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ABSTRACT 

Frequent itemsets are itemsets that appear frequently in a 

dataset. Finding frequent itemsets plays an important role in  

association rules mining, correlations, and many other 

interesting relationships among data. Frequent itemset mining 

has been an active research area and a large number of 

algorithms have  been developed. FP- Growth algorithm is  

currently one of the best  approaches  to frequent itemsets 

mining. It constructs a tree structure from transaction dataset 

and recursively traverse this  tree to extract frequent itemsets 

in a depth first search manner. Also, it takes time to build an 

FP-tree, suffers from the increasing  size of FP-tree and 

generating large number of frequent itemsets. In this paper, an 

improved frequent itemsets  mining algorithm based on FP-

Growth algorithm is proposed. The proposed algorithm uses a 

two dimensional array structure called Ordered Frequent 

Itemsets Matrix (OFIM)  to construct a highly compact FP-

tree. It  greatly  circumvents repeated scanning of datasets and 

it reduces the computational time, and reduces the number of  

frequent items that are generated obtaining significantly 

improved performance for FP-tree based algorithms. 

General Terms 
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 Keywords 
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1. INTRODUCTION 
Data mining is the process of extracting useful information 

from huge amount of data stored in the databases [1]. 

Frequent  itemset mining is one of the classical problems in  

the most of the data mining applications [2]. Frequent itemsets 

are common in real-life data, such as sets of items bought 

together in a  super store.  For example, a set of items, such as 

milk and coffee, which appear frequently together in a 

transaction dataset, is a frequent itemset . The frequent itemset 

can be defined as follows[1]:- 

Let I={I1, I2, I3,...,In} be a collection of items. D is the set of 

transactions in the database, where each transaction T is a set 

of items, so I includes T. For any transaction A which is 

included in I, if and only if the transaction T concludes A, A 

can be called the item set. The support count of item set A is 

the number of the transaction which includes A in the 

database D. If the support count of itemset A is greater than or 

equal to a given support count, A can be called the frequent 

itemset, and the given support count is the minimum support 

count (minsup). 

There are a large number of  algorithms to extract frequent 

itemsets. Two main algorithms are Apriori [3], and FP-

Growth [4].  Apriori is a typical  algorithm for frequent 

itemset mining and association rule discovery over 

transactional databases. The frequent itemsets find out by 

Apriori can be used to find out   association rules, which 

highlight common trends in the databases. It suffers from the 

large I/O cost caused by multiple database scans [1]. 

FP-Growth is the first successful tree-based algorithm of 

mining the frequent itemsets [4]. It works in a divide  and 

conquers way that considerately reduces the size of the 

subsequent conditional FP-tree . It requires two  scans of the 

datasets. The FP-tree is a compressed representation  of the 

transactions. However, a compact representation  does not  

reduce the  potential   combinatorial    number of candidate  

itemsets, which is the bottleneck of FP-Growth [5]. Also,  the 

large databases structure does not fit into main memory due  

to  the very large size tree that might be generated [6]. So, in 

the proposed algorithm a new two-dimensional array 

structure, called Ordered Frequent Itemsets Matrix (OFIM),  

based on FP-Growth algorithm is used. This new structure 

compacts a transactional database to facilitate a suitable 

environment for efficient frequent itemsets mining.  

The rest of paper is organized as follows: Section 2 presents 

related work. The original FP-Growth algorithm is presented 

in Section 3.  The OFIM is elaborated in detail in  Section 4. 

The proposed algorithm is presented in Section 5. The 

experimental results and discussions  are described in Section 

6. Conclusion and future work are given in Section 7. 

2. RELATED WORK 
This section presents some of the existing algorithms related 

to frequent itemsets mining. Many algorithms related to 

frequent itemsets mining are presented in [2,3,4,7]. 

An improved of FP-Growth algorithm for mining description-

oriented rules is introduced in [8]. They have proposed new 

modification for description of gene groups using Gene 

Ontology (GO) based FP-Growth algorithm and the results 

show that the new algorithm allows generating rules faster. 

An  association rule mining using new FP-Linked list 

algorithm is presented in [9]. It has proposed a new frequent 

pattern  mining algorithm based on FP- Growth idea which is 

using a bit matric and a linked list structure to extract frequent 

patterns.  A combined approach of frequent pattern growth 

and decision tree of  Infrequent Weighted Itemset (IWI) 

mining are suggested in [10].  In their  paper, two novel 

quality measures are proposed to test the IWI mining process. 

Efficient algorithms to find frequent itemsets using data 

mining are proposed in [11]. These algorithms are proposed to 

achieve privacy, utility and efficiency frequent itemsets  

mining, which is based on the frequent pattern growth 

algorithm. An improved  algorithm of frequent itemsets 

mining is developed in [12].  It has proposed a non-recursive 

more efficient FPNR-growth algorithm which improves the 

time and space performance. A new hybrid frequent pattern-
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Apriori (FP-AP) algorithm of high utility item set mining is 

developed  in [13]. It has  presented  FP-AP algorithm, which 

is the combination of frequent pattern and Apriori algorithm. 

FP is proposed to split the longer transaction rather than 

truncate it and also to find the high profitable item with 

privacy to that item set without redundancy. A survey on FP-

Growth tree using association rule mining is presented in [14]. 

The researchers introduced a new technique which extracts all 

the frequent itemsets without the generation of the conditional 

FP-trees. A new algorithm CT-PRO which uses the 

Compressed FP-tree is developed in [15]. The experimental 

results of this algorithm are much more efficient in terms of 

performance.  An improved FP-tree algorithm with 

relationship technique for refined result of association rule 

mining is  proposed in [16]. It has adapted the same idea for 

identifying frequent item set with large database. An efficient 

and updatable item-item frequency matrix for frequent itemset 

generation is introduced in [17]. This matrix maps the data 

between the items in the form of square matrix.  

The most contribution of this work is a novel algorithm that 

uses OFIM structure to greatly compact structure of FP-tree, 

and then improve the performance of the algorithms operating 

on FP-trees.  

3. FP-GROWTH ALGORITHM 
FP-Growth  algorithm [4] mines the complete set of frequent 

itemsets without generating the candidate. It retains the 

itemsets  association  by compressing the database 

representing  frequent items into a frequent pattern tree, or 

FP-tree. It only needs two dataset scans when mining all 

frequent itemsets [2]. The first scan counts the number of 

occurrences of each item. The second scan constructs the 

initial FP-tree which contains all frequency information of the 

original dataset.  Mining the dataset  then  becomes mining 

the FP-tree. The pseudo-code of the FP-Growth  algorithm of 

a transaction database is given  below [4,6]. 

Input: A transaction database DB, and a minsup threshold ξ. 

Output: FP-tree. 

Procedure:- 

Step-1:  Scan the transactional database and find support 

count for each item. 

Step-2:  If  support(item)  < minsup, discard the item.  

Step-3: Construct a header table called I-list to store the sorted 

of frequent item-sets in descending order based on its support 

and node link. 

Step-4: Initially, construct FP-Growth tree. In the first step, it 

creates the root of an FP-Growth tree and labels it as “null”. 

And read the item in each transaction and create branch for 

each transaction. If  each node has shared a common prefix, 

increment by 1 otherwise create a new node. 

Step-5:  In header table, each item points to its corresponding 

occurrences in the tree through a single link list, which is 

represented by dotted lines. 

Step-6: Construct the mine FP-tree is which  called  FP-

Growth tree. 

The FP-tree has a header table associated with it. Single items 

and their counts are stored in the header table in decreasing 

order of their frequency[4].  Table 1 shows an example of a 

transactional dataset and Figure 1 shows the FP-tree, which 

generated by FP-Growth algorithm from this dataset. 

Table 1:  A dataset with nine transactions.  

TID List of items 

T1 I1,I2,I5 

T2 I2,I4 

T3 I2,I3 

T4 I1,I2,I4 

T5 I1,I3 

T6 I2,I3 

T7 I1,I3 

T8 I1,I2,I3,I5 

T9 I1,I2,I3 

 

 

Figure 1: An Example of FP-tree(minsup=50%). 

The generated frequent itemsets are shown in Table 2. 

Table 2: The discovered frequent itemsets by FP-Growth 

algorithm 

TID Conditional FP-tree Frequent itemsets  
I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2}, 

{I2,I1,I5:2} 

I4 <I2:2> {I2,I4:2} 

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4}, 

{I2,I1,I3:2} 

I1 <I2:4> {I2,I1:4} 
 

4. ORDERED FREQUENT ITEMSET 

MATRIX 
OFIM is a two-dimensional array used to summarize the 

transactional database  and contains all frequent itemsets, 

which they  are sorted in support descending order. The OFIM 

is N×M, where  N is the number of transactions and M is the 

longest number of ordered frequent items. The proposed 

algorithm scans the transactional dataset to drive a list of 

frequent items, in which items ordered in frequency 

descending order. This ordering is important since the 

construction of OFIM will follow this order. For any 

transaction, the candidate itemsets which have occurrence 

frequencies greater than or equal to the minsup threshold are 

added to the list of frequent itemsets, these lists are called 

Ordered Frequent Itemsets Lists (OFILs). Rest of the non-

frequent candidate itemsets are discarded. The frequent items 

in each transaction are listed in this ordering in the rightmost 

column of Table 3. 

 

 

Header  Table 
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Table 3:  Transactional dataset  with OFILs. 

TID List of items OFILs. 

T1 I1,I2,I5 I2,I1,I5 

T2 I2,I4 I2,I4 

T3 I2,I3 I2,I3 

T4 I1,I2,I4 I2,I1,I4 

T5 I1,I3 I1.I3 

T6 I2,I3 I2,I3 

T7 I1,I3 I1,I3 

T8 I1,I2,I3,I5 I2,I1,I3,I5 

T9 I1,I2,I3 I2,I1,I3 
 

Notice that the frequent items in the transaction is ordered 

according to their order in the list of frequent items. Referring 

to the Table 3, the OFIL of transaction I1,I2,I5 is I2,I1,I5. An 

empty OFIM having  N×M  is initialized with "0" values. The 

matrix generation process reads the OFILs list by list. The 

process extracts items from each list. It then adds the items to 

the rows and to the corresponding columns of the matrix one 

by one. The process repeats for each list in the OFILs. Table 4 

describes the complete OFIM after reading all the OFILs, 

which are given in Table 3. 

Table 4. The OFIM. 

T1 I2 I1 I5 0 

T2 I2 I4 0 0 

T3 I2 I3 0 0 

T4 I2 I1 I4 0 

T5 I1 I3 0 0 

T6 I2 I3 0 0 

T7 I1 I3 0 0 

T8 I2 I1 I3 I5 

T9 I2 I1 I3 0 
 

5. THE PROPOSED  ALGORITHM 
Traditional FP-Growth algorithm takes time to construct FP-

tree, discovers large number of frequent itemsets,  and suffers    

from the increasing size of FP-tree, which may not fit in the 

main memory [4,5,6].  The process of discovering frequent 

itemsets takes the OFIM and a minsup threshold as input. The 

proposed algorithm scans every column in OFIM to compute 

the support of each different items, and the other (previous) 

columns are used to distinguish the node's parent  node of 

current column. By this way, we can insert one level of nodes 

into FP-tree at a time, we cannot compute frequent items one 

by one in order to save the information of the current nodes 

and their parent nodes. Also, if any infrequent, say x item is 

found in any  column  then there is no any other item after x 

in the same row is frequent. So,  the proposed algorithm 

deletes this row which greatly reduces the search space and 

then saves execution time. By using OFIM into the process of 

tree construction, the expensive frequent items scans in the 

proposed algorithm are saved. Also, more frequently 

occurring items are arranged at the top of the FP-tree and thus 

are more likely to be shared. This indicates that FP-tree 

structure is usually highly compact. This shortens the time of 

tree construction and decreasing the size of FP-tree, therefore  

the performance is much more better than the FP-Growth 

algorithm. The detailed descriptions of the proposed algorithm  

are as follows :- 

 

Input : A transaction dataset and a minsup  threshold. 

Output: FP-tree. 

1- Scan the transaction database once. Collect F, the set of 

frequent items F, and their supports. Sort F  in support 

descending  order as OFIL, the list of ordered frequent items. 

All infrequent itemsets are deleted in this step. 

 2- Create OFIM. For each row corresponds  to the OFIL, all 

ordered frequent items in OFIL are entered item-by-item into 

the corresponding  columns. 

3- Create the root of an FP-tree, T, and label it as "null". Let 

column number in OFIM   be j. 

 

4- For (j=1;  j<=M;  j++) 

{  

If j=1 Then Do 

{ 

 Collect the set of frequent items and their supports, and sort 

items according to descending support count. Let the result be 

[f: n | OFIL] , where f is the first frequent item in OFIL, and  n 

is the count. Insert these nodes as the root's child nodes  into 

the FP-tree.  Frequent items, f , are processed according to 

their order. 

} 

Else Do 

{ 

Contrast both the current column (j)  and the previous 

columns precede it, compare the set of frequent items and 

collect their supports. Let the  result be [p, f: n | OFIL] where 

p is the parent frequent items of the  previous   columns, and f 

is the current frequent item of column (j). Link  the nodes 

with the same item-name via the node-link structure. This 

means  inserting  [f: n] as the child nodes of p into the FP-tree 

and letting their node-link  be linked to the nodes with the 

same item-name via the node-link structure. 

} 

} 

The proposed algorithm mined the FP-tree as follows : start  

from each frequent length 1 pattern  as an initial suffix  

pattern, construct  its conditional  pattern base  which consists 

of the set of prefix path in the FP-tree  co-occurring with the 

suffix pattern, then construct  its conditional FP-tree and 

perform mining recursively on such a tree. The pattern growth 

is a achieved by the concatenation of the suffix  pattern with 

the frequent patterns generated from a conditional FP-tree [4].  

The FP-tree generated by the proposed algorithm  of 

transactional dataset in Table 1 is shown in Figure 2. 

 

Figure 2: Construction of FP-tree using the proposed 

algorithm (minsup=50%) 

The generated frequent itemsets are shown in Table 5. 

Header  Table 
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Table 5: The generated frequent itemsets by the 

proposed algorithm 

TID Conditional FP-tree Frequent itemsets  
I3 <I2:4,I1:2>,<I1:2> {I2,I3:4}, {I1,I3:4}, 

{I2,I1,I3:2} 

I1 <I2:4> {I2,I1:4} 
 

Figures 1 and 2 show that the proposed algorithm constructs 

small size of FP-tree than FP-Growth algorithm. Also, Tables 

1 and 2 indicate that the FP-Growth algorithm generates 

larger number of frequent itemsets than the proposed 

algorithm. 

6. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 
 The performance of the proposed algorithm is validated on 

real-world datasets obtained from UCI Machine Learning 

Repository which is a collection  of widely  used benchmark 

and   real-world datasets for data mining and KDD 

community  [18].  The performance of  the proposed 

algorithm is evaluated  and compared  with  well-known  FP-

Growth algorithm  in terms  of  time required to find frequent 

itemsets and the number of discovered frequent itemsets from 

the specified datasets.  All experiments  are performed on a 

laptop with C++, 32 bit Windows 7, 4GB RAM and 2.2 GHZ 

Intel core (TM) Duo CPU. Table 6 shows some statistical  

information about  the datasets used in this comparative  

study.  

 

Table 6:  Characteristics of the test datasets. 

Datasets Size #Transactions 

Grocery 0.56MB 10800 

Mushroom 0.12MB 8124 

Car 0.055MB 1728 
 

The comparison performance of  the proposed algorithm and  

FP-Growth algorithm on these  three datasets are  

demonstrated  below :- 
 

6.1 Experiment One 
This experiment was carried out on the Grocery dataset. It 

contains one month of real-world point-of- sale transactions 

data from a typical local grocery outlet. In order to efficiently 

evaluate the performance of   the proposed algorithm over 

original FP-Growth algorithm, experiments have been 

conducted and compared several times with different values 

of minsup. The obtained results based on the  execution time 

required  to find the frequent itemsets and the number of 

frequent itemsets of  various  minsup values such as 10%, 

20% , 30%, and  50% are shown in Table 7. 

 

Table 7:  Comparison results  for the  Grocery dataset  

with various minsup thresholds. 

# Discovered Frequent 

itemsets 
Execution time per 

milliseconds (ms) 
 

minsup  
 

No. 

Proposed 

algorithm   

FP-

Growth 

Proposed 

algorithm 
FP-

Growth 

12 13 600 800 10% 1 

6 11 400 700 20% 2 

3 6 300 600 30% 3 

1 3 100 400 50% 4 

In general, when the values of  minsup increase,  the 

execution time and the number of discovered frequent 

itemsets   decrease  in both algorithms. 

It is observed that the execution time of the proposed 

algorithm consumes  less  time compared to the FP-Growth 

algorithm, even though it varies  the minsup threshold value. 

Figure 3 shows  the performance of  two algorithms according 

to the execution time for 4 different minsup thresholds. It 

clearly illustrates that the proposed algorithm outperforms 

than  FP-Growth algorithm. The reason behind  that the FP-

Growth needs to  construct a large number of conditional  

sub-trees and then generates  a large number of frequent 

itemsets, it is not only time consuming but also high memory 

cost. 

 

Figure 3: Comparing the results of the execution time and  

the minsup thresholds for  the Grocery  dataset. 
 

6.2 Experiment Two 
Mushroom dataset was used for this  experiment. This dataset 

has 8124 records, with 23 attributes that contain 119 item.  

Table 8 shows the execution time and the  number of 

discovered  frequent itemsets of the FP-Growth and the 

proposed algorithm of various  minsup  thresholds such as 

10% , 20% , 30%, and  50%. 

Table 8: Comparison  results  for  the  Mushroom 

dataset  with various  minsup thresholds. 

# Discovered 

Frequent itemsets 

Execution time per 

milliseconds (ms) 
 

minsup 
 

No. 

Proposed 

algorithm 

FP-

Growth 

Proposed 

algorithm 
FP-

Growth 

19 20 300 590 10% 1 

7 18 260 560 20% 2 

5 17 250 550 30% 3 

3 13 240 530 50% 4 
 

Table 8 indicates   that the execution time of the proposed 

algorithm are approximately   equal even though it varies the 

minsup threshold of the  Mushroom dataset  and it gives less 

mining time and a small  number of the generated frequent 

itemsets   than  the FP-Growth algorithm. The proposed 

algorithm scales much better than the FP-Growth. This is 

because as the minsup threshold  goes down, the number of 

the frequent itemsets increase dramatically. The candidate sets 

that the FP-Growth must handle become large, and the pattern 

matching with a lot of candidates by searching through the 

FP-tree becomes very expensive. Figure 4 shows the 

comparison results between the two algorithms according to 

the execution time with  4  different minsup thresholds.  
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Figure 4: Comparing the results of the  execution time and  

the minsup thresholds  for  the  Mushroom dataset 

6.3 Experiment Three 
This experiments was carried out on the  Car dataset. This 

dataset contains 1728  instances and 7  attributes. Table 9  

shows the execution time and  the number of  discovered 

frequent itemsets of the FP-Growth and the proposed 

algorithm  of the various   minsup thresholds such as 10%, 

20% , 30%, and  50%. 

 

Table 9 indicates   that the execution time and the number of 

discovered frequent itemsets of the proposed  algorithm are 

less than  FP-Growth  algorithm. The comparison results 

between the execution time and the minsup thresholds of the 

Car dataset for both algorithms are shown in Figure 5.   

Figure 5: Comparing the results of the  execution time and 

the minsup thresholds for  the Car  dataset 

This figure indicates as the minsup threshold  goes up, the 

execution time and the number of generated frequent itemsets 

in both algorithms decrease dramatically. 
 

7. CONCLUSION AND FUTURE WORK 
Efficient algorithms of mining frequent itemsets are crucial 

for mining association rules. In this paper, an improved FP- 

Growth algorithm   for efficient mining of the frequent 

itemsets is proposed. The proposed algorithm  uses OFILs to 

construct the OFIM. Consequently, the proposed algorithm 

uses OFIM to construct a highly compact FP-tree, and then 

saves the costly dataset scans in the subsequent mining 

processes which reduces the time of FP-tree construction. It 

applies a pattern growth method which avoids costly 

candidate generation. OFIM saves traversal time for all items 

and the next level of the FP-tree can be initialized directly. 

The proposed algorithm   deletes infrequent items 

appropriately, thereby the subsequent processes are 

completing their respective tasks more efficiently without 

unnecessarily wasting their efforts in processing the irrelevant 

data. The performance gain achieved by the proposed 

algorithm is due in most part to the highly compact structure 

of FP-tree, which stores only the frequent items in a 

frequency-descending order using OFIM. The experimental 

results show that the proposed algorithm  is superior  to the 

original FP-Growth algorithm   in  mining time and the 

number of discovered frequent itemsets. 

Future research can improve the proposed algorithm  to 

incrementally update an FP-tree, such as adding daily new 

transactions into a database containing records accumulated 

for months. 
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