

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

15

Efficient Mining of Frequent Itemsets using Improved

FP-Growth Algorithm

Abdulkader M. Al-Badani
Faculty of Computer Science & Information

Systems, Thamar University, Yemen

Basheer M. Al-Maqaleh
Faculty of Computer Science & Information

Systems, Thamar University, Yemen

ABSTRACT

Frequent itemsets are itemsets that appear frequently in a

dataset. Finding frequent itemsets plays an important role in

association rules mining, correlations, and many other

interesting relationships among data. Frequent itemset mining

has been an active research area and a large number of

algorithms have been developed. FP- Growth algorithm is

currently one of the best approaches to frequent itemsets

mining. It constructs a tree structure from transaction dataset

and recursively traverse this tree to extract frequent itemsets

in a depth first search manner. Also, it takes time to build an

FP-tree, suffers from the increasing size of FP-tree and

generating large number of frequent itemsets. In this paper, an

improved frequent itemsets mining algorithm based on FP-

Growth algorithm is proposed. The proposed algorithm uses a

two dimensional array structure called Ordered Frequent

Itemsets Matrix (OFIM) to construct a highly compact FP-

tree. It greatly circumvents repeated scanning of datasets and

it reduces the computational time, and reduces the number of

frequent items that are generated obtaining significantly

improved performance for FP-tree based algorithms.

General Terms

Data Mining, Association Rule, Frequent Itemsets Mining.

 Keywords

 FP-Growth Algorithm, Aprioiri Algorithm, FP-tree, Support

Count, Ordered Frequent Itemset Matrix

1. INTRODUCTION
Data mining is the process of extracting useful information

from huge amount of data stored in the databases [1].

Frequent itemset mining is one of the classical problems in

the most of the data mining applications [2]. Frequent itemsets

are common in real-life data, such as sets of items bought

together in a super store. For example, a set of items, such as

milk and coffee, which appear frequently together in a

transaction dataset, is a frequent itemset . The frequent itemset

can be defined as follows[1]:-

Let I={I1, I2, I3,...,In} be a collection of items. D is the set of

transactions in the database, where each transaction T is a set

of items, so I includes T. For any transaction A which is

included in I, if and only if the transaction T concludes A, A

can be called the item set. The support count of item set A is

the number of the transaction which includes A in the

database D. If the support count of itemset A is greater than or

equal to a given support count, A can be called the frequent

itemset, and the given support count is the minimum support

count (minsup).

There are a large number of algorithms to extract frequent

itemsets. Two main algorithms are Apriori [3], and FP-

Growth [4]. Apriori is a typical algorithm for frequent

itemset mining and association rule discovery over

transactional databases. The frequent itemsets find out by

Apriori can be used to find out association rules, which

highlight common trends in the databases. It suffers from the

large I/O cost caused by multiple database scans [1].

FP-Growth is the first successful tree-based algorithm of

mining the frequent itemsets [4]. It works in a divide and

conquers way that considerately reduces the size of the

subsequent conditional FP-tree . It requires two scans of the

datasets. The FP-tree is a compressed representation of the

transactions. However, a compact representation does not

reduce the potential combinatorial number of candidate

itemsets, which is the bottleneck of FP-Growth [5]. Also, the

large databases structure does not fit into main memory due

to the very large size tree that might be generated [6]. So, in

the proposed algorithm a new two-dimensional array

structure, called Ordered Frequent Itemsets Matrix (OFIM),

based on FP-Growth algorithm is used. This new structure

compacts a transactional database to facilitate a suitable

environment for efficient frequent itemsets mining.

The rest of paper is organized as follows: Section 2 presents

related work. The original FP-Growth algorithm is presented

in Section 3. The OFIM is elaborated in detail in Section 4.

The proposed algorithm is presented in Section 5. The

experimental results and discussions are described in Section

6. Conclusion and future work are given in Section 7.

2. RELATED WORK
This section presents some of the existing algorithms related

to frequent itemsets mining. Many algorithms related to

frequent itemsets mining are presented in [2,3,4,7].

An improved of FP-Growth algorithm for mining description-

oriented rules is introduced in [8]. They have proposed new

modification for description of gene groups using Gene

Ontology (GO) based FP-Growth algorithm and the results

show that the new algorithm allows generating rules faster.

An association rule mining using new FP-Linked list

algorithm is presented in [9]. It has proposed a new frequent

pattern mining algorithm based on FP- Growth idea which is

using a bit matric and a linked list structure to extract frequent

patterns. A combined approach of frequent pattern growth

and decision tree of Infrequent Weighted Itemset (IWI)

mining are suggested in [10]. In their paper, two novel

quality measures are proposed to test the IWI mining process.

Efficient algorithms to find frequent itemsets using data

mining are proposed in [11]. These algorithms are proposed to

achieve privacy, utility and efficiency frequent itemsets

mining, which is based on the frequent pattern growth

algorithm. An improved algorithm of frequent itemsets

mining is developed in [12]. It has proposed a non-recursive

more efficient FPNR-growth algorithm which improves the

time and space performance. A new hybrid frequent pattern-

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

16

Apriori (FP-AP) algorithm of high utility item set mining is

developed in [13]. It has presented FP-AP algorithm, which

is the combination of frequent pattern and Apriori algorithm.

FP is proposed to split the longer transaction rather than

truncate it and also to find the high profitable item with

privacy to that item set without redundancy. A survey on FP-

Growth tree using association rule mining is presented in [14].

The researchers introduced a new technique which extracts all

the frequent itemsets without the generation of the conditional

FP-trees. A new algorithm CT-PRO which uses the

Compressed FP-tree is developed in [15]. The experimental

results of this algorithm are much more efficient in terms of

performance. An improved FP-tree algorithm with

relationship technique for refined result of association rule

mining is proposed in [16]. It has adapted the same idea for

identifying frequent item set with large database. An efficient

and updatable item-item frequency matrix for frequent itemset

generation is introduced in [17]. This matrix maps the data

between the items in the form of square matrix.

The most contribution of this work is a novel algorithm that

uses OFIM structure to greatly compact structure of FP-tree,

and then improve the performance of the algorithms operating

on FP-trees.

3. FP-GROWTH ALGORITHM
FP-Growth algorithm [4] mines the complete set of frequent

itemsets without generating the candidate. It retains the

itemsets association by compressing the database

representing frequent items into a frequent pattern tree, or

FP-tree. It only needs two dataset scans when mining all

frequent itemsets [2]. The first scan counts the number of

occurrences of each item. The second scan constructs the

initial FP-tree which contains all frequency information of the

original dataset. Mining the dataset then becomes mining

the FP-tree. The pseudo-code of the FP-Growth algorithm of

a transaction database is given below [4,6].

Input: A transaction database DB, and a minsup threshold ξ.

Output: FP-tree.

Procedure:-

Step-1: Scan the transactional database and find support

count for each item.

Step-2: If support(item) < minsup, discard the item.

Step-3: Construct a header table called I-list to store the sorted

of frequent item-sets in descending order based on its support

and node link.

Step-4: Initially, construct FP-Growth tree. In the first step, it

creates the root of an FP-Growth tree and labels it as “null”.

And read the item in each transaction and create branch for

each transaction. If each node has shared a common prefix,

increment by 1 otherwise create a new node.

Step-5: In header table, each item points to its corresponding

occurrences in the tree through a single link list, which is

represented by dotted lines.

Step-6: Construct the mine FP-tree is which called FP-

Growth tree.

The FP-tree has a header table associated with it. Single items

and their counts are stored in the header table in decreasing

order of their frequency[4]. Table 1 shows an example of a

transactional dataset and Figure 1 shows the FP-tree, which

generated by FP-Growth algorithm from this dataset.

Table 1: A dataset with nine transactions.

TID List of items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I3

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

Figure 1: An Example of FP-tree(minsup=50%).

The generated frequent itemsets are shown in Table 2.

Table 2: The discovered frequent itemsets by FP-Growth

algorithm

TID Conditional FP-tree Frequent itemsets
I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2},

{I2,I1,I5:2}

I4 <I2:2> {I2,I4:2}

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},

{I2,I1,I3:2}

I1 <I2:4> {I2,I1:4}

4. ORDERED FREQUENT ITEMSET

MATRIX
OFIM is a two-dimensional array used to summarize the

transactional database and contains all frequent itemsets,

which they are sorted in support descending order. The OFIM

is N×M, where N is the number of transactions and M is the

longest number of ordered frequent items. The proposed

algorithm scans the transactional dataset to drive a list of

frequent items, in which items ordered in frequency

descending order. This ordering is important since the

construction of OFIM will follow this order. For any

transaction, the candidate itemsets which have occurrence

frequencies greater than or equal to the minsup threshold are

added to the list of frequent itemsets, these lists are called

Ordered Frequent Itemsets Lists (OFILs). Rest of the non-

frequent candidate itemsets are discarded. The frequent items

in each transaction are listed in this ordering in the rightmost

column of Table 3.

Header Table

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

17

Table 3: Transactional dataset with OFILs.

TID List of items OFILs.

T1 I1,I2,I5 I2,I1,I5

T2 I2,I4 I2,I4

T3 I2,I3 I2,I3

T4 I1,I2,I4 I2,I1,I4

T5 I1,I3 I1.I3

T6 I2,I3 I2,I3

T7 I1,I3 I1,I3

T8 I1,I2,I3,I5 I2,I1,I3,I5

T9 I1,I2,I3 I2,I1,I3

Notice that the frequent items in the transaction is ordered

according to their order in the list of frequent items. Referring

to the Table 3, the OFIL of transaction I1,I2,I5 is I2,I1,I5. An

empty OFIM having N×M is initialized with "0" values. The

matrix generation process reads the OFILs list by list. The

process extracts items from each list. It then adds the items to

the rows and to the corresponding columns of the matrix one

by one. The process repeats for each list in the OFILs. Table 4

describes the complete OFIM after reading all the OFILs,

which are given in Table 3.

Table 4. The OFIM.

T1 I2 I1 I5 0

T2 I2 I4 0 0

T3 I2 I3 0 0

T4 I2 I1 I4 0

T5 I1 I3 0 0

T6 I2 I3 0 0

T7 I1 I3 0 0

T8 I2 I1 I3 I5

T9 I2 I1 I3 0

5. THE PROPOSED ALGORITHM
Traditional FP-Growth algorithm takes time to construct FP-

tree, discovers large number of frequent itemsets, and suffers

from the increasing size of FP-tree, which may not fit in the

main memory [4,5,6]. The process of discovering frequent

itemsets takes the OFIM and a minsup threshold as input. The

proposed algorithm scans every column in OFIM to compute

the support of each different items, and the other (previous)

columns are used to distinguish the node's parent node of

current column. By this way, we can insert one level of nodes

into FP-tree at a time, we cannot compute frequent items one

by one in order to save the information of the current nodes

and their parent nodes. Also, if any infrequent, say x item is

found in any column then there is no any other item after x

in the same row is frequent. So, the proposed algorithm

deletes this row which greatly reduces the search space and

then saves execution time. By using OFIM into the process of

tree construction, the expensive frequent items scans in the

proposed algorithm are saved. Also, more frequently

occurring items are arranged at the top of the FP-tree and thus

are more likely to be shared. This indicates that FP-tree

structure is usually highly compact. This shortens the time of

tree construction and decreasing the size of FP-tree, therefore

the performance is much more better than the FP-Growth

algorithm. The detailed descriptions of the proposed algorithm

are as follows :-

Input : A transaction dataset and a minsup threshold.

Output: FP-tree.

1- Scan the transaction database once. Collect F, the set of

frequent items F, and their supports. Sort F in support

descending order as OFIL, the list of ordered frequent items.

All infrequent itemsets are deleted in this step.

 2- Create OFIM. For each row corresponds to the OFIL, all

ordered frequent items in OFIL are entered item-by-item into

the corresponding columns.

3- Create the root of an FP-tree, T, and label it as "null". Let

column number in OFIM be j.

4- For (j=1; j<=M; j++)

{

If j=1 Then Do

{

 Collect the set of frequent items and their supports, and sort

items according to descending support count. Let the result be

[f: n | OFIL] , where f is the first frequent item in OFIL, and n

is the count. Insert these nodes as the root's child nodes into

the FP-tree. Frequent items, f , are processed according to

their order.

}

Else Do

{

Contrast both the current column (j) and the previous

columns precede it, compare the set of frequent items and

collect their supports. Let the result be [p, f: n | OFIL] where

p is the parent frequent items of the previous columns, and f

is the current frequent item of column (j). Link the nodes

with the same item-name via the node-link structure. This

means inserting [f: n] as the child nodes of p into the FP-tree

and letting their node-link be linked to the nodes with the

same item-name via the node-link structure.

}

}

The proposed algorithm mined the FP-tree as follows : start

from each frequent length 1 pattern as an initial suffix

pattern, construct its conditional pattern base which consists

of the set of prefix path in the FP-tree co-occurring with the

suffix pattern, then construct its conditional FP-tree and

perform mining recursively on such a tree. The pattern growth

is a achieved by the concatenation of the suffix pattern with

the frequent patterns generated from a conditional FP-tree [4].

The FP-tree generated by the proposed algorithm of

transactional dataset in Table 1 is shown in Figure 2.

Figure 2: Construction of FP-tree using the proposed

algorithm (minsup=50%)

The generated frequent itemsets are shown in Table 5.

Header Table

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

18

Table 5: The generated frequent itemsets by the

proposed algorithm

TID Conditional FP-tree Frequent itemsets
I3 <I2:4,I1:2>,<I1:2> {I2,I3:4}, {I1,I3:4},

{I2,I1,I3:2}

I1 <I2:4> {I2,I1:4}

Figures 1 and 2 show that the proposed algorithm constructs

small size of FP-tree than FP-Growth algorithm. Also, Tables

1 and 2 indicate that the FP-Growth algorithm generates

larger number of frequent itemsets than the proposed

algorithm.

6. EXPERIMENTAL RESULTS AND

DISCUSSIONS
 The performance of the proposed algorithm is validated on

real-world datasets obtained from UCI Machine Learning

Repository which is a collection of widely used benchmark

and real-world datasets for data mining and KDD

community [18]. The performance of the proposed

algorithm is evaluated and compared with well-known FP-

Growth algorithm in terms of time required to find frequent

itemsets and the number of discovered frequent itemsets from

the specified datasets. All experiments are performed on a

laptop with C++, 32 bit Windows 7, 4GB RAM and 2.2 GHZ

Intel core (TM) Duo CPU. Table 6 shows some statistical

information about the datasets used in this comparative

study.

Table 6: Characteristics of the test datasets.

Datasets Size #Transactions

Grocery 0.56MB 10800

Mushroom 0.12MB 8124

Car 0.055MB 1728

The comparison performance of the proposed algorithm and

FP-Growth algorithm on these three datasets are

demonstrated below :-

6.1 Experiment One
This experiment was carried out on the Grocery dataset. It

contains one month of real-world point-of- sale transactions

data from a typical local grocery outlet. In order to efficiently

evaluate the performance of the proposed algorithm over

original FP-Growth algorithm, experiments have been

conducted and compared several times with different values

of minsup. The obtained results based on the execution time

required to find the frequent itemsets and the number of

frequent itemsets of various minsup values such as 10%,

20% , 30%, and 50% are shown in Table 7.

Table 7: Comparison results for the Grocery dataset

with various minsup thresholds.

Discovered Frequent

itemsets
Execution time per

milliseconds (ms)

minsup

No.

Proposed

algorithm

FP-

Growth

Proposed

algorithm
FP-

Growth

12 13 600 800 10% 1

6 11 400 700 20% 2

3 6 300 600 30% 3

1 3 100 400 50% 4

In general, when the values of minsup increase, the

execution time and the number of discovered frequent

itemsets decrease in both algorithms.

It is observed that the execution time of the proposed

algorithm consumes less time compared to the FP-Growth

algorithm, even though it varies the minsup threshold value.

Figure 3 shows the performance of two algorithms according

to the execution time for 4 different minsup thresholds. It

clearly illustrates that the proposed algorithm outperforms

than FP-Growth algorithm. The reason behind that the FP-

Growth needs to construct a large number of conditional

sub-trees and then generates a large number of frequent

itemsets, it is not only time consuming but also high memory

cost.

Figure 3: Comparing the results of the execution time and

the minsup thresholds for the Grocery dataset.

6.2 Experiment Two
Mushroom dataset was used for this experiment. This dataset

has 8124 records, with 23 attributes that contain 119 item.

Table 8 shows the execution time and the number of

discovered frequent itemsets of the FP-Growth and the

proposed algorithm of various minsup thresholds such as

10% , 20% , 30%, and 50%.

Table 8: Comparison results for the Mushroom

dataset with various minsup thresholds.

Discovered

Frequent itemsets

Execution time per

milliseconds (ms)

minsup

No.

Proposed

algorithm

FP-

Growth

Proposed

algorithm
FP-

Growth

19 20 300 590 10% 1

7 18 260 560 20% 2

5 17 250 550 30% 3

3 13 240 530 50% 4

Table 8 indicates that the execution time of the proposed

algorithm are approximately equal even though it varies the

minsup threshold of the Mushroom dataset and it gives less

mining time and a small number of the generated frequent

itemsets than the FP-Growth algorithm. The proposed

algorithm scales much better than the FP-Growth. This is

because as the minsup threshold goes down, the number of

the frequent itemsets increase dramatically. The candidate sets

that the FP-Growth must handle become large, and the pattern

matching with a lot of candidates by searching through the

FP-tree becomes very expensive. Figure 4 shows the

comparison results between the two algorithms according to

the execution time with 4 different minsup thresholds.

0

200

400

600

800

0.1 0.2 0.3 0.5

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
s.

minsup thresholds (%)

FP-Growth

The
proposed
algorithm

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

19

Figure 4: Comparing the results of the execution time and

the minsup thresholds for the Mushroom dataset

6.3 Experiment Three
This experiments was carried out on the Car dataset. This

dataset contains 1728 instances and 7 attributes. Table 9

shows the execution time and the number of discovered

frequent itemsets of the FP-Growth and the proposed

algorithm of the various minsup thresholds such as 10%,

20% , 30%, and 50%.

Table 9 indicates that the execution time and the number of

discovered frequent itemsets of the proposed algorithm are

less than FP-Growth algorithm. The comparison results

between the execution time and the minsup thresholds of the

Car dataset for both algorithms are shown in Figure 5.

Figure 5: Comparing the results of the execution time and

the minsup thresholds for the Car dataset

This figure indicates as the minsup threshold goes up, the

execution time and the number of generated frequent itemsets

in both algorithms decrease dramatically.

7. CONCLUSION AND FUTURE WORK
Efficient algorithms of mining frequent itemsets are crucial

for mining association rules. In this paper, an improved FP-

Growth algorithm for efficient mining of the frequent

itemsets is proposed. The proposed algorithm uses OFILs to

construct the OFIM. Consequently, the proposed algorithm

uses OFIM to construct a highly compact FP-tree, and then

saves the costly dataset scans in the subsequent mining

processes which reduces the time of FP-tree construction. It

applies a pattern growth method which avoids costly

candidate generation. OFIM saves traversal time for all items

and the next level of the FP-tree can be initialized directly.

The proposed algorithm deletes infrequent items

appropriately, thereby the subsequent processes are

completing their respective tasks more efficiently without

unnecessarily wasting their efforts in processing the irrelevant

data. The performance gain achieved by the proposed

algorithm is due in most part to the highly compact structure

of FP-tree, which stores only the frequent items in a

frequency-descending order using OFIM. The experimental

results show that the proposed algorithm is superior to the

original FP-Growth algorithm in mining time and the

number of discovered frequent itemsets.

Future research can improve the proposed algorithm to

incrementally update an FP-tree, such as adding daily new

transactions into a database containing records accumulated

for months.

8. REFERENCES
[1] Han, J., Pei, J., and Kamber, M. 2011. Data Mining:

Concepts and Techniques. Morgan Kaufmann, San

Francisco, California, USA.

[2] Shridhar, M., and Parmar, M. 2017. Survey on

association rule mining and its approaches. International

Journal of Computer Sciences and Engineering (IJCSE),

5(3), pp.129-135.

[3] Agrawal, R., and Srikant, R. 1994. Fast algorithms for

mining association rules. In Proceeding of 20th

International Conference on Very Large Databases

(VLDB), pp. 487-499.

[4] Han, J., Pei, J., and Yin, Y. 2000. Mining frequent

patterns without candidate generation. ACM. pp, 1-12.

[5] Wei, F., and Xiang, L. 2015. Improved frequent pattern

mining algorithm based on FP-Tree. In Proceedings of

The Fourth International Conference on Information

Science and Cloud Computing (ISCC2015), pp.18-19.

[6] Krupali, R., Garg, D., and Kotecha, K. 2017. An

improved approach of FP-Growth tree for frequent

itemset mining using partition projection and parallel

projection techniques. International Recent and

Innovation Trends in Computing and Communication,

5(5), pp. 929-934.

[7] Khanali, H., and Vaziri, B. (2017). A survey on

improved algorithms for mining association rules.

International Journal of Computer Applications(IJCA),

165(9), pp. 6-11.

[8] Gruca, A. 2014. Improvement of FP-Growth algorithm

for mining description-oriented rules. In Man-Machine

Interactions, Part of Advances in Intelligent Systems and

Computing, (AISC), Springer, vol. 242, pp. 183-192.

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.5

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
s.

minsup thresholds (%)

FP-Growth

The proposed
algorithm

0
100
200
300
400
500
600
700
800
900

0.1 0.2 0.3 0.5

Ex
e

cu
ti

o
m

 t
im

e
 in

 m
s.

minsup thresholds (%)

FP-Growth

The proposed
algorithm

Table 9: Comparison results for the Car dataset

with various minsup thresholds.

Discovered Frequent

itemsets

Execution time per

milliseconds (ms)

Minsup

No.

Proposed

algorithm

FP-

Growth

Proposed

algorithm
FP-

Growth

8 11 500 900 10% 1

6 10 400 600 20% 2

3 9 200 300 30% 3

2 6 100 200 50% 4

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 14, July 2018 – www.ijais.org

20

[9] Sohrabi, M. K., and Marzooni, H. H. 2016. Association

rule mining using new FP-Linked list algorithm. Journal

of Advances in Computer Research (JACR), 7(1), pp.

23-34.

[10] Dange, A. S., and Patil, S. J. 2016. A combined

approach of frequent pattern growth and decision tree for

infrequent weighted itemset mining. International

Research Journal of Engineering and Technology

(IRJET), 3(7), pp. 2070- 2075.

[11] Sagar, B. P., and Kale, S. 2017. Efficient algorithms to

find frequent itemsets using data mining. International

Research Journal of Engineering and Technology

(IRJET), 4(6), pp. 2645- 2648.

[12] Hao, J., and Xu, H. 2017. An improved algorithm for

frequent itemsets mining. In 5th International Conference

on Advanced Cloud and Big Data (CBD), IEEE

Computer Society , pp. 314-317 .

[13] Devi, R. S., and Shanthi, D. 2016. A new hybrid

frequent Pattern-Apriori (FP-AP) algorithm for high

utility item set mining. Middle East Journal of Scientific

Research (MEJSR), 24(3), pp. 986-991.

[14] Princy. S, Ankita, H., Babita, P., and Shiv, K. 2017. A

survey on FP (Growth) tree using association rule

mining. International Research Journal of Engineering

and Technology(IRJET), vol. 4, Issue 7, pp. 1637-1640.

[15] Jiten, G., Ashish, P., Swapnit, M., and Christi, L. 2017.

Compressed frequent pattern tree. International Journal

of Engineering Sciences and Research Technology

(IJESRT), 6(4), pp. 652-657.

[16] Saxena, P. and Jain, R. 2016. An improved FP-Tree

algorithm with relationship technique for refined result of

association rule mining. International Journal of

Scientific Research in Science, Engineering and

Technology(IJSRSET), vol. 2, pp. 525-529.

[17] Usman, A., Zhang, P., and Theel, O. 2017. An efficient

and updatable item-to-item frequency matrix for frequent

itemset generation. ICC'17, Cambridge, United

Kingdom, ACM, pp. 978 -983.

[18] Blake, C. L., and Merz., M. J, UCI Repository of

Machine Learning Databases [http://www. ics. uci.

edu/~ mlearn/ MLRepository. html]. Irvine, CA:

University of California‖, Department of Information

and Computer Science.

