
International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

Improvement in Logisim to Digital Systems Simulation
in Higher Levels of Abstraction and Synthesis

Tiago da Silva Almeida
Universidade Federal do Tocantins,

Computer Science Department
Palmas / TO, Brazil

Pedro Henrique de Castro Lima
Universidade Federal do Tocantins,

Computer Science Department
Palmas / TO, Brazil

Rafael Lima de Carvalho
Universidade Federal do Tocantins,

Computer Science Department
Palmas / TO, Brazil

Warley Gramacho da Silva
Universidade Federal do Tocantins,

Computer Science Department
Palmas / TO, Brazil

ABSTRACT
The development of digital systems requires an extreme atten-
tion by the circuit designer due to the different abstraction do-
mains that the same system could be. This fact brings many is-
sues and challenges in circuit design, due to the wide range of
levels and representations. There are many details the designer
have to concern, such as area, performance, architecture and en-
ergy consumption. To aid in different representations, this paper
brings up a framework that is able to translate schematics of dig-
ital systems built using the CAD tool Logisim, into implementa-
tions at the hardware description level, to help in issues and to
teach future designers in the academy. It was built a checker of
a model after and before of the synthesis to ensure the model va-
lidity and tests. The HDL chosen was SystemC because it is easy
to compile and check in any open source C++ compiler. The set
of tests applied to 41 different circuits models have shown that
the proposed tool works effectively ensuring the desired output.

General Terms:
Hardware, Electronic design automation, Hardware description languages
and compilation

Keywords
Digital Systems, Synthesis, Computer Aided Design, Logisim

1. INTRODUCTION
Microelectronics is a key field to construct more efficient and
effective circuits. In a typical design, there are lots of levels of
abstraction in different issues, which increase the complexity of
designs. To resolve these issues, both industry and academy usu-
ally employ a large gamma of computational tools, referred as
Computer Aided Design (CAD) tools.
Nowadays, CADs are almost indispensable and with them, it is
possible to optimize the design in many levels, reuse compo-
nents, share them and so on. In academy is even more important
to make the concept abstract for future engineers and designers
of new technologies.
A major problem using CAD is related to high costs. The man-
ufacturers create CADs complex and very useful in different de-
signs, unfortunately at great costs. This fact harms the dissemi-
nation of technicologies and methods to perform better architec-
tures of circuits, especially in developing countries and universi-
ties with a restricted budget.
To help to solve this issue, in this paper it is proposed an im-
provement to a simple digital simulator in order to accommodate
new features to the translation of a schematic digital circuit to a
hardware description language (HDL). It was used the Logisim

simulator and the SystemC as HDL. Logisim [7] was chosen be-
cause it is open source, free and multiplatform. It is frequently
used in the academy and has a good documentation. Moreover,
SystemC [3] was chosen because it has an open source license
and it can be compiled by any C++ compiler. Moreover, it allows
integrating with other CADs.
It can be cited the work in [2] for which the goal is to improve the
Logisim. This work was named Logisim-Evolution, it allows to
synthesize the schematic in FPGA using VHDL or Verilog lan-
guage. However, the focus of the proposed work is in simulation
instead of implementation of circuits.
The process of design or codesign is fundamental in microelec-
tronic design and it has been intensively researched over many
years, e.g. in [9] it is proposed a translator between SystemC and
VHDL, with focus on SoC (System on Chip). SoCs represent
an important step for microelectronics, it allows to embed many
components in the same package, creating a mixture of specific
and general purpose applications.
In [13] it has been built a model named speculative code motions,
for which the blocks of code are modeled as a directed graph.
The authors claimed that it is useful to alleviate the effects of
programming styles. Despite the goal in [13] be different from
this work’s, it is an important evaluation of translation decisions
in a design which reflects in better or worse final circuit designs.
In addition, both [12] and [6] have worked with SystemC through
TLM (Transaction Level Modeling) [10] in order to simulate sys-
tems. Both of them takes the SystemC model and transform it
into a formal verification model, which allows checking upon the
system attributes. Moreover, in [12] the authors used the UML
language as well as in [6] the chose technology was Petri nets.
In cases, the model was represented as ESL (Electronic System
Level), because it is considered an ideal level of codesign [11]. In
summary, there are other works involving translation/synthesis,
like [14], [17], and [8], beyond others which only evaluate the
SystemC performance on simulations, like [4], only to cite some.
The present work, however, represents an effort to reach another
step towards the microelectronic design with respect to the inte-
gration of open source and public license tools in order to help
both designs of microelectronic projects as well as disseminate
the knowledge in this area.
The paper is further divided into the following sections: Section
2, which it is explained the proposed methodology as well as the
employed methods to translate models; in Section 3 is presented
the performed experiments and their respective results; lastly, the
Section 4 summarizes the conclusions and points out some future
appointments on this research field.

1

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

2. METHODOLOGY
The framework aims at a translation of a source code from a
base language. In this case, the source code is composed of cir-
cuit diagrams drawn from a CAD tool for a hardware description
language. This translation of the source program, known as the
compilation, can be associated with a change in the level of ab-
straction, called synthesis. Thus, the design is described in com-
pilation phases and the step of obtaining the input uses the source
program of the tool Logisim. In order to illustrate the general
idea, Fig.1 shows a step-by-step of the framework process.
The models generated by Logisim are diagrams drawn in a con-
struction area or drawing area. The components are inserted
in this area and consequently mapped on a 2D (X, Y) coordi-
nate scale. Although the modeling of a circuit is elaborated in
forms of graphical schemes, there is a way to obtain informa-
tion about each component such as the number of inputs and
outputs, bit range and type of component (multiplexer, demulti-
plexer or adder), without the need to process the graphics maps
of the drawing area.
The Logisim source code has a class called “Analyze”. This class
was made specifically for the combinational analysis step of the
constructed circuits. When invoking the combinational analysis
function of a design, depending on the types of circuits used, a
boolean expression is generated or, if the circuit does not use
logic gates directly, a truth table is generated and a boolean ex-
pression is set up for each possible output.
The next step in generating the initial code is the storage of the
data obtained through Combinational Analysis, in models that
contain information about the inputs, circuit name, outputs, and
expressions that govern this circuit. The “ com.uft.logisim.entity
” package is the part of the synthesis framework.
For the representation of the circuit as a whole, there is a class
called “CircuitModel”, which stores the real name of the circuit
created together with the list of inputs and outputs from its form
of the Input and Output structures. The CircuitModel structure
and the classes contained in it were created so that they can be
easily adapted to the intermediate code created for sharing the
information collected.
The last element within the model representation is the class
“CircuitBasic”. Such a model has been defined for the aid of
data interchange between the structures of the Logisim and the
CircuitModel of the synthetic framework. CircuitBasic receives
the Logisim project information in use, the desired circuit and a
key-value structure of the input and output components, where
the key is represented by the component, in this case only pins,
and the value is its respective name.
The simple transformation of a circuit diagram into a hard-
ware description language solves the problem of not detailing
the other circuit domains (structural, physical, and behavioral).
However, the problem of the time required for the development
of the electronic devices and the high number of described com-
ponents are not solved by the translation itself. It is necessary to
perform a refinement of the elements used through optimization
heuristics.
In order to allow optimizations through external tools, it is inter-
esting to use an intermediate code that will be sent to a minimizer
and returned to the compiler to perform the remaining steps of
the circuit translation.
Such an intermediate code is based on JSON (JavaScript Object
Notation) for structuring the data. The source code of the Lo-
gisim toolkit was developed in Java which makes it highly com-
patible with JSON.
A template for the information exchange code was developed
specifically for this project following the structure of the class
CircuitModel. The information is based on results or outputs of
the modeling of microelectronic devices. Therefore, for each ob-
tained solution, an object containing the entries that generated
such result, the expressions referring to that output and the label

thereof are passed to the minimizer as in the example of Fig. 2
which describes a simple multiplexer 4 x 1, e.g.. The code com-
ing from the minimization step follows the same format as the
initially submitted template.
The generation of the intermediate code is performed within
the class CircuiParser. Once truth table and Boolean expression
have been loaded into the “AnalyzerModel ” object of the Cir-
cuitParser class, there is the padding of the CircuitModel object,
input variables in a list of inputs and output variables in a list
of outputs. In each output, element is included the original ex-
pression and the minimized expression applied to the product of
sums rule as standardization of the format of the expressions.
Once the CircuitModel object has its variables loaded, then the
intermediate code generation occurs in the JSON format. This
generation is triggered by the generateJSON method of class
CircuitParser. The file is generated through an API (Application
Programming Interface) helper called Gson [1] which performs
objects to the JSON format.
Reading an external JSON file is handled by the “Middle-
CodeReader” class of the “com.uft.logisim. extract” package
through a static method for reading the contents of the file and
converting it for the CircuitModel model through the Gson API.
With the file loaded from the framework, the next step is to con-
vert the obtained data (inputs and outputs) into a code template
that follows a structure similar to the code end, which is the code
in SystemC.
The initial code, which is also an intermediate code for the circuit
optimization step, is not in the desired code pattern in SystemC
as can be seen in the comparison between the Fig. 2 in JSON and
4 in SystemC. Therefore, before the initialization of the lexical
analysis phase, it is necessary to match the obtained information
organized into a modular template of a circuit (Fig. 3).
Analyzing the final code, represented in Listing 4, it is no-
ticed that there exists a modular structure called “SC MODULE”
which is the module that involves a circuit and its components.
Such a module is described by a name, statement of input and
output variables characterized by the logical type “sc logic” a
constructor denoted by “SC CTOR” and a method that processes
entries according to the behavior described by the Boolean ex-
pression of this circuit.
The adaptation of the JSON code for the template is
performed by the “CompilerCodeParser” class of the
“com.uft.logisim.extract” package through the “createCompil-
erMiddleCode” method which standardizes the input structure
in something closer to the final code to performing the lexical
analysis.
The definition of the tokens allowed in this language is
done in the abstract class “BooleanAlgebraPatterns” of the
“com.uft.logisim.pattern” package. The list of tokens and their
respective regular expressions is arranged in the Table 1
The lexical analyzer of this work performs two functions:

—verify the existence of the input value in the language dictio-
nary;

—assist in the generation of the final code by replacing the input
with tokens which are known by SystemC as can be seen in
the Table 1.

Through the analysis of the number of allowed tokens it is no-
ticeable that the language for specifying a digital component is
small, however the framework has been implemented in order to
allow future expansions for a greater detailing and generation of
codes besides the modular structure here presented.
In order to allow greater freedom in language construction work,
the lexical analyzer has been completely built specifically for the
modular SystemC code of a circuit. Its structure was divided into
phases that are: phase of conversion of expression to the fixed
form, phase of generation of non-deterministic finite automata
with empty movements through the Thompson algorithm [5, 16],

2

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

Logisim
Diagram

Middle Code

boolean
extraction

send and receive
JSON File

Circuit
Optimizer

JSON preparation

Lexical Analysis

SystemC generated
and sent to Syntactic

Analysis

Final code validation
and exportation of file

SystemC code

Synthesis Framework

Syntactic Analysis

Fig. 1. Descriptive diagram of all steps in the proposed framework for Logisim. The black rectangle represents our framework improvement for Logisim.
Inside is described the compilation phases which does the check upon at the generated code in SystemC.

Fig. 2. Intermediate code with representation in JSON for later refinement of the model through optimization processes.

3

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

Fig. 3. Template of multiplexer example used in lexical analysis for framework of improvement for logisim. From this template the real SystemC code is
generated.

Fig. 4. ystemC code generated for multiplexer example. Its the final code generated from schematic circuit in Logisim.

phase of conversion of the generated automaton to a finite deter-
ministic automaton and phase analysis of the input by all the
automata of the analyzer.
The class that implements this transformation is “RegularEx-
pressionConverter” which makes use of two stacks, a final stack
and a stack of operators. The stack is described by the “Stack”
class defined inside the “com.uft.logisim.interpret” package. The
elements that make up Stack are objects of the Type “Node ”.
Each Node stores a symbol only. In addition, there is an abstract
class for the precedence evaluation called “RegularExpressions”
which classifies the operator into integer values according to its
priority degree.
The lexical analysis algorithm uses the concept of a stack au-
tomaton, yet the algorithm implemented by the synthesis frame-
work does not merge all AFDs into a single one like many imple-
mented algorithms. Each automaton, which represents a token, is
separated into a block from a list.
The class performing the lexical analysis is la-
beled “LexicalAnalyzer” and is included in the “
com.uft.logisim.automata.lexical.controller” package. The
lexical analyzer makes use of a list of tokens and a list of
automata that are in the same quantity, because an automaton
represents a token.
The syntactic analysis of the framework was done using the
ANTLR version 4 tool that makes use of the Adaptive technol-

ogy LL (*) or ALL (*). Such a tool has the potential to gen-
erate syntactic and lexical parsers given a grammar without in-
direct recursion to the left. The ALL (*) technology performs
a runtime grammar analysis by finding a recognition sequence
through navigation within the grammar [15].
In this last phase of this compiler, the objective is to verify if
the construction coming from the lexical analyzer is in agree-
ment with the definitions of the Language SystemC used in this
framework. The ANTLR V4 execution environment automati-
cally generates classes for a lexical and syntactical re-analysis
arranged in the “com.uft.logisim.syntax.parser” package.
The processing of the input and use of the generated parsers is
done by the static method “syntaxParse” of the class “Grammar-
Runner”. Such a method creates a lexical analyzer from the input
and sends the result of the tokens to the parser doing the evalua-
tion. If errors are found, these errors code are returned.
The grammar of the ANTLR tool understands that tiny identifiers
are production rules whereas uppercase identifiers are tokens.
The use of a syntactic analyzer through ANTLR V4 provides a
quick and easy evaluation of the lexical result, preventing basic
errors in the construction of a circuit, such as undefined inputs
or outputs. Other errors such as not defining input or output pin
names and using special characters in variable labels are solved
internally by the Logisim itself and during the template genera-
tion step. If the lexical analysis of framework does not associate

4

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

Table 1. Relation between tokens used in
regular expression by lexical analysis in

framework proposed.
Token Regular Expression

IDENTIFIER (a+...+z)(a+...+z + 0+...+9)*
[(
])
{ {
} }
; ;

<< <<

, ,
= =
∼ (not)+(NOT)
— (or)+(OR)
& (and)+(AND)
ˆ (xor)+(XOR)

.read() READ
sc in Inputs:
sc out Outputs:

<sc logic> LOGIC
sensitive SENSITIVE

SC METHOD MODULE
type VOID

SC MODULE METHOD
SC CTOR CONSTRUCTOR

an input to a language token, the token ERROR is thrown for
the syntax check step, and lexical re-analysis does not recognize
such a word, preventing syntactic analysis by guaranteeing reli-
ability of results.

3. RESULTS AND DISCUSSION
All of the tests performed followed the steps described above
and were run on a computer with i7 1.84 GHz processor third
generation, 16 Gb of RAM running on a 64-bit Linux Ubuntu
16.04 distribution. The version of SystemC used was the 2.3.1
which is the most recent stable version when this work was done.
In total, 41 different circuits were modeled and each one was
generated: a JSON file, a Circuit SystemC file, a file of test and
the main file or Main file, the last three in the cpp.
The Table 2 contains the results of all tested circuits. The type of
circuit tested and their respective quantities of inputs and outputs
are arranged in this table. The Logisim column is a reference to
the production of the schematic diagram indicating whether it
was constructed and performs the desired function, for example,
if a 1-bit adder really does the sum. The JSON and SystemC
columns describe whether the generation of the two files was
successful, while the Simulation column is the result of the Sys-
temC code tests produced after the simulation via g++.
All the circuits tested showed the expected behavior, there were
no errors of generation of the codes in any stage and the compiler
was successful in the recognition of the data inputs and translated
them in an equivalent way. Differences in compile time arose
when boolean expressions with more than 100 lines were tested.

4. CONCLUSION
In this work, a new solution for the synthesis of combinational
circuits from the CAD Logisim tool was presented in a descrip-
tion language of hardware which in this case was SystemC. The
production process of this software, characterized as a frame-
work, has been described in detail.
A 4x1 (four by one) Multiplexer circuit is modeled to demon-
strate how the tests were performed and under what measure-
ments the results were qualified. There were a series of tests, to-

taling 41 circuits tested in total and all were successful, demon-
strating the functionality and reliability of the tool.
Although the framework is able to perform its functions effec-
tively, it is not efficient. Template generation is a slow pro-
cess, especially in cases of Boolean expressions considered long
(more than 100 lines of expression). The next step would be to
optimize the compiler by defining a new way of mapping the
template or passing the responsibility to the lexical analyzer in
order to identify variables in processing and tokenize them as
data read.
Others points are important in this synthesis process, for sure, is
necessary implement formal verification methods in more com-
plex models to achieve codesign in TLM representation. How-
ever, at this point, the translation/synthesis model work as well
in our goal.
Our tests were performed only in combinational circuits because
there is a limitation in Logisim. Although there are sequential
elements in Logisim, such as flip-flops and registers, it can not
able to simulate properly sequential circuits. Backpropagation
signals, like an internal NAND gate internally in a latch or flip-
flop, are not allowed. This fact limits our framework to sequential
circuits properly. However, it can expand the grammar to flip-
flops and other components.
The propose this paper was present the framework, but it is nec-
essary to measure the implications of it in a higher education
with this contribution. Another task is to improve Logisim itself
to simulate more complex circuits and architecture.

5. REFERENCES
[1] Google-gson, 2012.
[2] Logisim evolution git repository, 2014.
[3] Logisim: a graphical tool for designing and simulation

logic circuit, March 2017.
[4] S. S. Abrar, M. Jenihhin, J. Raik, S. Kiran A., and C. Babu.

Performance analysis of cosimulating processor core in
vhdl and systemc. In 2013 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI), pages 563–568, Aug 2013.

[5] Ravi Sethi Jeffrey D. Ullman Alfred V. Aho, Monica
S. Lam. Compilers: principles, techniques, & tools. Pear-
son/Addison Wesley, 2nd ed edition, 2007.

[6] I. E. Bennour. Systemc tlm2-protocol consistency checker
using petri net. In 2016 11th International Design Test Sym-
posium (IDT), pages 193–198, Dec 2016.

[7] Carl Burch. Logisim: a graphical tool for designing and
simulation logic circuit, March 2014.

[8] D. C. Caf, F. V. dos Santos, C. Hardebolle, C. Jacquet,
and F. Boulanger. Multi-paradigm semantics for simulat-
ing sysml models using systemc-ams. In Proceedings of
the 2013 Forum on specification and Design Languages
(FDL), pages 1–8, Sept 2013.

[9] C. Cote and Z. Zilic. Automated systemc to vhdl translation
in hardware/software codesign. In 9th International Con-
ference on Electronics, Circuits and Systems, volume 2,
pages 717–720 vol.2, 2002.

[10] D. D. Gajski. System-level synthesis: From specification to
transaction level models. In 2009 International Conference
on Communications, Circuits and Systems, pages 1134–
1138, July 2009.

[11] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov,
D. D. Gajski, and J. Teich. Electronic system-level synthe-
sis methodologies. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(10):1517–
1530, Oct 2009.

[12] M. Goli, J. Stoppe, and R. Drechsler. Automatic equiva-
lence checking for systemc-tlm 2.0 models against their

5

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

formal specifications. In Design, Automation Test in Eu-
rope Conference Exhibition (DATE), 2017, pages 630–633,
March 2017.

[13] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Dynamically
increasing the scope of code motions during the high-level
synthesis of digital circuits. IEE Proceedings - Computers
and Digital Techniques, 150(5):330–7–, Sept 2003.

[14] S. Ouadjaout and D. Houzet. Rapid integration of reusable
functional ips with systemc vci adapters. In Proceedings.
The 16th International Conference on Microelectronics,
2004. ICM 2004., pages 236–239, Dec 2004.

[15] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic
Bookshelf, 2nd edition, 2013.

[16] Ken Thompson. Programming techniques: Regular expres-
sion search algorithm. Commun. ACM, 11(6):419–422,
June 1968.

[17] Chen Xi, Lu Jian Hua, Zhou ZuCheng, and Shang YaoHui.
Modeling systemc design in uml and automatic code gen-
eration. In Proceedings of the ASP-DAC 2005. Asia and
South Pacific Design Automation Conference, 2005., vol-
ume 2, pages 932–935 Vol. 2, Jan 2005.

6

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 13, May 2018 - www.ijais.org

Table 2. Results of all study cases to test the proposed framework. The check
sign means the translation or simulation occurred like expected.

Circuit Input Output Logisim JSON SystemC Simulation
Full adder 1 bit 3 2
Full adder 2 bits 5 3
Full adder 3 bits 7 4
Full adder 4 bits 9 5
Full adder 5 bits 11 6
Subtractor 1 bit 3 2
Subtractor 2 bits 5 3
Subtractor 3 bits 7 4
Subtractor 4 bits 9 5
Subtractor 5 bits 11 6
Half adder 1 bit 2 2
Half adder 2 bits 4 3
Half adder 3 bits 6 3
Half adder 4 bits 8 4
Half adder 5 bits 10 4
Comparator 1 bit 2 3
Comparator 2 bits 4 3
Comparator 3 bits 6 3
Comparator 4bits 8 3
Comparator 5 bits 10 3
Demux1x2 1 bit 2 2
Demux1x2 2 bits 3 4
Demux1x2 3 bits 4 6
Demux1x2 4 bits 5 8
Demux1x2 5 bits 6 10
Divider 2 bits 6 4
Divider 3 bits 9 6
Divider 4 bits 12 8
Even parity 2 1
Majority 3 1
Multiplier 2 bits 6 4
Multiplier 3 bits 9 6
Multiplier 4 bits 12 8
Mux2x1 1 bit 3 1
Mux2x1 2 bits 5 2
Mux2x1 3 bits 7 3
Mux2x1 4 bits 9 4
Mux2x1 5 bits 11 5
Odd parity 3 1
Mux4x1 6 1
Demux1x4 3 4

7

	Introduction
	Methodology
	Results and discussion
	Conclusion
	References

