

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

1

The Scalability Metric based on Cost-Effectiveness in

Distributed Systems

Emmanuel Kwabena
Gyasi

Department of Computer
Science

KNUST, Ghana

Dominic Asamoah
Department of Computer

Science
KNUST, Ghana

Emmanuel Ofori
Oppong

Department of Computer
Science

KNUST, Ghana

Stephen Opoku
Oppong

Faculty of Computing and
Information Systems

GTUC, Ghana

ABSTRACT
Today’s computer systems are more complex, more rapidly

evolving, and more essential to the conduct of business than

those of recent past. The complexity becomes more rigid in

the case of distributed systems. As businesses grow, the

systems that support their functions also need to grow to

support more users, process more data, or both. As they grow,

it is important to maintain their performance in terms of

responsiveness or throughput. Despite its importance,

scalability is poorly understood and few organizations

understand how to quantitatively evaluate an application’s

scalability. The derived scalability metric of this paper is

based on cost effectiveness, in which the effectiveness is a

function of the system's throughput and its QoS. It is a

strategy based scalability metric that generalizes the well-

known metrics for scalability of parallel computations to

describe heterogeneous distributed systems. Scalability is

measured by the range of scale factors that gives a satisfactory

value of the metric, since a good scalability is a joint property

of the initial design and the scaling strategy. What makes this

derived metric unique is the fact that, it separates the impact

of throughput and response time on the metric, formalizing the

notation of a scaling strategy, introducing QoS evaluation and

more also, introducing formal scalability enablers which are

optimized at each scale factor.

Keywords
Distributed Systems, Scalability, Quality of Service, Parallel

Computations

1. INTRODUCTION
Today’s computer systems are more complex, more rapidly

evolving, and more essential to the conduct of business than

those of even a few years ago. The result is anincreasing need

for tools and techniques that assist in understanding the

behavior of these systems. Such an understanding is necessary

to provide intelligent answers to the questions of cost and

performance that arise throughout the life of a system. Right

from Scientific institutions, Computer manufacturing

industries, businesses of all kinds, educational institutions

(Universities), software programmers to individuals, the issue

of scalability remains the number one priority in terms of

manufacturing and the use of computer systems. This question

is of great significance to the organizations involved, because

of its potentially serious repercussions from incorrect answers.

Unfortunately, this question is also complex as correct

answers are not easily obtained.

The world has now become a global village through internet

and inter-connectivity. Individuals, organizations,

governments, businesses to mention but a few in one way or

the other connect or communicate remotely. Businesses have

spread up to the extent of defying geographical boundaries

whiles individuals and organizations do transact business and

at the same time stores their data remotely. Typical example

that readily come in mind is cloud computing. These activities

are made possible because the system is distributed. A

distributed system is a collection of independent computers

that appear to its users as a single coherent system. In order

words, a distributed system is a collection of independent

computers that are used jointly to perform a single task or to

provide a single service. Most distributed systems are

scalable including present and future applications of which

web based distributed systems is no exception. Typical

applications, e-commerce, multimedia news services, distance

learning, remote medicine, enterprise management, and

network management are also some of the examples of

distributed services. A distributed system should be

deployable in a wide range of scales, in terms of numbers of

users and services, quantities of data stored and manipulated,

rates of processing, numbers of nodes, geographical coverage,

and sizes of networks and storage devices. As businesses

grow, the systems that support their functions also need to

grow to support more users, process more data, or both. As

they grow, it is important to maintain their performance in

terms of responsiveness or throughput. Poor performance in

these applications often translates into appreciable costs.

Customers will oftenshop elsewhere rather than endure long

waits. Slow responses in CRM applications mean that more

customer-service representatives are needed. And, failure to

process financial tradesin a timely fashion can result in

statutory penalties as well as lost customers. Despite its

importance, scalability is poorly understood and few

organizations understand how to quantitatively evaluate an

application’s scalability. As a result, they often make

assumptions about the scalability of their software. If wrong,

these assumptions can be costly.

Many scaled systems suffer from the problem of maintaining

productivity and that of delay in transmitting data from one

system to another. In the field of telecommunication industry,

frequent call drops coupled with high cost of managing

distributed networks is a major headache to the managers in

telecommunication business as more often than not, scaled

networks performance does not commensurate with the cost

incurred by scaling the systems, due to unavailable well laid

down scalable metrics.

Therefore, the objectives of this study are as follows

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

2

 To have metrics that will maintain productivity as

the system is scaled so as to enhance call-processing

system and make it scalable in order to support large

number of callers per hour at an appreciable

throughput and at the same time curtail frequent call

drops.

 To come out with an efficient scalability metrics

that ensures cost-effectiveness in distributed

systems as the system is been scaled.

 To have a detailed welllaid down metric that even

an individual can follow in order to scale his/her

system.

2. LITERATURE REVIEW
Different scalability metrics have been developed for

massively parallel computation, to evaluate the effectiveness

of a given algorithm running on different sized platforms, and

to compare the scalability of algorithms. These metrics

assume that the program runs by itself, on a set of k

processors with a given architecture, and that the completion

time T measures the performance.

2.1 Review of Available Metrics
Performance metrics such as speedup [1], scaled speedup [2],

sizeup [3], experimentally determined serial fraction [4], and

isoefficiency function [5] have been proposed for quantifying

the scalability of parallel systems. While these metrics are

extremely useful for tracking performance trends, they do not

provide adequate information needed to understand the reason

why an algorithm does not scale well on an Architecture. An

understanding of the interaction between the algorithmic and

architectural characteristics of a parallel system can give us

some fair idea. Studies undertaken by Kung [6] and Jamieson

[7] help identify some of these characteristics from a

theoretical perspective, but that one toodoes not provide any

means of quantifying their effects. Severalperformance studies

address issues such as latency, contention and

synchronization. The limits on interconnection network

performance [8], [9] and the scalability of synchronization

primitives supported by the hardware [10] , [11] are examples

of such studies undertaken over the years. While such issues

are extremely important, it is necessary to put the impact of

these factors into perspective by considering them in the

context of overall application performance. There are studies

that use real applications to address specific issues like the

effect of sharing in parallel programs on the cache and bus

performance [12] and the impact of synchronization and task

granularity on parallel system performance [13]. [14],

identify the architectural requirements such as floating point

operations, communications, and input/output for message-

passing scientific applications. [15] conduct a similar study

towards identifying the cache and memory size requirements

for several applications.

2.2 Speedup (S)
The speedup (S) obtained from a parallel systemis defined as

the ratio of the sequential execution time to the parallel

execution time. Therefore,

 Parallel computers promise the following enhancements over

their sequential counterparts, each of which leads to a

corresponding scaling strategy: 1) the number of processing

elements is increased enabling a potential performance

improvement for the same problem (constantproblem size

scaling); 2) other system resources like primary and

secondary storage are also increased enhancing the capability

to solve larger problems (memory-constrained scaling); 3)

due to the larger number of processing elements, a much

larger problem may be solved in the same time it takes to

solve a smaller problem on a sequential machine (time-

constrained scaling). Speedup captures only the constant

problem size scaling strategy. It is well known that for a

problem with a fixed size, the maximum possible speedup

with increasing number of processors is limited by the serial

fraction in the application [1]. But very often, parallel

computers are used for solving larger problems and in many

of these cases the sequential portion of the application may

not increase appreciably regardless of the problem size [2]

yielding a lower serial fraction for larger problems. In such

cases, memory-constrained and time-constrained scaling

strategies are more useful.In parallel computing, as in its serial

counterpart, time and memory are the dominant performance

metrics. Between alternate methods that use differing amounts

of memory, any user would prefer the faster method, provided

enough memory is available to run both methods. That is,

there is no advantage to using less memory than might be

made available to the application unless the use of less

memory reduces execution time or cost. So, the execution

time or time complexity remains an important metric. Also,

because of the lack of program portability, in considering the

complexity of a parallel algorithm the analysis of an algorithm

with respect to particular parallel computer architecture must

be talked about. The desire to know how much faster an

application runs on a parallel computer has made performance

measurements in the parallel domain more complex. What

benefits derive from the use of parallelism? How much

speedup results? While there is general agreements that

speedups is the ratio of serial execution time to parallel

execution time, there are diverse definitions of serial and

parallel execution times. This diversity results in at least five

different definitions of speedup which are presented in Table

1 below

2.3 Limits to speedup
Suppose two 100x100 matrices must be added manually

manually. The matrices are initially written on a long wall

where the results will be written. If this were to be done only,

it would take about a day. Using an additional person will take

in a little over one-half of a day. If 10,000 people were

standing as in a 100x100 matrix, each would be tasked to add

a unique pair of matrix elements. The addition task would be

accomplished in alittle over one-ten-thousandth of a day, for a

speedup of almost 10,000. With a million people, however,

the job could not be done any faster-there wouldn’t be enough

work to go around. In fact, the ensuing pandemonium might

actually make the job take longer, resulting in a smaller

speedup. Because it is assumed that each problem instance is

solvable by a finite amount of work, it follows that by

increasing the number of processors indefinitely, a point will

be reached when there isn’t any work to be distributed to the

newly added processors. No further speedup will be possible.

However, depending on the amount of work available, the

attainable speedup might be very large and might be able to

gainfully employ [2] introduced metric called scaled-speedup

that tries to capture the memory-constrained scaling strategy.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

3

2.4 Isoefficiency function
Isoefficiency function [5] tries to capture the impact of

problem sizes along the application dimension and the number

of processors along the architectural dimension. For a problem

with a fixed size, the processor utilization (efficiency)

normally decreases with an increase in the number of

processors. Similarly, if the problem size is scaled up keeping

the number of processors fixed, the efficiency usually

increases. Isoefficiency function relates these two artifacts in

typical parallel systems and is defined asː the rate at which the

problem size needs to grow with respect to the number of

processors inorder to keep the efficiency constant. An

isoefficiency whose growth is faster than linear suggests that

overheads in the hardware are a limiting factor in the

scalability of the system, while a growth that is linear or less

is indicative of a more scalable hardware. Apart from

providing a bound on achievable performance (Amdahl’s

law), the theoretical serial fraction of an application is not

very usefulin giving a realistic estimate of performance on

actual hardware. [4]use an experimentallydetermined serial

fraction for a problem with a fixed sizein evaluating parallel

systemsis computed by executing the application on the actual

hardware and calculating the effective loss in speedup.

Table 1. Speedup metric definitions

2.5 Overhead functions and lost cycles
Overhead functions and lost cycles [16] are metrics that have

been proposed to capture the growth of overheads in a parallel

system. Both these metrics quantify the contribution of each

overhead towards the overall execution time. The studies

differ in the techniques used to quantify these metrics.

Experimentation is used in [16] to quantify lost cycles, while

simulation is used in [17] to quantify overhead functions. In

addition to quantifying the overheads in a given parallel

system, a performance evaluation technique should also be

able to quantify the growth of overheads as a function of

system parameters such as problem size, number of

processors, processor clock speed, and network speed. This

information can prove usefulin predicting the scalability of

systems governed by a different set of parameters. A range of

performance metrics, from simple metrics like speedup which

provide scalar information about the performance of the

system, to more complicated vector metrics like overhead

functions that provide a wide range of statistics about the

parallel system execution is explained in Table 2. The metrics

that reveal only scalar information are much easier to

calculate. In fact, the overall execution times of the parallel

system parameterized by number of processors and problem

sizes would suffice to calculate metrics like speedup, scaled

speedup, sizeup, isoefficiency function and experimentally

determined serial fraction. On the other hand, the

measurement of overhead functions and lost cycles would

(I = Problem instance, P = number of processors; Q =Parallel program; n= Size of I)

METRIC FORMULA COMMENTS

Relative

Speedup (I,P)

Depends on the characteristics of

the instance I being solved as well

as the size P of the parallel

computer.

Real Speadup

(I,P)

The fastest Algorithm might not

be known and no single algorithm

might be fastest in allinstance for

some applications, so the runtime

of the sequential algorithm is

most frequently used in practice.

Absolute

Speedup (I,P)

 Can also use the sequential

algorithm most often used in

practice.

Asymptotic real

speedup (n)

 For problems such as sorting

where the asymptotic complexity

is not uniquely characterized by

the instance size n, the worst-

case complexity is used

Asymptotic

relative speedup

(n)

 Like asymptotic real speedup, it

does not rely on the number of

processors available in the

parallel system, because it is

assumed this number is

unbounded.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

4

need more sophisticated techniques that use a considerable

amount of instrumentation.

Table 2: Performance Metrics

METRICS MERITS DRAWBACKS

Speedup, Scaled Speedup, Sizeup

Useful for quantifying performance

improvements as a function of the

number of processors and problem

sizes.

Do not identify or quantify bottlenecks

in the system, providing no

additionalinformation when the system

doesn’t scale as expected.

Isoeffiency function, Experimentally

determined serial fraction, Nussbaum

and Agarwal’s metric

Attempt to identify if the application

or architecture is at fault in limiting

the scalability of the system.

The information provided may not be

adequate to identify and quantify the

individual application and architectural

features that limit the scalability of the

system.

Overhead functions, Lost cycles

Identify and quantify all the

application and architectural

overheads in a parallel system that

limit its scalability, providing a

detailed understanding of parallel

system behaviour.

Quantification of these metrics needs

more sophisticated instrumentation

techniques.

3. METHODOLOGY
The scalability metric adopted by this paper is founded on

some fundamental quantities which is defined in this section

and also the various algebraic relationships among these

quantities. Critical use cases, scenarios that are important to

scalability would be identified. Precise, quantitative,

measurable scalability requirements would be identified. The

scalability will be applied to idealized cases.

3.1 The Scalability Metric
 Scalability ψ (k1, k2) from one scale k1 to another scale k2is

the ratio of the efficiency figures for the two cases, ψ (k1, k2)

= E(k2) / E(k1).It also has an ideal value of unity. A typical

metric is the fixed size speedup, in which the scaled-up base

case has the same total computational work, and the speedup

Sis the ratio of the completion times (i.e., S(k) = T(1) / T(k)).

The scalability framework is based on a scaling strategy for

scaling up or down a given system, controlled by a scale

factor k. Given that each scaled configuration is determined by

a set of variables say, x(k),y(k) using numeric values, or

enumerated alternative choices, categorizedinto two groups as

follows:

(x)k represents a set of scaling variables, determined by the

strategy for each value of k,

(y)k represents a set of adjustable variables, termed scaling

enablers, which are tuned to maximize the productivity for

any given k. Since k determines x by the strategy, and xalso

influences y through the optimal tuning, the values of y are

effectively determined by k.

The creation of threads within processes, the memory

available for buffers, the allocation of processes to the

processors, tuning of the middleware parameters, priorities,

replication of processes and data, network bandwidth and the

choice of communication protocols are all examples of

scalability enablers. For the purpose of this paper, utilization

means the proportion of time the server is busy, residence

time is the average time spent at the service center by a

customer, both queueing and receiving service, queue length

is the average number of customers at the service center, both

waiting and receiving service, and throughput is the rate at

which customers pass through the service center. Service

centers represent system resources, and customers, which

represent users or transactions.The scalability metric is based

on productivity and for that matter when productivity is

maintained as the scale changes, the system is said to be

scalable. Given these three quantities:

λ(k) = throughput in responses per sec, at scale k

f(k) = average value of each response, calculated from its

quality of service at scale k,

C(k) = cost at scale k, expressed as a running cost per second

to be uniform with λ,

Therefore, the productivity F(k) is the value delivered per

second, divided by the cost per second:

 (1)

 The scalability metric relating systems at two different scale

factors is therefore defined as the ratio of their productivity

figures:

 (2)

The above equationis the scalability metric that the paper will

be based on. Frequently, is fixed at a known value and the

metric is written as ψ() or ψ(k). The system is deemed as

"scalable" if productivity keeps pace with costs from

configuration A to configuration B, in which case the metric ψ

will have a value greater than or not much less than unity. In

this paper, a threshold value of 0.8 will be used to say, the

system is scalable if 0.8 < ψ; as the threshold value should

reflect what is an acceptable cost-benefit ratio to the system

operator. The value of k at the threshold is the scalability limit

of the system. If ψ rises above 1.0, then it is said that the

system has "positive scalability" example is super-linear

speedup. With all the three quantities that enter the metric,

throughput is self-evident. In the case of the cost, itis not a

one-time capital cost, but is expressed as a rental cost, to

express costs and benefits consistently per unit time.

Examples of cost include the cost of software, processor,

networks, storage, help desks, management, etc. This paper

willdwell on few of these examples of cost, for illustration.

The value function f(k) is determined by evaluating the

performance of the scaled system, and may be a function of

any appropriate system measure, including delay measures

(mean, variance or jitter, probability of delay exceeding a

threshold), availability, or the probability of data loss or

timeouts. The paper, will consider only the mean response

time T(k) at scale factor k, compared to a target value Ṫ, in the

following value function:

 (3)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

5

From the above value function of Equations, the scalability

metric for scale k2relative to k1is, after a little simplification:

 (4)

3.2 Algorithm for Calculating Scalability

Bound

The following are the detailed steps to follow in calculating

the scalability bound:

Step 1. Determine the productivity for the base case, F(1) by a

detailed calculation Step 2. For each scale factor k, determine

the scaled system configuration from the scaling strategy and

then compute the total seconds of execution of each device,

averaged per response, As follows:

1. Execution and overhead, which is determined and

assigned to each device by the scaling strategy is

calculated first.

2. The remaining execution demand is added up over the

remaining tasks and spread (optimistically) over all the

devices, so as to produce the most even distribution of

the total demand, expressed in seconds of execution per

response. Meaning, it is allocated without regard to

allocating entire tasks to one device, but with regard to

whether the device can do the work (so, CPU demand is

spread over CPUs and disk demand over disks).

Optimistic assumptions about overheads mean that they

are set to the lowest value consistent with the scaling

strategy; thus, if two tasks included in the remaining

demand should be allocated separately (by the scaling

strategy), internode communications overhead is

included. The result of this step is a set of demands

which may still be unequally distributed over the

devices, because of constraints in spreading the

workload.

Step 3. At scale k, set C(k) to the cost of the scaled system,

and find bounds on λ and T:

a. set λ(k) to the minimum of 1) the balanced system

throughput bound for a queuing network with the

same servers, and 2) the asymptotic throughput

bound for the given set of demands

b. Set T(k) to the balanced job value

c. Compute F(k) from (6).

Step 4. Set the scalability metric bound to ψ =F(k) / F(1), and

then the bound-based scalability limit is the first value of k

giving that ydrops below the "moderate scalability" limit of 1-

ɛ. The queueing network model with the evenly spread

workload is constructed so that it intuitively gives a

performance bound; that notwithstanding, the relationship is

not rigorously proven. The intuitive reasons for believing it

gives a bound as:

a. software resource constraints are ignored, which can

only improve performance

b. allocation decisions which are enablers in the strategy

are represented in the bound by the greatest possible

degree of load balancing, which should give better

performance than the best feasible allocation that

respects task granularity, and

c. overhead that is not explicitly required by the scaling

strategy is omitted. The bounds can show the

consequences of changing demands and power with k.

Suppose that the scaling strategy resulted in a total demand (in

seconds of execution, adding over all nodes) of
 , the number of nodes (all equally fast) is , and

there is a user delay (not included in the response time) of .

Then the bound calculation is:

 (5)

 (6)

(7)

 (8)

The bound on the scalability metric can then be expressed as:

 (9)

 (10)

When the system is saturated, both the numerator and

denominator are dominated by the terms in the big round

brackets multiplied by (N - 1). The direct effect of adding

work (increasing) is always to decrease ψ. The direct

effect of adding nodes is to increase and both, so

as far as the bound is concerned the effect is neutral when the

system is saturated, and harmful to scalability when it is not.

The direct effect of causing a bottleneck node, due to a scaling

path that does not allow the load to be properly balanced, is to

increase and decrease scalability through the last term in

the numerator. All of these effects are expected, but the

equation gives a picture of the order of the relationship. A

second version of the bounds analysis, which is closer to a

kind of approximation, is to use the bounding value for

performance and productivity in the base case also. This puts

all scale factors on an equal footing in regard to the looseness

of the bounds. However, it reduces the certainty that the value

of is in fact a bound, since the denominator may be

overestimated.

3.3 Overview of The Connection-

Management System
The connection management system discussed in this paper is

based on the design and parameters of a real industrial

prototype. It is a design which evolved out of a connection-

management design described previously in [18]. The

prototype was heavily influenced by standards such as G.805.

It was designed to be able to:

1. set up a virtual private network joining user specified

end-points, and allocating the network resources in such

a manner as to meet the QoS requirement,

2. Manage a variety of heterogeneous switching

equipment, for the purpose of setting up end-to-end

connections,

3. Use the allocated resources of the virtual private

network and let the user set-up/tear down connections

arbitrarily, among any of the sites.

The prototype was implemented using a network of

workstations running UNIX, with DCE middleware to handle

inter task communications and transparency, and a backbone

network based on a SONET OC-12 (622 Mbit/s) optical fiber

ring with proprietary switching equipment on which cross-

connections can be made or released as required.

The software tasks can be roughly classified into three logical

layers:

1. The topology layer that deals with the connection

topology of the virtual private network (VPN),

connecting all the user-specified endpoints (e.g., the

User-Network Interface identifiers UNI's in the case of

an ATM network). Once a virtual private network is

established, the objects in the topology layer can

directly communicate with the lowest layer (called

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

6

SONET here), in order to set up virtual channels over

this VPN.

2. The virtual path (VP) layer, that deals with connecting

all the sites in a virtual private network with a virtual

path. This corresponds to provisioning the network

resources to meet user specified bandwidth and QoS, to

support future connections.

3. The SONET layer that supports a virtual path by setting

up appropriate connections on the SONET ring.

The client tasks represents the users that set up (or dismantle)

the virtual private network and set up (or dismantle)

connections on an existing virtual private network. The clients

could be the software tasks that manage higher level

applications, e.g., a video conferencing system that uses the

given connection management system. The clients interact

with the topology layer to set up the virtual private network,

as well as the connections on it (VC's or the virtual channels).

The frequency of setting up/releasing a VPN, which is like a

leased line, is much lower than that of setting up/releasing

temporary connections by a ratio of 1:50.

o Topo_setup and Topo_delete: these tasks belong to the

topology layer discussed above, and support setting up

VPNs as well as connections within a VPN. The necessary

routing functions are built into the setup entries of these

tasks and of their servers.

o VP: This task sets up and deletes virtual paths (VPs) that

make up a VPN.

o SONET: This task manages the fibre-level portto-port

connections required to support the setting up of the VP

layer trails, which in turn help set up the VPN.

Subnet_connect: This task directly controls the SONET

network elements.

Database: The database stores objects related to the various

functionallayers in the system and provides state data to all the

functions. The database, which is accessed heavily by almost

all the tasks in the system, clearly is a potential hot spot in the

system. By measurement it was verified that the database

indeed had the greatest demands for both VPN setup/release,

as well as connection setup/release, and would limit

scalability if its capacity were not increased. One approach to

this is database replication, which was considered as an

element in the scaling strategy. The prototype system was

instrumented and measured to obtain workload parameters for

the performance model, which was used to evaluate the

scalability.

3.4 Using the Metric to Scale the

Connection Management System
The scaling strategy was to introduce replications of the

database, using the location-based replication paradigm

described by [19]. For each database replica, an additional

processor was also added to the system. (It is noted that the

location-based paradigm was motivated by reliability as well

as performance, and the reliability effects are not rewarded in

the value function f used here.) The scale factor was set to be

the number of database replicas. A fixed number of five

processors was provided to run the other tasks in a fixed

configuration, and the number of users was taken as a

scalability enabler. Further enablers that were not used could

have been the allocation of the tasks other than the database

tasks to the processors, and replicas and additional processors

for the other functions. For each scale factor a performance

model was set up with the replicas and their overheads, with

overhead amounts calculated from the number of replicas, and

the requests sent from any client entry to the database task

were equally divided among all the replicas. The fixed remote

invocation overheads were incorporated in the execution

demands of the task entries. The fact that the accesses to the

database replicas were symmetric happens to permit a special

efficient approximation for symmetric replication of

subsystems to be used in the solver [20]. In order to model the

consistency management overhead (in terms of extra

execution), each replica of the database is associated with a

transaction overhead pseudo-task on the same CPU. The

transaction overhead task accounts for the synchronous and

asynchronous broadcasting overheads, locking overheads,

etc., for consistency management, and the calls made by the

database entries to the overhead task during the operation

prepare, commit, and abort phases are proportional to the

number of database replicas in the system. The number of

write transactions is significant, but the granularity of the

database objects is small, so the probability of conflict on

locks was assumed to be negligible and lock queueing delays

were not modeled. However, the execution overheads of

locking were substantial and were included. The response of

the system was modeled as a cycle of effort for one

conference, including setting up and tearing down five virtual

channels for a video conference between the two sites, plus

one time in ten it included setting up a VPN, as well. The

cycle had a target time of 15 minutes (Ṫ = 15 min.). Load was

generated by a number of users, who were modeled as having

a "thinking time" of 10 minutes, between one cycle and the

next. The provisioning cost for the base configuration,

including one copy of the database server, and one processor

per software task, is taken as GHc100,000. Each extra copy of

the database server (including a new dedicated processor) is

assumed to cost an additional GHc 5,000. This gives a cost

per unit time of the form Constant (1 + 0.05k). The reference

configuration of the system had a single database copy, and

was also optimized with respect to the number of clients,

giving a reference productivity of 702 cycles of activity per

hour per unit cost, and a reference throughput of 95 cycles of

activity per hour. (That is, setting up and tearing down 9.5

virtual private networks, and setting up and tearing down

about 475 virtual channels per hour).

3.5 Calculating the Scalability Bound of

The Connection Management System
Step 1. The base configuration with six processors is

optimized with respect to the number of clients, to obtain 23

clients, 95 operation units per hour and productivity

 units/hour.

Step 2. At each scale factor, with k database replicas and k

database processors, the balanced demand is calculated,

including the overheads. In this case,

Total demand, D = 14.44 + (22.11k) sec

Average demand, sec

 sec

Response time =

Cost,

Steps 3 and 4. The solution gives the response time
 and throughput for

the balanced system. Substituting into Equation 13 gives the

following expression for the scalability bound:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

7

3.6 Procedure for scaling the system

Four improvements that can be made to the system using the

models of the metric are considered. These are listed below,

along with an indication of how each would be reflected in the

parameters of the model:

1. Replace the CPU with one that is twice as fast.

2. Shift some files from the faster disk to the slower disk,

balancing their demands. The primary effect is only

considered, which is the change in disk speed, and

ignore possible secondary effects such as the fact that

the average size of blocks transferred may differ

between the two disks. The new disk service demands

are derived as follows.

 . Because and , this

is the same as

And dividing by the appropriate

service times, the new visit counts is obtained:

and

3. Add a second fast disk (center 4) to handle half the load

of the busier existing disk. Once again, the primary

effects of the change is considered only.

4. The three changes made together: the faster CPU and a

balanced load across two fast disks and one slow disk.

Service demands become
 These were derived in a manner

similar to that employed above. to

ensure that ː

3.7 Overview of the Call Processing System
The handling and processing of voice and video calls is a

critical function provided by IP telephony systems. This

functionality is handled by some type of call processing entity

or agent. Given the critical nature of call processing

operations, it is important to design unified communications

deployments to ensure that call processing systems are

scalable enough to handle the required number of users and

devices and are resilient enough to handle various network

and application outages or failures.

3.8 Applying the metric to call processing

system
The metric is applied to the call processing system of digital

telephony, based on proprietary message oriented middleware.

The objective is to assess the following cardinal points.

1. Up to what point a product would be scalable, if built using

the same basic design decisions,

2. How muchinvestment should be made in the hardware and

software components of the system for supporting different

numbers of users, andlastly

3. The impact of the location service-based replication model

for database transactions [19]

4. RESULTS AND DISCUSSION
This section explains the results of the two case studies, call

processing system, and connection management system as the

metric is used to scale and analyze their performance and

output.

4.1 Results and Discussions of the

Connection Management System
From the results summarized in Table 3, the full calculation

optimizes the productivity function with respect to the number

of clients which is the scalability enabler at each scale factor.

The results in the table shows that the scaling strategy and

optimization gives response times which are well within the

target at all scales, except that the scalability is only moderate.

The results also shows that, the throughput increases from

 and then levels off whereas costs rises, which

drives the scalability down. More also, the database CPU

columns shows that most of the database work is overhead

and at the larger scales. The graphs of Fig. 2 and 3 shows the

plots of detailed scalability measure and the bound. The

results shows that, the system is spinning its wheels and

thereby generating overhead but not performance.

Table 3 Scalability Metric Results for the Connection Management System

(The Normalized Response Time is the mean response time divided by the target of 15 min.)

Scale

Factor

Productivity

(Optimized) per

unit cost) x 1e-2

Scalability

metric value

(Optimized)

Throughput

(operations per

hour)

NormalizedRes

ponse Time

Database CPU Utilization

System

Cost

(Units)

Total

Due to

transaction

overheads

1 1.95485 1.0 95 0.3017 92.59 * 1.05

2 2.02031 1.0335 108.62 0.3645 86.86 67.85 1.1

3 1.90128 0.9726 111.18 0.4126 82.43 69.45 1.15

4 1.75662 0.8986 112.01 0.4761 79.77 69.97 1.2

5 1.61546 0.8264 112.26 0.5449 77.98 70.12 1.25

6 1.4861 0.7602 110.95 0.5953 75.77 69.30 1.3

7 1.36948 0.7006 110.94 0.6675 74.84 69.30 1.35

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

8

Fig. 2 Scalability bound for the connection management

system

Fig. 3 Scalability metric for the connection management

system

4.2 Results and Discussions of the Call

Processing System
The results of the call processing system as scaled by the

metric and same tabulated shows that, the scalability metric

values plotted in Fig. 4 drops to 0.8 at the scale factor which is

about k = 4. This indicate that the system is scalable up to

scale factor of 4. The graph of throughput Verses scale factor

in Fig. 5 shows the throughput with a knee at about k = 3 and

at this point it has been increased from about 1.08 million

calls per hour to about 3.4 million per hour whiles at the same

time maintaining good quality of service (QoS). For scale

factors (k) beyond 3, the optimization gives a response time

which is a little higher than the target value. This is

encouraged by the metric, because it also gives a higher

throughput. The results of the table and that of the graph

plotted in Fig. 4 also shows that the available productivity of

the system drops gradually up to k = 3 and from there very

sharply. In summary, the results indicate that the scalability is

reasonable up to the scale factor of 3 and beyond that, the

scalability metric degrades, even though the capacity

continues to increase up to about the scale factor of 10.

Beyond this factor, the system is bottlenecked and at the same

time capacity is saturated. Fig. 6 also shows the graph of

scalability against scale factor.

Table 4 Scalability Metric Results for the Call Processing System

(*The response time is normalized to the target mean response time of 10min.)

Scale

factor

Optical No. of replica Productivity

(Optimized) (ms-

1 per unit cost)

Scalability

metric value

(Optimized)

Throughput

(Calls per

hour) x 106

Normalized*

Response Time

System

Cost

(units)
Database Location

server

1 1 1 0.1600 1 1.0958 0.72 1.1

2 1 1 0.1492 0.9325 2.1273 0.88 2.1

3 1 6 0.1444 0.9025 3.0531 0.89 3.1

5 4 2 0.0866 0.5415 3.6485 1.16 5.4

10 2 4 0.0589 0.3683 4.4934 1.11 10.2

15 2 10 0.0387 0.2421 4.4934 1.12 15.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 R
u

le
 o

f
th

u
m

b
 s

ca
la

b
ili

ty

b
o

u
n

d

Scale factor

1 1.0335
0.9726

0.8986
0.8264

0.7602
0.7006

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

 s
ca

la
b

ili
ty

 m
et

ri
c

va
lu

e

Scale factor

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

9

Fig. 4 A Graph of Productivity vrs Scale factor

Fig. 5 A Graph of throughput vrs Scale factor

Fig. 6 A Graph of Scalability vrs Scale factor

5. CONCLUSION AND

RECOMMENDATIONS
The metric derived in this paper is a strategy based scalability

metric that generalizes the well-known metrics for scalability

of parallel computations to describe heterogeneous distributed

systems. It is worthy to note that, in these systems, a uniform

increase in all components types is ideally not a reasonable

scaling strategy. What makes this derived metric unique is the

fact that, it separates the impact of throughput and response

time on the metric, formalizing the notation of a scaling

strategy, introducing QoS evaluation and more also,

introducing formal scalability enablers which are optimized at

each scale factor. The derived metric is the ratio of the

system’s productivity in a scaled version to the productivity of

a base case. It also gives a reasonable results for a large

collection of idealized and well understood systems nodes

which is in the form of queueing modes suitable for

distributed systems unlike the other metric like fixed size

speedup, where the scaling strategy is to use k processors,

throughput is the inverse of completion time, cost is k and

quality of service function is given as F = 1. More also, the

scalability that deals with fixed time speedup also deals with

the use of k processors, but it changes the workload (W) to a

value which keeps the completion time constant. In that

strategy, throughput is constant, cost is k and quality of

service function is F = W.

In the case of call processing system, it can be concluded that

the call processing system is scalable up to the scale factor of

4 and at that level, it is capable of supporting roughly 3.3

million calls per hour. If it becomes necessary to scale further

than this, then recommendations would be as followsː

1. The software objects organization into concurrent

tasks ought to be redesigned in order to make their

execution and communication demands more equal.

2. Modification of the database schema can be triedin

order to partition the database in various domains

instead of replicating it and also, the consistency

management overheads can be reduced.

6. REFERENCES
[1] Amdahl G. M., Validity of the Single Processor

Approach to achieving Large Scale Computing

Capabilityties. In Proceedings of the AFIPS Spring Joint

Computer Conference, pages 483–485, April1967

[2] Gustafson J. L., Montry G. R., and Benner R. E.

Development of Parallel Methods for a 1024-node

Hypercube. SIAM Journal on Scientific and Statistical

Computing, 9(4):609–638, 1988

[3] Sun X-H. and Gustafson J. L. Towards a better Parallel

Performance Metric. ParallelComputing, 17:1093–

1109,1991

[4] Karp A. H. and Flatt H. P. Measuring Parallel processor

Performance. Communications of the ACM, 33(5):539–

543, May 1990.

[5] Kumar V. and Rao V. N. Parallel Depth-First Search.

International Journalof Parallel Programming,

16(6):501–519, 1987

[6] Kung H. T. The Structure of Parallel Algorithms.

Advances in Computers, 19:65–112, 1980. Edited by

Marshall C. Yovits and Published by Academic Press,

New York.

[7] Jamieson L. H, Gannon D. B., and Douglas R. J., The

Characteristics of Parallel Algorithms, pages 65–100.

MIT Press, 1987.

[8] Agarwal A. Limits on Interconnection Network

Performance. IEEE Transactions on Parallel and

Distributed Systems, 2(4):398–412, October 1991.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 5 10 15

P
ro

d
u

ct
iv

it
y

(p
er

m

ill
is

ec
o

n
d

 p
er

 u
n

it
 c

o
st

)

Scale factor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 5 10 15

Th
ro

u
gh

p
u

t
(c

al
ls

 p
er

h

o
u

r)

Scale factor

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 5 10 15 (O
p

ti
m

iz
ed

)
sc

al
ab

ili
ty

m

et
ri

c
va

lu
e

Scale factor

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 – No. 15, September 2018 – www.ijais.org

10

[9] Pfister G. F. and Norton V. A. Hot Spot Contention and

Combining in Multistage Interconnection Networks.

IEEE Transactions on Computer Systems, C-34(10):943–

948, October 1985.

[10] Anderson T. E. The Performance of Spin Lock

Alternatives for Shared-Memory Multiprocessors. IEEE

Transactions on Paralleland Distributed Systems,

1(1):6–16, January 1990.

[11] Mellor-Crummey J. M. and Scott M. L. Algorithms for

Scalable Synchronization on Shared-Memory

Multiprocessors. ACM Transactions on Computer

Systems, 9(1):21–65, February 1991

[12] Eggers S. J. and Katz R. H. The Effect of Sharing on the

Cache and Bus Performance of Parallel Programs. In

Proceedings of the Third International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 257–270, Boston,

Massachusetts, April 1989.

[13] Chen D, Su H, and Yew P. The Impact of

Synchronization and Granularity on Parallel Systems. In

Proceedings of the 17th AnnualInternational Symposium

on Computer Architecture, pages 239–248, 1990.

[14] Cypher R., Ho A., Konstantinidou S., and Messina P.

Architectural requirements of parallel scientific

applications with explicit communication. In

Proceedings of the 20th AnnualInternational Symposium

on Computer Architecture, pages 2–13, May 1993

[15] Rothberg E, J. Singh P, and Gupta A. Working sets,

cache sizes and node granularity issues for large-scale

multiprocessors. In Proceedings of the 20th

AnnualInternational Symposium on Computer

Architecture, pages 14–25, May 1993."Generic

Functional Architectures for Transport Networks," Int'l

Telecommunications Union Recommendation no. G.

805, Nov.1995

[16] Crovella M. E. and LeBlanc T. J. Parallel Performance

Prediction Using Lost Cycles Analysis. In Proceedings of

Supercomputing ’94, November 1994.

[17] Sivasubramaniam A, Singla A, Ramachandran U, and

Venkateswaran H. An Approach to Scalability Study of

Shared Memory Parallel Systems. In Proceedings of the

ACM SIGMETRICS 1994 Conference on Measurement

and Modeling of Computer Systems, pages 171–180,

May 1994.

[18] Jogalekar P.P. and Woodside C.M., "A Scalability Metric

for Distributed Computing Applications in

Telecommunications," Proc. 15th Int'l Teletraffic

Congress Teletraffic Contributions to the Information

Age, pp. 101-110, 1997.

[19] Trantafiliou P. and Taylor D. J, "The Location-Based

Paradigm for Replication: Achieving Efficiency and

Availability in Distributed Systems, " IEEE Trans.

Software Eng., vol. 21, pp. 1-18, Jan. 1995.

[20] Pan A. M, "Solving Stochastic Rendezvous Networks of

Large Client-Server Systems with Symmetric

Replication, " master’s paper, Dept. of Systems and

Computer Eng., Carleton Univ, Ottawa, Sept. 1996.

