN behaviour by
its generality. The modelled behaviour includes monitoring
and collecting data, accessing and evaluating the information,
formulating meaningful user displays, and performing decision
making and alarm functions. The CPN-based model is verified
both quantitative and qualitative properties.

Finally, we consider both modelling and congestion detection of
WSNs based on Petri nets.

To the best of our knowledge, [4] is a unique approach for both
formal modelling and congestion detection of WSNs. Dealing
with the problem of congestion detection in WSNs, the authors
of [4] propose a congestion-based method for modelling and
verifying WSNs using Place/Transition nets. Their proposed
model only focus on the distribution of packets on a WSN. They
have developed a tool called WSN-PN which allows for editing a
network topology, generating automatically a corresponding PN
model, and detecting congestion by verifying LTL formulae on
the modelled PN. Moreover, WSN-PN supports users to abstract
components, which can be either sensors or channels, applying
to the modelled PN.

1.2 Outline

Section 2 recalls some basic concepts of CPNs. Section [3]
proposes CPN-based model of WSNs. Section[d]shows analysing
of the model to detect congestion in WSNs. More extensive
experiments are also reported in this section. Finally, Section [j]
draws conclusion and outlines future work.

2. PRELIMINARIES

Coloured Petri nets (CPNs for short) [9} [10, 20] is a modelling
language which combines the strengths of Petri nets with the
expressive power of functional programming languages. In
CPNgs, tokens are distinguished by the "colour" instead of only
the "black" one. Moreover, arc expressions (an extended version
of arc weights in classical Petri nets) specify which tokens can
flow over the arcs. Guards that are Boolean expressions defining
additional constraints on enabling transitions.

Let £ X P be the set of expressions complying with the CPN-ML
[21]] syntax. EX P is used to express components of CPN such
as arc expressions, guards. Before expressions are evaluated to
values, the variables in the expressions must be assigned values,
which is called binding. Besides, a multiset is a set in which there
can be several occurrences of the same token. Multiset is defined
in Definition [T] [20]. It is an important concept used in the later
definitions of markings, steps, and the enabling and occurrence
of transitions. Definition 2] [20] gives the formal definition of
CPNss.

DEFINITION 1. LetS = {sy, $2, ...} be a non-empty set. A
multiset over S is a function m : S — N that maps each element
s € S into a non-negative integer m(s) € N called the number
of appearances (coefficient) of s in m. A multiset m can also be
written as a sum:

++Zm

seS

m(sl)‘sl + +m(s2)‘s2 + +...

Membership, addition, comparison, and subtraction are defined
as follows, where m, mq, and m are multisets:

l.Vse S:sem&m(s) >0

2.¥s € §:(mq ++m2)(s) = mi(s) +ma (s)
3mp <<=my s VseS: m1(5)§ ma

4. When m; <<= msg,

Vs €8 : (ma——mq)(s) =ma(s) —mi(s)

The set of all multisets over S is denoted Sy g.

http://cpntools.org/

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868

Volume 11 - No. 7, December 2016 - www.ijais.org

DEFINITION 2. A Coloured Petri net is a nine-tuple
(P,T,F,%,V,c,g, f,mo) where:

1. P is a finite, nonempty set of places.

2. T is a finite, nonempty set of transitions such that PNT = (.
3.F C PxTUT x P is afinite set of directed arcs.

4. ¥ is a finite set of non-empty colour sets.

5.V is a finite set of typed variables such that T'ype[v] € 3 for
allv e V.

6.c: P — X is a colour set function that assigns to each place
p € P acolour set c(p) € X.

7.9:T — EXP is a guard function that assigns to each
transition ¢ € 1" a guard expression of the Boolean type.

8. f : FF — EXP is an arc expression function that assigns to
each arc a € F an arc expression of a multiset type ¢(p)ars,
where p is the place connected to the arc a.

9. mgy : P — EXP is an initialisation function that assigns to
each place p € P an initialisation expression of a multiset type

c(p)ms-

DEFINITION 3. For a Coloured Petri net CPN =
(P,T,F,%,c,g, f,mo), we define the following concepts:

1. A marking is a function M that maps each place p € P into a
multiset of tokens where M (p) € C(p)ars. mo is initial
marking of CPN.

2. The variables of a transition t are denoted Var(t) € V and
consit of the free variables appearing in guard of ¢ and in the arc
expressions of arcs connected to ¢.

3. A binding of a transition ¢ is a function b that maps each
variable v € Var(t) into a value b(v) € Type[v]. The set of all
bindings for a transition ¢ is denoted B(t).

4. A binding element is a pair (¢, b) such that ¢ € T and

b € B(t). The set of all binding elements BE(¢) for a transition
t is defined by BE(t) = {(¢,b)|b € B(t)}. The set of all
binding elements in a CPN model is denoted BE.

5.Astep Y € BE)s is a non-empty, finite multiset of binding
elements.

Definition 3] [20] defines concepts used to express the semantics
of CPNs. Then the enabling and occurrence of a binding element
are summarised in Deﬁnition[{l] [20].

DEFINITION 4. A binding element (¢,b) € BE is enabled
in a marking M if and only if the following two properties are
satisfied:

1. G(t)(b) = true
2.¥p e P: E(p,t)(b) <<= M(p)

When (t,0) is enabled in M, it may occur, leading to the
marking M’ defined by:

3.¥pe P: M'(p) = (M(p) — —E(p, t){(b)) ++ E(t, p)(b)

M’ is directly reachable from M. This is denoted by M ﬂ
M’ . The set of markings reachable from a marking M is denoted

A CPN model can be organised as a set of hierarchically
related modules. CPN models with modules are also called
hierarchical Coloured Petri Nets (HCPNs for short) [9, 120].
A HCPN allow dividing a module into smaller modules (sub
modules) connected to each other using well-defined interfaces
(substitution transitions and fusion places). With HCPNs, human
modeller can work at different abstraction levels and concentrate
on only a few details at a time. Moreover, a module is defined
once and is used repeatedly. This allows reading only one
description, and to modify one description when changes are
necessary.

3. MODELLING WIRELESS SENSOR
NETWORKS USING COLOURED PETRI
NETS

In this section, we assume that the reader is familiarised with the
Coloured Petri nets concept.

In this paper, we use a WSN whose topology depicted in Figure
[I] as a straight case study.

s2

51 54 Q%

S5

53
Fig. 1: Topology of example WSN. A double-lined circle denotes a
source sensor, a full circle denotes a sink sensor, and a single circle
denotes an intermediate sensor.

The WSN includes 5 sensors and 5 channels be long to four
types of components (source, intermediate, sink, channel). The
configuration of the WSN is shown in Table E} Herein, we
configure same parameters for components which are same type.
In each sensor, we have a pair of buffer and queue. The buffer
contains the packets a sensor is receiving. Then, the buffered
packets are sequentially transferred to the queue, in order to be
sent by the sensor. The processing rate indicates the number
of packets a sensor can handle (transfer from buffer to queue)
over a given period, while the sending rate specifies the number
of packets sent by a sensor to its connected channels. In turn,
transmission rate specifies the number of packets which are
transfer from channel to sensor. Total packets stands for all
packets which sources generated.

Table 1. : The parameter configuration of the WSN in Figure

Source | Sink | Intermediate | Channel
Sending rate 3 3 3 N/A
Buffer size 5 5 5 5
Queue size 5 5 5 N/A
Processing rate 5 5 5 N/A
Transmission rate N/A N/A N/A 3
Total packets 6 N/A N/A N/A

3.1 CPN Model for WSN

Based on characteristics of a WSN, there are two different
generic components: sensor nodes and channels. Each of these
components has some behaviours that can be modelled by CPNs.

Sensor nodes are divided into three types including source
sensor, intermediate sensor, and sink sensor. The behaviours of
each type are as follows:

—A source sensor generates packets and sends these packets into
its next hops.

—A intermediate and a sink sensor process packets internally,
i.e. they move packets from their buffers to their queues.

A channel component includes following behaviours:

—receive packets sent from in-connected sensors

‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 11 - No. 7, December 2016 - www.ijais.org

—send (transmit) packets to out-connected sensors

According to the previous presentation, the CPN-based model
of a WSN is composed of seven modules. Figure [2] shows
module hierarchy of the proposed model. The "Top" module
is prime module with no incoming arc. It is decomposed
into two sub-modules "Initialisation" and "Processing". The
"Initialisation" module is responsible to initialise markings
for working places of the overall model. The "Processing"
module includes four sub-modules such as "Generate Packet",
"Internal Process", "Receive Packet", and "Transmit Packet"
corresponding to main operations of all WSN components.

Top
Generate Internal Receive Transmit
Packet Process Packet Packet

Fig. 2: Module hierarchy of the proposed model.

Figure [3] demonstrates the most abstract "Top" module,
which includes two substitution transitions "initialise" and
"process" (associated with the "Initialisation" module and the
"Processing” module respectively) with initial information place
"network" and two working places "sensors" and "channels".
The declarations of the colour sets used in this module are listed
in Listing [T} The declarations are presented using the CPN-ML
syntax [21]]. We divide such colour sets into two types: (a) colour
sets describe parameters of net components and structure of the
topology of the WSN and (b) colour sets describe parameters of
overall WSN.

Colour set type (a) is specified as follows:

—Colour set "SENSOR_TYPE" is an enumeration colour
set with three values "Source", "Intermediate”, and "Sink"
corresponding to three types of sensors.

——Colour set "SENSOR_PARAM" includes eight fields
describing configuration and state of a sensor. Such fields
are "typ" (types of sensors), "buf" (current packets in
buffer), "queue" (current packets in queue), "pmax" (current
maximum packets that a source sensor can generate — this
field is only mean of source sensors), "sending_rate" (sending
rate of sensor), "processing_rate" (processing rate of sensor),
"buf_size" (size of buffer), and "queue_size" (size of queue).

—Colour set "CHANNEL_PARAM" includes three fields
describing configuration and state of a channel such as
"channel_buf" (current packets in channel buffer), "trans_rate"
(transmission rate), and "channel_buf_size" (size of channel
buffer).

—Colour set "SENSOR" is defined as a product of simple
colour set "INT" (representing id of a sensor) and
"SENSOR_PARAM" (representing parameters of the sensor).

—Colour set "CHANNEL" stands for a channel and it is defined
as a product of three colour sets as follows: id of from-sensor
of the channel ("INT"), list of remaining information of the
channel ("CHANNEL_TO_PARTS"), and id of the channel
("INT"). Colour set "CHANNEL_TO_PARTS" is defined as
a list of a product of two colour sets "CHANNEL_PARAM"
and "INT". The reason of defining remaining information of
the channel as a list is explained in next sections. Herein,
colour set "CHANNEL_PARAM" stands for parameters of the
channel while colour set "INT" stands for id of to-sensor of

the channel. For example, channel s; — s5 can be expressed
by channel value defined as follows:

Type[channel] = CHANNEL,;
channel = (1, [({channel_buf = 0,

trans_rate = 3, channel_buf_size = 5},2)],1)
Colour set type (b) is specified as follows:

—Colour set "CHANNEL_MODE" is an enumeration colour
set representing channel modes supported in the proposed
model including "Unicast" an "Broadcast". This paper does
not consider "Multicast" mode.

—Colour set "NETWORK" includes four fields representing
parameters of overall network as follows: "channel mode",
net_sensors (list of sensors in the network), and net_channels
(list of channels in the network).

SENSOR

iniNetwork

@ initialise

Initialisation
NETWORK

Processing

CHANNEL
Fig. 3: The module "Top".

Listing 1: Declarations of the colour sets.

colset SENSOR_TYPE = with Source | Intermediate | Sink;

colset SENSOR_PARAM = record typ:SENSOR_TYPE x buf:INT
x queue:INT * pmax:INT % sending_rate:INT
% processing_rate :INT % buf_size:INT % queue_size :INT;
colset CHANNEL_PARAM = record channel_buf:INT
% trans_rate :INT % channel_buf_size:INT;

colset SENSOR = product INT % SENSOR_PARAM;

colset CHANNEL_TO_PARTS = list (product CHANNEL PARAM
* INT)

colset CHANNEL = product INT x CHANNEL_TO_PARTS x INT;

colset CHANNEL MODE = with Unicast | Broadcast;
colset NET SENSORS = list SENSOR;
colset NET_CHANNELS = list CHANNEL;

colset NETWORK = record channel_mode :CHANNEL MODE
* net_sensors :NET_SENSORS x net_channels :NET_ CHANNELS;

Listing 2] expresses value of constant "iniNetwork" assigned to
initial marking of place "network" of the "Top" module. This
value is set based on the configuration in Table [I] A user can
easily change the value per his requirement.

Listing 2: Initial marking of the "network" place.

val iniSensors = [(1,{typ Source ,buf = 0,queue = 0,

pmax = 6,sending_rate = 3,processing_rate = 5,
buf_size = 5,queue_size = 5}).,(2,{typ =
Intermediate ,buf = 0,queue = 0,pmax = 0,
sending_rate = 3,processing_rate = 5,buf_size = 5,
queue_size = 5}),(3,{typ = Intermediate ,buf = 0,
queue = O,pmax = 0,sending_rate = 3,
processing_rate = 5,buf_size = 5,queue_size = 5})
,(4,{typ = Intermediate ,buf = 0,queue = 0, pmax =
0,sending_rate = 3,processing_rate = 5,buf_size =
5,queue_size = 5}) ,(5,{typ = Sink,buf = 0,queuve =
0,pmax = 0,sending_rate = 3,processing_rate = 5,
buf_size = 5,queue_size = 5})];

val iniChannels = [(l,[({channel_buf = 0O,trans_rate =

‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA
Volume 11 - No. 7, December 2016 - www.ijais.org

{
O,trans_rate = 3,channel_buf_size 5}1.,3)1.,2)
,(2,[({ channel_buf = 0O,trans_rate = 3,
channel_buf_size = 5},4)],3) ,(3,[({channel_buf =
O,trans_rate = 3,channel_buf_size = 5},4)],4)
,(4,[({ channel_buf = 0O,trans_rate 3,
channel_buf_size = 5},5)]1,5)1];

3,channel_buf_size = 5},2)],1) ,(1,[({channel_buf =

val iniChannelMode = Broadcast;
val iniNetwork = {channel_mode = iniChannelMode ,
net_sensors = iniSensors ,net_channels = iniChannels}

The "Initialisation" module. This module intends to distinguish
and convert information of place "network" to two working
places "sensors"and "channels". For example, with the initial
marking of place "network" depicted in Listing 2} when this
module is executed, the new markings of place "sensors" will
be as follows: M (sensors) = list_to_ms(iniSensors
The new marking of place "channels" has a different of
place "sensors", its value depends on channel mode of the
WSN. In unicast mode, simply Mynicasti(channels) =
list_to_ms(iniChannels). In broadcast mode, all channels,
which have identical from-sensor id, are combined into a
channel; for instant,

Mpyroadeast(channels) =

(1, [({channel_buf = 0, trans_rate = 3,
channel_buf_size = 5},2), ({channel_buf = 0,
trans_rate = 3, channel_buf_size = 5},3)],1)
++(2,({...},4),2) + +(3,({...},4),3) + +(4, ({...},5),4)

This can be performed because the "CHANNEL_TO_PARTS"
part of colour set "CHANNEL" is defined as a list.

The "Processing" module. This module represents the main
operations of the WSN. It is the key factor of overall
model. Figure E| demonstrates the "Processing" module, which
is decomposed into four sub-modules including "Generate
Packet", "Internal Process", "Receive Packet", and "Transmit
Packet" which are associated with four substitution transitions

non non

"generate", "process”, "receive, and "transmit" respectively.

Receive Packet

CHANNEL

Fig. 4: The "Processing" module.

Figure |§| depicts the "Generate Packet” module which
corresponds to the generating packets operation of a source
sensor (identified by s_id). Function "guard_generate" defines
a guard which expresses firing condition of transition "generate
packet". This transition can fire if number of generable packets
of the sensor is greater than 0 and number of current packets in

2list_to_ms is a function converting a list to a multiset. For example,
list_to_ms([1,2]) = 11 + +1°2

queue of the sensor is less than the queue size. Let n_generated
be number of generated packets which is defined as minimum of
current number of generable packets (#pmax s_param) of the
sensor, sending rate of the sensor (#sending_rate s_param),
and subtraction of queue size and #pmazx s_param. The
specification assurances that queue of the sensor is never
overloaded. Function "generate" updates state of the sensor.
First, it subs n_generated from current number of generable
packets. Then, it adds n_generated to queue of the sensor. All
rest of information of the sensor are unchanged.

(s_id,s_param) @

SENSOR

generate packet

(s_id,generate(s_param))

[guard_generate(s_param)]
Fig. 5: The "Generate Packet" module.

The "Internal Process”" module corresponds to internal
processing operation of an intermediate or sink sensor, as shown
in Figure @ The behaviour of this operation is to move packets
from buffer of the sensor into its queue. Number of moving
packets which is determined as minimum of number of current
packets in sensor buffer, processing rate of the sensor, and
subtraction of queue size of the sensor and number of current
packets in the queue. Function "guard_process" defines a guard
expressing firing condition of transition "internal process". This
function returns true value if the desired sensor is intermediate
or sink sensor (is not source sensor), number of current packets
in sensor buffer is greater 0, and number of current packets in
sensor queue is less than queue size.

(s_id,s_param)

SENSOR

internal process

(s_id,process(s_param))

[guard_process(s_param)]
Fig. 6: The "Internal Process" module.

Figure[7]depicts the "Receive Packet" module which corresponds
to the operation that a sensor sends packets and its connected
channels receive these packets. The selection of channels
receiving packets is based on channel mode (unicast, broadcast)
of the WSN. The selection is expressed in the "Initialisation"
module before. Function "guard_receive" is assigned to guard
of transition "receive packet". This transition can fire if number
of current packets in queue of the from sensor (identified by
from_s_id) is greater than 0. This operation only depends on
state of the from sensor, it does not depend on state of these
connected channels. Let n_received be number of sent/received
packets which is defined as minimum of number of current
packets in sensor queue and sending rate of the sensor. Function
"send" updates state of the from sensor when the operation has
done (i.e. transition "receive packet" has occurred). Queue of
the sensor is subbed a mount n_received. Function "receive"
updates state of the selected channels (listed in variable c_list).
Each of these selected channels is added amount n_received to
its buffer.

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868

Volume 11 - No. 7, December 2016 - www.ijais.org

SENSOR

(from_s_id,send(s_param))

(from_s_id,s_param) (from_s_id,c_list,c_id)

receive packet

[guard_receive(s_param)]

(from_s_id,receive(s_param,c_list),c_id) CHANNEL

Fig. 7: The "Receive Packet" module.

Figure [§] demonstrates the "Transmit Packet" module which is
responsible to the transmitting packets to a sensor of a channel.
The operation depends on state of the channel, but not on
channel mode or state of to sensor. Function "guard_transmit"
is assigned to a guard expressing firing condition of transition
"transmit packet". It returns true value if number of current
packets in buffer of the channel is greater than 0. As shown
in Figure [8] variable from_s_id stands for the id of from
sensor while fo_s_id stands for the id of to sensor of the
channel. Function "transmit_from" updates state of the channel
having to sensor id which equals to_s_id in list of channels
c_list. Let n_transmitted be number of transmitting packets
defined as minimum of number of current packets in channel
buffer and transmission rate of the channel. The buffer of this
channel is subbed n_transmitted packets. The rest information
of the channel are unchanged. Function "transmit_to" updates
state of to sensor to_s_id. The buffer of the sensor is added
n_transmitted packets. The rest information of the sensor are
unchanged.

SENSOR

(to_s_id,transmit_to(to_s_id,s_param,c_list))

(to_s_id,s_param (from_s_id,c_list,c_id)

transmit packet

[guard_transmit(to_s_id,c_list)]

(from_s_id,transmit_from(to_s_id,c_list),c_id) CHANNEL

Fig. 8: The "Transmit Packet" module.

3.2 CPN Model with Concurrent Semantic

In a WSN, the sensor node executes a number of concurrent
operations: generating packets (capturing information),
processing, and sending packets; while the channel concurrently
receives and transmits packets [[14]]. Moreover, a component can
operate independently with each others. Therefore, operations
of sensors and channels in a WSN should be performed
concurrently. This is called concurrency of WSNs.

As discussed in Section[T} the CPN-based model with concurrent
semantic is needed for describing WSN in reality. Since a
binding element stands for an operation of a net component,
some enabled binding elements of the CPN model need to
occur simultaneously. Theoretically, a CPN model expresses
concurrency by defining a new semantic called concurrent
semantic which allows occur some enabled binding elements
simultaneously [9]. But in implemental aspects, CPN Tools

and another tools did not implement the concurrent semantic.
Instead, they implemented sequential semantic (i.e. only one
of enabled binding elements can occur in a marking and the
selection of these binding elements is non-deterministic) with
argument that a marking reached in concurrent semantic will be
the same as the one which will be reached in sequential semantic.
However, state space of a model with sequential semantic has too
many intermediate markings against state space of this model
with concurrent semantic. This claim reflects appropriately the
observation of WSNs in [14]. Moreover, in congestion detection
problem, using sequential semantic can lead delusory result
which is not match with real WSN (see Section).

We propose a concurrent semantic which expresses the
concurrency of WSNs. The formal definition of the concurrent
semantic is presented below.

Let EBE = {ebe;} (i = 1,n) be set of enabled binding
elements in marking M of the sequential model. Each enabled
binding element stands for an enabled operation of a component
of the WSN. Since components of the WSN can operate
concurrently, some enabled binding elements of EBE can
occur simultaneously. However, in unicast mode, a sensor must
choose only on of its connected channels to send packets.
Correspondingly, enabled binding elements of transition "receive
packet" of the "Receive Packet" module which have the
same from sensor (variable s_id) can not occur concurrently.
Therefore, we define a set called unicast-set which reflexes the
constraint of unicast mode. unicast-set is defined in Definition 5l

DEFINITION 5. An unicast-set U is a set of all enabled
binding elements {(¢1,b1), ..., (tm, b) }; m > 1 such that:

1.U C EBE;

2. t; = "receive packet" with Vi € {1,2,..,m};

3. b;(from_s_id) = b;(from_s_id) with

Vi, j € {1,2,..,m};

4. and U is a mutually exclusive set, i.e. the occurring of any
subset of binding elements U’ C U results in a marking in
which some other binding element (¢;, ;) ¢ U’ is disabled.

We divide EBE into two groups. The first group includes all
disjoint unicast-sets Uy,...,Uy, (m > 0)of EBE,ie. U;NU; =
@ with Vi, j € {1,...,m};i # j. The second group is a set called
NC including all remaining enabled binding elements in EBE,

ie. NC = EBE\ (U U;). NC'is not in conflict and its enabled
i=1

binding elements can occur simultaneously. Then we define a
w-step (distinguish with the step concept in CPNs theory) as
shown in Definition [6]

DEFINITION 6. A w-step W of a EBE is a set of enabled
binding elements such that:

W =NCU(U (i, b:)) with (¢;,b;) € U;. A setof all possible

1=1
w-steps of a F BE is denoted by W S. The cardinality of WS is
specified as follows:

1 ifm=20

WSI=Y T m=1

i=1

The concurrent semantic is based on Theorem [7land Theorem 8

THEOREM 7. LetY be a w-step in marking M, then Y is a
non-conflict set.

PROOF. Let (t;,b;) and (t;,b;) be two arbitrary distinct
enabled binding elements of Y. Assume (¢;,b;) occurs before
(t;,b;) reaching marking M. In the sequential model, when a
binding element occurs, tokens in each place is unchanged, it

International Journal of Applied Information Systems (IJALS) i£; ISSN : 2249-0868

; Foundation of Computer Science FCS, New York, USA
Volume 11 - No. 7, December 2016 - www.ijais.org

is only change inside values of tokens. Therefore, (¢;,b;) still
satisfies resource constraints.
Let to and to; are tokens in place "sensors" in marking M

and M, respectively, such that to M) to;. Regarding guard

conditions, if (¢;,b;) does not bind to to; then (t;,b;) is still
enabled, otherwise there are all possible cases:

—t; = '"generate packet" or t; = 'internal process" and
t; = ‘'receive packet". Because (t;,b;) is enabled, then

G(t;)(bj)m = true ie. (#q to > 0) = true. Since
(#q to1) = (#q to) +inc with inc > 0, we have (#q to' >
0) = true i.e. G(t;)(b;)m, = true.

—t; = "receive packet" and t; = "transmit packet". We have,
G(t;){(bj)m = trueie. (#cbto > 0) = true. (#cb tor) =
(#cb to) + inc with inc > 0, hence (#cb to; > 0) = true
ie. G(t])<b]>1wl = true.

—t; = "transmit packet" and ¢{; = "internal process". We
have, G(t;)(bj)m = true ie. (#b to > 0) = true.
Sine (#b to1) = (#b to) + inc with inc > 0, we have
(#btor > 0) = trueie. G(t;)(bj)a, = true.

All cases indicate that the occurring of (¢;,b;) does not effect
to enabling of (¢;,b;). Then, we can conclude that Y is a
non-conflict set. [

THEOREM 8. Let Y be a w-step in marking M. The binding
elements of Y can occur sequentially (one by one) in any order
and the marking reached will be the same as the one.

PROOF. Let or = ((t1,b1), ..., (tn,bn)) with n > 1 be an
arbitrary order of all binding elements of Y and M’ is marking
reached by making the binding elements of Y occur sequentially
in this order. Let M, ..., M, _, be intermediate markings in
occurrence sequence from M to M'. Let M Q) (t1,b1) be effect
of (t1,b1) on M, we have

Ml = M®(t1,b1)
My = M, ®(t2,b2)

Mn—l = Mn—Q ®(tn—17bn—l)
M/ = Mnfl ®(tn7 bn)

By performing a series of substitutions, we obtain

M =M @)(t1,51)) - R (tn,) ()

We prove that M @7 Qv = MR Qi;Vi,j €
{1,...,n} and ¢ # j (**). Effect of ~; is addition/subtraction
of inc packets (inc > 0) to/from of a part (b, g, cb) of a token
in M. Subtraction can be replaced by addition with negation of
the subtrahend, e.g. 3 — 1 = 3+ (—1). Addition is commutative.
Therefore, we can derive (**).

From (*) and (**), we can conclude that or has no influence on
the total effect of all binding elements of Y, i.e. M’ is the same
as the one in any order. [

We have, when a step Y is enabled in a marking M, the binding
elements of Y can occur one by one in any order reaching the
same marking M'. Moreover, we can determine a fixed order or*
of the binding elements of Y and control these occur sequentially
in this order. That helps to reduce significantly the state space.
Instead of having |Y'|! paths from M to M’ in the state space we
only have one path in them.

The new model called concurrent model is combination of the
CPN-based model (see Section[3.T) and the concurrent semantic.
In practical, since CPN Tools is used we express the concurrent

model by a behaviour-equivalent model in CPN Tools. The
behaviour-equivalent model is possible be constructed and
analysed by CPN Tools.

4. CONGESTION DETECTION
4.1 Finding Congestion

To easily find congestion, we adjust the sequential (concurrent)
model. We add a transition called "congestion" into each model.
This transition gets list of sensors and channels from places
"sensor’" and "channels’" respectively. Then it processes the
obtained information to get list of congestion sensors and
channels, whose emptiness corresponds to congestion-free of the
WSN. A sensor (channel) is congestion iff its sensor (channel)
buffer is overload, i.e. number of current packets in the buffer
is greater than the buffer size. In this research, we only focus
on specifying a WSN whether occurs congestion. Therefore,
when a congestion is found, overall model will be inactive.
This assumption is implemented easily by configuring the model
such that when transition "congestion" occurs, there are no
enabled binding elements in the new marking i.e. this is a dead
marking. Herein, the congestion detection problem is reduced to
a reachability problem.

Some CPN-ML [21] code is used to check the reachability of
the "congestion" transition on each model. The verification is
performed based on ASK-CTL tool [22], a CTL model checker
built in CPN Tools.

Figure [(a) shows result of the finding congestion of the
concurrent model of the WSN in Figure [T] with broadcast mode
is desired. The obtained result includes a boolean value which
indicate whether occurs congestion (it = false indicates
occurring congestion while it = true indicates is no occurring
congestion), the identifier of violate arc (violate = 91), and the
number of visited states (visitedStates = 91). In this context,
a visited state is construed be a visited arc.

From the raw result of congestion detection, we continue
to use built-in functions of CPN Tools to get more insight
information. Figure] (b) represents the result, which shows that
the congestion occurs in Sensor S4.

violate = 91
visitedStates = 91 s4 _
val it = false : bool val it = () : unit

Cangestion() printCongestionInfo(91)

(@) (b)
Fig. 9: The result of congestion detection of the concurrent model. (a)
The raw result. (b) The more insight result.

Respectively, Figure[I0|(a) shows result of the finding congestion
of the sequential model of the WSN in Figure [I| with broadcast
mode is desired. Figure (b) indicates that the congestion
occurs in Channel s; — s and Channel s; — s3.

Consider two congestion detection results of the sequential
model and the concurrent model. The congestion result in the
sequential model is delusory. The reason is that the state space
of the sequential model has many intermediate markings which
do not express real states of the WSN (see Figure [TT). In while,
the congestion result in the concurrent model is match with real
behaviour of the WSN (see Figure[T2).

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) i£; ISSN : 2249-0868

Volume 11 - No. 7, December 2016 - www.ijais.org

cl_2
cl_ 3
val it = () unit

violate = 607
visitedStates = 10
val it = false : bool

Congestion() printCongestionIinfo(607)

() (b)
Fig. 10: The result of congestion detection of the sequential model. (a)
The raw result. (b) The more insight result.

0,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,0,0

0,3,3,0,0,0,0,0,0,0
@3,0,0,0,3,0,0,0,0 63,3,0,0,0,0,0,(@ @0,3,3,0’0,0,0,(@
]

Fig. 11: Partial and condensed state space of the sequential model. A
marking (node) is stood by a rounded rectangle. The inside content of
a node includes: queue of Sensor si, buffer of Channel s1 — s2, buffer
of Channel s; — s3, buffer of Sensor s2, queue of Sensor sz, buffer
of Sensor s3, queue of Sensor s3, buffer of Channel s2 — s4, buffer of
Channel s3 — s4, buffer of Sensor s4. The node, which is filled by grey
colour, denotes a state occurring congestion.

0,0,0,0,0,0,0,0,0,0 3,0,0,0,0,0,0,0,0,0
3,3,3,0,0,0,0,0,0,0 0,3,3,3,0,3,0,0,0,0

0,0,0,3,0,3,0,3,3,0
Fig. 12: Partial and condensed state space of the concurrent model. A
marking (node) is stood by a rounded rectangle. The inside content of a
node is specified same in Figure[TT] The node, which is filled by grey
colour, denotes a state occurring congestion.

4.2 Generating Counter Example

Counter example is a basic concept in model checking. It
releases some information to conduct error diagnostics. In this
context, we construct the shortest counter example — i.e. to find
one of the shortest occurrence sequences leading from the initial
marking to a marking containing an output arc where a predicate
does not hold. The predicate is defined as no occurring of the
"congestion" transition.

Some built-in functions of CPN Tools working on the state
space is used to generate counter example. Figure [T3] shows
a counter example on the concurrent model (see Section f.1))
when detected congestion. Each line of this result represents
list of information of operations which actually active in each
concurrent updating phase. Information of an operation includes
transition name and real component of the WSN conducting
this operation. For example, gen(sl) denotes that Sensor s;
conducts generating packets operation, and trans(sl — s2)
denotes that Channel s; — so conducts transmitting packets
operation to Sensor s;.

gen(s1l),

gen(si)rec(si),

gen(sl)rec(si)trans(si-s2),trans(s1-s3),
proc(s2),proc(s3),rec(s1),trans(s1-s2),trans(s1-s3),
proc{s2),proc(s3),rec(s2),rec{s3),trans(s1-s2),trans(s1-s3),
proc(s2),proc(s3),rec(s2),rec{s3),trans(s2-s4),trans(s3-54),
congestion

val it = () unit

CounterExample 91

Fig. 13: Counter example on the concurrent model in Section

4.3 Experimental Results

Table [2] shows experimental results of congestion detection on
concurrent models of WSNs. The WSNs are considered in
broadcast mode. Numbers of sensors range from 1 to 100.

From the experimental results, there are some observations of
WSN as follows. Fist, the number of nodes of the state space
equals the number of arcs. It is properly since the concurrent
model is deterministic in broadcast mode. Second, increasing of
packets (increasing of data rates) makes the congestion occurs
early (decreasing of visited states). This is consistent with the
results presented in [3].

At the moments, the number of sensors in a WSN is still
limited at 100, but once combined with appropriate state space
reduction techniques as suggested in Section[3} this number can
be increased significantly. This opens an interesting direction for
our future work.

Table 2. : Experimental results of congestion detection on concurrent
models of WSNs. Columns sensor and packets denote number of
sensors and packets of a WSN respectively; columns nodes and arcs
denote number of nodes and arcs of the state space of the WSN;
columns result denotes congestion detection result (false indicates
occurring congestion while ¢rue indicates is no occurring congestion);
and visitedarcs denotes number of visited arcs in verification.

Network State Space Congestion Detection
sensors | packets nodes arcs | result visited arcs
10 10 793 793 true 793
10 20 892 892 true 892
10 40 1189 1189 true 1189
15 10 1697 1697 true 1697
15 20 2545 2545 true 2545
15 40 4294 4294 false 1008
30 10 3396 3396 true 3396
30 20 3493 3493 true 3493
30 40 5433 5433 true 5433
40 10 6121 6121 true 6121
40 20 8705 8705 true 8705
40 40 15233 15233 false 3809
50 10 9170 9170 true 9170
50 20 14879 14879 false 7267
50 40 26989 26989 false 4845
60 10 22792 22792 false 5113
60 20 42175 42175 false 4048
60 40 80941 80941 false 3622
80 10 33783 33783 false 9577
80 20 57457 57457 false 6651
80 40 | 105869 | 105869 false 5055
100 10 | 119022 | 119022 false 12493
100 20 | 226245 | 226245 false 8676
100 40 | 358799 | 358799 false 6594

International Journal of Applied Information Systems (IJALS) i£; ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 11 - No. 7, December 2016 - www.ijais.org

5. CONCLUSION

This paper has presented a CPN-based model modelling the
behaviours of a WSN. The proposed model represents the
operations of each WSN component: sensors and channels.
The modelled operations includes: generating packets of source
sensors, internal processing of intermediate and sink sensors,
sending/receiving packets of sensors/channels, and transmitting
packets of channels.

Operations of WSN sensors and channels can operate
concurrently. Consequently, some enabled binding elements in
a marking of the sequential model can occur simultaneously
instead only one of these enabled binding elements can occur
non-deterministically. A new model, called concurrent model,
has been proposed to express the concurrency of WSNs. The
concurrent model is the combination of the sequential model and
concurrent semantics.

The congestion detection problem has been reduced to a
reachability problem. The verification is performed by using
ASK-CTL tool working on the generated state space of the
model. Counter example also has been generated to illustrate the
path from the initial state to the congestion point which helps to
expose root cause of the congestion.

The experiment still limits number of sensor at 100 because
of the state space explosion problem. We intend to overcome
this problem by using applying some state space reduction
techniques such as abstraction, unfolding, sweep-line.

In practice, each component of a WSN exists an unreliability
factor which indicates probability for that such component
do not operate its functionalities correctly. Consequently, an
enabled binding element in the CPN model of the WSN may
probabilistically occur or not occur. A probabilistic model is
naturally needed in this context. In the future, we intend to
construct a probabilistic model for WSN, then to define and
detect congestion with probabilities. We also will extend the
proposed approach to time Petri net models, so as modelling
the different timings in WSNs such as a randomised time for
sending packets or a processing time by the sensor. Combination
of probabilistic models and timed models is a promising work.

Acknowledgment

This research is funded by Ho Chi Minh City University of
Technology under grant number T-KHKT-2015-31.

6. REFERENCES

[1] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam,
and Erdal Cayirci. Wireless sensor networks: a survey.
Computer Networks, 38(4):393—-422, 2002.

[2] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal.
Wireless sensor network survey. Computer Networks,
52(12):2292-2330, 2008.

[3] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T.
Campbell. CODA: congestion detection and avoidance in
sensor networks. In Proceedings of the Ist International
Conference on Embedded Networked Sensor Systems
(SenSys 2003), pages 266-279. ACM, 2003.

[4] Khanh Le, Thang Bui, Tho Quan, Laure Petrucci, and
Etienne Andre. Congestion verification on abstracted
wireless sensor networks with the WSN-PN tool. Journal
of Advances in Computer Networks, 4(1), 2016.

[5] Bret Hull, Kyle Jamieson, and Hari Balakrishnan.
Mitigating congestion in wireless sensor networks. In
Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 134-147.
ACM, 2004.

[6] Charalambos Sergiou, Pavlos Antoniou, and Vasos
Vassiliou. A comprehensive survey of congestion
control protocols in wireless sensor networks. [EEE
Communications Surveys & Tutorials, 16(4):1839-1859,
2014.

[7] The Network Simulator NS-2. http://www.isi.edu/
nsnam/ns/|

[8] Andrds Varga and Rudolf Hornig. An overview of the
omnet++ simulation environment. In Proceedings of the
Ist International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems &
Workshops, SimuTools 2008, Marseille, France, March 3-7,
2008, page 60, 2008.

[9] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells.
Coloured petri nets and CPN Tools for modelling and
validation of concurrent systems. ST7TT, 9(3-4):213-254,
2007.

[10] Fei Liu and Ming Yang. Compositional colored
petri net approach to multiscale modeling for systems
biology. International Journal of Modeling, Simulation,
and Scientific Computing, 5(04):1450017, 2014.

[11] Bruno Lacerda and Pedro U Lima. Petri nets as an analysis
tool for data flow in wireless sensor networks. In The
First Portuguese Conference on WSNs, Coimbra, Portugal,
pages 1-6, 2011.

[12] Sajeh Zairi, NIEL Eric, and Belhassen ZOUARI. Global
generic model for formal validation of the wireless
sensor networks properties. IFAC Proceedings Volumes,
44(1):5395-5400, 2011.

[13] Dina M Ibrahim, Elsayed A Sallam, Tarek E Eltobely,
and Mahmoud M Fahmy. Coloured petri net model
for vector-based forwarding routing protocol. In The
International Conference on Computing Technology
and Information Management (ICCTIM), pages
169-176. Society of Digital Information and Wireless
Communication, 2014.

[14] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System architecture
directions for networked sensors. ACM SIGOPS operating
systems review, 34(5):93—-104, 2000.

[15] Edmund M Clarke, Orna Grumberg, and Doron Peled.
Model checking. MIT press, 1999.

[16] D. A. Zaitsev. Switched LAN simulation by colored
Petri nets. Mathematics and Computers in Simulation,
65(3):245-249, 2004.

[17] Congzhe Zhang and Mengchu Zhou. A stochastic Petri
net-approach to modeling and analysis of ad hoc network.
In Information Technology: Research and Education (ITRE
2003), pages 152-156. IEEE, 2003.

[18] Mohammad Abdollahi Azgomi and Ali Khalili.
Performance evaluation of sensor medium access control
protocol using coloured petri nets. Electronic Notes in
Theoretical Computer Science, 242(2):31-42, 2009.

[19] Antdnio Damaso, Nelson Rosa, and Paulo Maciel. Using
coloured petri nets for evaluating the power consumption
of wireless sensor networks. [International Journal of
Distributed Sensor Networks, 2014, 2014.

[20] Kurt Jensen and Lars Michael Kristensen. Coloured Petri
Nets - Modelling and Validation of Concurrent Systems.
Springer, 2009.

[21] Soren Christensen and Torben Bisgaard Haagh.
Design/CPN overview of CPN ML syntax. University of
Aarhus, 3, 1996.

[22] Soren Christensen and Kjeld H Mortensen. Design/CPN
ASK-CTL manual. University of Aarhus, 1996.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Introduction
	Related Work
	Outline

	Preliminaries
	Modelling Wireless Sensor Networks using Coloured Petri Nets
	CPN Model for WSN
	CPN Model with Concurrent Semantic

	Congestion Detection
	Finding Congestion
	Generating Counter Example
	Experimental Results

	Conclusion
	References

