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ABSTRACT 

This paper describes the design, training, and evaluation of a 

deep neural network for removing noise from medical 

fluoroscopy videos. The method described in this work, unlike 

the current standard techniques for video denoising, is able to 

deliver a result quickly enough to be used in real-time 

scenarios. Furthermore, this method is able to produce results 

of a similar quality to the existing industry-standard denoising 

techniques. 
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1. INTRODUCTION 
All forms of medical imaging, including computed 

tomography (CT), magnetic resonance imaging (MRI), plain 

film x-ray imaging, ultrasound, and optical imaging (for 

example, endoscopic video), are distorted by noise [1–4]. 

At the most basic level, noise can be defined as any visual 

artifact that obscures the features of interest within an image. 

Such artifacts can appear in many forms, such as graininess, 

glare, and notching. 

1.1 The Impact of Noise in Angiography 
Many diagnostic and therapeutic medical interventions rely on 

live video. Video quality in such interventions is highly 

important, as the live video is often the primary information 

source available to the physician during the procedure. 

One medical procedure that uses live video is angiography. 

Angiography is a method of imaging blood vessels. It 

involves the insertion of a thin metal wire known as a catheter 

into an artery of the body [5, 6]. A physician guides the 

catheter through the patient’s blood vessels to a particular 

target position. Once at the target position, the catheter is used 

to inject an iodine-rich material into the target vessel. This 

material shows up well on x-rays, allowing the blood vessels 

to be imaged (Fig. 1). 

The catheter can also be used perform a variety of procedures 

at the target site, including thrombectomy (the removal of a 

blood clot from a blocked vessel), angioplasty (the use of a 

small balloon to reopen a blocked artery), or stent placement 

[6]. 

When guiding the catheter to the appropriate location, 

cardiologists rely on real-time x-ray video imaging (known as 

fluoroscopy) to determine the location of the catheter relative 

to the patient’s vascular anatomy (Fig. 1). Even with the high 

quality of modern x-ray instrumentation, interpreting 

fluoroscopic images during catheter-based procedures can be 

difficult due to the small size and subtle nature of the vessels 

on x-ray imaging. Thus, image quality can directly affect the 

success of such catheter-based procedures. 

One of the most common catheter-based procedures is 

percutaneous coronary intervention, which is the treatment of 

choice for a patient with an active heart attack [6, 7]. In this 

procedure, a cardiologist inserts a catheter into the femoral 

artery in the region of the groin and pushes the catheter 

upward through the arteries until it reaches the level of the 

heart. Once there, the catheter is inserted into the coronary 

arteries—the arteries that directly supply the heart and also 

the ones that are blocked during a heart attack. The 

cardiologist uses the catheter to open the blocked blood 

vessels. 

Percutaneous coronary intervention is a technically 

challenging procedure. Complications resulting from a 

percutaneous coronary intervention (such as a puncture 

wound inflicted by the catheter to one of the coronary arteries) 

require emergency corrective open-heart surgery [6]. In 

addition, estimates indicate that mortality due to percutaneous 

coronary intervention may be up to two percent at low-

volume centers. 

 
Fig 1: An angiogram of arteries surrounding the heart by 

Grillo et al. [8], reproduced under the terms of the 

Creative Commons Attribution 3.0 Unported license 

1.2 Denoising Algorithms 
Noise is a general problem in imaging that affects not only 
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medicine, but also a wide variety of other fields. There is 

accordingly a great deal of accumulated research on the 

subject of computer algorithms for image denoising. 

Most approaches to denoising rely on the same fundamental 

model. Given a true noiseless image  , the observer sees a 

noisy version of that image   . The noisy image    can be 

defined in terms of the true image   : 

        

In this equation,   represents an unknown noise function. The 

goal of a denoising algorithm, then, is to somehow 

approximate the noise function   so that the original, 

noiseless image   can be reconstructed by calculating        . 

As the number of unknowns is greater than the number of 

knowns, the problem is underconstrained and any attempts to 

solve it must therefore rely on assumptions either of the 

characteristics of the noiseless image   or the noise function  . 

The current industry-standard denoising algorithm is the 

block-matching and 3D Filtering (BM3D) algorithm 

developed by Kostadin et al [9, 10]. BM3D makes 

assumptions about the structure of the noiseless image  : 
namely that   consists of repeated motifs that are apparent at 

many parts of the image. The BM3D algorithm aggregates 

instances of repeated motifs using a block matching technique 

[11]. An archetypical motif can be computed from the 

aggregated instances of the motif, and the noise function   

can be modeled as a deviation from the motif’s archetype 

[11]. 

While BM3D has become the benchmark by which other 

image denoising algorithms are evaluated, it does have its 

limitations. Chief among these is speed. BM3D has      
(linear) computational complexity with respect to the number 

of pixels in the input image but with a high constant factor. 

1.3 Deep Learning 
In recent years, deep learning has increasingly been applied to 

medical image analysis problems. Deep learning revolves 

around the use of artificial neural networks, which are a class 

of computer algorithms that are loosely modeled on the 

structure and behavior of biological nervous systems [12]. 

Just as a biological nervous system is composed of layers of 

neurons, a neural network is also composed of neuronal 

layers. Each neuron is connected to neurons within the 

preceding and successive layers, but not to other neurons 

within the same layer. The connections are each associated 

with a numerical weight. As signals propagate down the 

network, neurons take a weighted sum of the inputs from their 

upstream connections and apply a mathematical function 

known as the activation function to determine whether they 

pass on a signal to downstream neurons and what the 

magnitude of that signal (if any) should be [12]. 

Once an annotated dataset is available, a neural network can 

be trained on that dataset. Training consists of increasing the 

numerical weights of some inter-neuronal connections and 

decreasing the numerical weights of other connections until 

the neural network generates predictions that match the 

human predictions from the curated training dataset. 

Although neural networks have existed for decades, effective 

algorithms for training them were not available until recently. 

In particular, neural networks with many layers of neurons—

so-called “deep neural networks”—performed poorly when 

trained with standard techniques.  

In 2006, Hinton et al. [13, 14] described a novel method by 

which deep neural networks could be trained effectively, and 

subsequent work over the next several years [15, 16] further 

increased the viability of training deep neural networks for 

practical applications. This breakthrough led to the 

development of many specialized sub-types of deep neural 

networks. Among these specialized subtypes is the 

convolutional neural network, which is particularly well 

suited to image analysis problems. Convolutional neural 

networks have been successfully applied to such diverse tasks 

as the automatic detection of mitotic cells in histology images 

[17], of pneumonia in chest X-rays [18], and of diabetic 

retinopathy in fundoscopic images [19]. 

There are two key aspects to the function of convolutional 

neural networks: First, a neuron in the  -th layer    is not 

connected to every neuron in the subsequent layer     , as it 

would be in most network architectures. Instead, it is only 

connected to neurons that encode the information of pixels 

that are spatially close within the original input image [20]. 

This gives convolutional networks a tree-like structure (Fig. 

2) loosely mirrors the configuration of neurons in the human 

visual system. 

The second key aspect of convolutional neural networks is 

that they are based on a bank of image processing filters [20]. 

In a convolutional neural network, the trainable parameters 

for a particular layer learned numerical entries within a matrix 

that is used for a filtering operation. By combining many 

filtering operations, a convolutional neural network can learn 

from scratch to perform many standard techniques in 

computerized image analysis, such as blurring, edge detection, 

and morphologic transformations, as well as more 

complicated image operations. 

 

Fig 2: A Convolutional Neural Network 

Another form of neural network that has become popular in 

recent years is the autoencoder. Autoencoders are structured 

such that the number of neurons     in the  -th layer of a 

network with   layers satisfies the following relationships: 

      

             
 

 
  

             
 

 
 

This structure gives autoencoders a characteristic hourglass 

appearance (Fig. 3), where the network has a decreasing 

number of neurons per layer over the first half of the network 

and an increasing number of neurons per layer over the 

second half [21]. 
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Autoencoders are trained to maximize the similarity of the 

outputs to the inputs [21]. Given that intervening layers 

between the input and output layers have fewer neurons than 

the input and output layers, this means that the network 

cannot resort to using a simple identity transformation where 

the inputs are passed through the network unchanged. Instead, 

the network must learn a mechanism for converting the inputs 

to a lower dimensional state and then re-expanding these 

inputs to the output layer with a minimal loss of information 

[21]. In other words, autoencoders essentially learn a lossy 

data compression algorithm for a specific data set with the 

goal of minimizing the amount of information lost. 

 

Fig 3: An autoencoding neural network 

An autoencoding neural network architecture can also be 

useful for learning to normalize or denoise data [22]. This 

capability stems from the fact that a robust low-dimensional 

representation of the input to the autoencoder, such as the one 

encoded in the middle layers of the network, captures stable 

structures derived from many values or data points [22]. Thus, 

corruption of a subset of these data points will not affect the 

learned encoding as long as the degree of corruption remains 

below a certain threshold. 

 

Fig 3: A combined convolutional/autoencoding neural 

network architecture 

This work presents a combination of a convolutional neural 

network architecture with an autoencoding architecture to 

create a hybrid architecture which is specialized for denoising 

of image data. 

2. METHODS 

2.1 Image Acquisition and Classification 
Coronary angiogram videos were acquired from a stock 

footage vendor. The videos were grayscale with pixel 

intensities encoded as fractional values between 0.0 and 1.0 

has had resolutions ranging from 320 × 240 pixels to 512 × 

512 pixels. A total of 20 videos from 20 different procedures 

were acquired. This data was subjectively divided into “clear” 

and “noisy” samples, where “clear” videos were those with 

relatively few noise artifacts and “noisy” videos were those 

with many. The data was then divided into training and testing 

sets. Four clear videos were included in the testing dataset. 

The remaining videos were used as the training dataset. 

2.2 Network architecture 
A convolutional autoencoding neural network was 

implemented using the Python programming language and the 

Keras and TensorFlow toolkits for neural network 

computations. 

The network had thirteen layers: 

1. Convolutional layer: 3 × 3 kernel with 70 filters 

2. Max pooling layer: stride of two 

3. Convolutional layer: 3 × 3 kernel with 60 filters 

4. Max pooling later: stride of two 

5. Convolutional layer: 3 × 3 kernel with 50 filters 

6. Max pooling later: stride of two 

7. Convolutional layer: 3 × 3 kernel with 50 filters 

8. Upscaling layer: scale factor of two 

9. Convolutional layer: 3 × 3 kernel with 60 filters 

10. Upscaling layer: scale factor of two 

11. Convolutional layer: 3 × 3 kernel with 70 filters 

12. Upscaling layer: scale factor of two 

13. Convolutional layer: 3 × 3 kernel with one filter 

All layers used a rectified linear unit (ReLU) activation 

function except for the last, which used a sigmoid activation. 

2.3 Training 
190 still frames were selected out of the set of fluoroscopy 

videos. These frames came from the “clear” set of videos–

they were specifically chosen because they contained little 

noise. 1,150 patches of 60 × 60 pixels were extracted from the 

selected still frames at random. These patches were then 

corrupted with artificial Gaussian noise with a mean of zero 

and a sigma of 0.05. The corrupted patches were paired with 

the original, uncorrupted versions of the patches to create the 

training data set. 

The neural network was trained by stochastic gradient decent 

for 1500 iterations. A mean squared error loss function was 

used. The learning rate was initially set to 10-4 and was 

adjusted as needed during the training process by Adaptive 

Moment Estimation (commonly known as ADAM 

optimization). 

3. RESULTS 

3.1 Gaussian noise 
A synthetic evaluation dataset was created in a similar manner 

to the training dataset. 150 still frames were selected from the 

set of fluoroscopy videos. These frames came from the “clear” 

set of videos–they were specifically chosen because they 

contained little noise.  
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Fig 4: Comparison of denoising algorithms. Clockwise from top left: Original, uncorrupted image; image corrupted with 

Gaussian noise; denoised image produced by the neural network; denoised image produced by the BM3D algorithm 

675 patches of 60 × 60 pixels were extracted from the selected 

video frames at random. These patches were then corrupted 

with artificial Gaussian noise with a mean of zero and a sigma 

of 0.05. 

The corrupted patches were fed to the neural network (NN) 

and the BM3D algorithm to attempt to reconstruct the 

original, unconstructed patches. The difference between the 

denoised patch and the original, uncorrupted patch was 

quantified with mean squared error (MSE) and the structured 

similarity index (SSIM). Means and standard deviations are 

reported in Table 1. 

Table 1. Efficacy of Denoising on Gaussian Noise 

Method MSE SSIM 

NN 0.014 ± 0.021 0.99 ± 0.0024 

BM3D 1.4×10-4 ± 1.8×10-5 0.97 ± 0.0053 
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BM3D performs better according to MSE (for which lower 

values indicate better performance), while the neural network 

performs better according to SSIM (for which larger values 

are better). In both cases, the performance difference between 

the two algorithms is marginal. 

Visual inspection of the denoised frames shows that both the 

BM3D algorithm and the neural network produce images that 

are highly similar to the original, uncorrupted image (Fig. 4). 

BM3D tends to produce slightly smoother images with fewer 

artifacts while the neural network tends to do a better job of 

preserving very small blood vessels (which tend to be 

completely eliminated from the denoised images produced by 

BM3D). 

3.2 Speckle noise 
A second evaluation dataset was created. As in the Gaussian 

noise experiment (Section 3.1), 150 still frames were selected 

from the set of fluoroscopy videos. These frames came from 

the “clear” set of videos–they were specifically chosen 

because they contained little noise. 

The chosen images were corrupted with linear multiplicative 

noise with a mean of zero and a variance of    . In other 

words, each pixel   in the corrupted image was a function of 

the corresponding pixel   in the uncorrupted image as 

expressed in the following equation: 

         

In this equation,   represents a uniformly distributed random 

variable with a mean of zero and a variance of    . This form 

of noise is often referred to as speckle noise. 

The corrupted patches were fed to the neural network (NN) 

and the BM3D algorithm to attempt to reconstruct the 

original, unconstructed patches. The difference between the 

denoised patch and the original, uncorrupted patch was 

quantified with mean squared error (MSE) and the structured 

similarity index (SSIM). Means and standard deviations are 

reported in Table 2. 

Table 2. Efficacy of Denoising on Speckle Noise 

Method MSE SSIM 

NN 0.022 ± 0.014 0.99 ± 0.0016 

BM3D 9.1×10-4 ± 4.0×10-4 0.88 ± 0.062 

It is evident from these results that the BM3D algorithm is 

less effective at denoising fluoroscopic images when they are 

corrupted with speckle noise rather than Gaussian noise. The 

neural network, however, has no drop-off in efficacy when 

applied to this new form of noise. 

3.3 Salt and pepper noise 
A third evaluation dataset was created in a similar manner to 

that of the Gaussian noise dataset (Section 3.1) and the 

speckle noise dataset (Section 3.2). The images with this 

dataset were corrupted with a “salt and pepper” strategy: 

pixels within the image were randomly recolored white or 

black, each with a probability of 0.05. 

The corrupted patches were fed to the neural network (NN) 

and the BM3D algorithm to attempt to reconstruct the 

original, unconstructed patches. The difference between the 

denoised patch and the original, uncorrupted patch was 

quantified with mean squared error (MSE) and the structured 

similarity index (SSIM). Means and standard deviations are 

reported in Table 3. 

Table 3. Efficacy of Denoising on Salt and Pepper Noise 

Method MSE SSIM 

NN 0.19 ± 0.062 0.97 ± 0.0087 

BM3D 0.0028 ± 4.3×10-5 0.64 ± 0.037 

The BM3D algorithm performed better on the salt and pepper 

dataset when evaluated by mean squared error, while the 

neural network performed better as measured by the 

structured similarity index. 

3.4 Speed 
100 video frames were selected from the set of fluoroscopy 

videos at random. 1000 patches were randomly extracted from 

these videos. Both the neural network and the BM3D 

algorithms were evaluated on the patches, and the run-times 

were recoded. 

Neural networks are typically executed on graphics 

processing units (GPUs) as opposed to the central processing 

unit (CPU). While it is possible in principle to run the BM3D 

algorithm on a GPU, doing so is rare in practice. 

It is important to note that GPUs are known to increase the 

performance of many image processing tasks by orders of 

magnitude. Thus, comparing the performance of a neural 

network on a GPU to the performance of BM3D on a CPU 

would in essence be a comparison of the processing power of 

GPUs to CPUs rather than a meaningful comparison of the 

speeds of the algorithms. To avoid this pitfall, both the neural 

network and the BM3D algorithm were executed on the CPU 

for the purposes of the speed comparison. The reference 

implementation of BM3D created by the original authors of 

the algorithm [8] was used for this analysis. The results are 

reported in Table 4. 

Table 4. Denoising Time Per Image on CPU 

Method Time Per Image (seconds) 

NN 0.44 

BM3D 1.81 

As a final test, the neural network was re-executed on a GPU. 

It took an average of 0.021 seconds to denoise a single image. 

This is significantly faster than the minimum speed of one 

frame in 0.33 seconds that is needed to process 30-frame-per-

second video in real-time. No third-party GPU-based 

reference implementation of the BM3D algorithm was 

available for comparison in this project. However, others have 

reported a speed up between 2x and 20x with the use of a 

GPU depending on the size of the input image and the 

capabilities of the hardware [23]. Upper and lower bound 

estimates for the performance of BM3D were calculated based 

on these numbers. These figures are summarized in Table 5. 

Table 5. Denoising Time Per Image on GPU 

Method Time Per Image (seconds) 

NN 0.021 

BM3D (Low est.) 0.091 

BM3D (High est.) 0.910 

These numbers show that running the neural network on the 
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GPU would be several times faster than the the BM3D 

algorithm on the GPU even if it is assumes that the use of a 

GPU would provide a 20x speedup, which is the highest 

figure that has been reported in the literature [23]. 

4. CONCLUSION 
This results in this article show that a deep learned approach 

to video denoising can produce results of similar quality to 

BM3D, the current industry-standard algorithm for denoising. 

Furthermore, the results in this article show that deep learned 

video denoising can be significantly faster than BM3D and is 

fast enough to process video in real-time. 

The deep learned algorithm, which was trained exclusively on 

examples of images that were corrupted with Gaussian noise, 

was able not only to match the efficacy of BM3D in removing 

Gaussian noise, but also to meet or exceed the efficacy of 

BM3D in removing speckle noise and salt and pepper noise. 

Deep learning is therefore a particularly versatile method for 

denoising medical angiograms. 

Angiography is one of a wide variety of modern medical 

procedures and interventions rely on high quality video for 

guidance and decision making. Given the importance of video 

as an information source during such procedures, there is 

good reason to believe that improving the quality and thus 

interoperability of the video can directly lead to beneficial 

effects in terms of procedure time and outcomes. 

The neural network model makes a tradeoff between 

performance and generality. As the neural network presented 

in this article was trained exclusively on fluoroscopic x-ray 

images, it has no knowledge of the specific features found 

within other types of images, such as x-rays that show bones 

instead of blood vessels, or ultrasound images as opposed x-

ray images, or images of a completely nonmedical subject 

matter. It is therefore unlikely to transfer well to these types of 

images. The BM3D algorithm, in contrast, does not rely on 

knowledge of the particular subject matter of the image. 

Thus far in this article, two classes of artificial neural 

networks have been discussed: convolutional neural networks 

and autoencoding neural networks. Neither of these forms of 

neural network has a native mechanism for representing time 

series data. In other words, they process video data as a bag of 

unrelated still image video frames. Any relationships between 

video frames that are temporally close are ignored. There is a 

third form of neural network that does have a native 

mechanism for modeling time series relationships: the 

recurrent neural network [24]. Recurrent neural networks have 

been used primarily for the analysis of textual data but have 

also seen some use in image analysis contexts [24]. 

A hybrid architecture that blends the properties of a recurrent 

neural network with the convolutional autoencoding 

architecture described in this article could leverage the 

temporal aspect of video and potentially yield denoised 

images of higher quality or yield images of similar quality, 

but with fewer neurons and thus fewer parameters to train. 

The authors plan to investigate the potential of incorporating 

aspects of recurrent neural networks into video denoising in 

future work. 
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