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ABSTRACT 
Today’s computer systems are more complex, more rapidly 

evolving, and more essential to the conduct of business than 

those of recent past. The complexity becomes more rigid in 

the case of distributed systems. As businesses grow, the 

systems that support their functions also need to grow to 

support more users, process more data, or both. As they grow, 

it is important to maintain their performance in terms of 

responsiveness or throughput. Despite its importance, 

scalability is poorly understood and few organizations 

understand how to quantitatively evaluate an application’s 

scalability. The derived scalability metric of this paper is 

based on cost effectiveness, in which the effectiveness is a 

function of the system's throughput and its QoS. It is a 

strategy based scalability metric that generalizes the well-

known metrics for scalability of parallel computations to 

describe heterogeneous distributed systems. Scalability is 

measured by the range of scale factors that gives a satisfactory 

value of the metric, since a good scalability is a joint property 

of the initial design and the scaling strategy.  What makes this 

derived metric unique is the fact that, it separates the impact 

of throughput and response time on the metric, formalizing the 

notation of a scaling strategy, introducing QoS evaluation and 

more also, introducing formal scalability enablers which are 

optimized at each scale factor. 
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1. INTRODUCTION 
Today’s computer systems are more complex, more rapidly 

evolving, and more essential to the conduct of business than 

those of even a few years ago. The result is anincreasing need 

for tools and techniques that assist in understanding the 

behavior of these systems. Such an understanding is necessary 

to provide intelligent answers to the questions of cost and 

performance that arise throughout the life of a system. Right 

from Scientific institutions, Computer manufacturing 

industries, businesses of all kinds, educational institutions 

(Universities), software programmers to individuals, the issue 

of scalability remains the number one priority in terms of 

manufacturing and the use of computer systems. This question 

is of great significance to the organizations involved, because 

of its potentially serious repercussions from incorrect answers. 

Unfortunately, this question is also complex as correct 

answers are not easily obtained.  

The world has now become a global village through internet 

and inter-connectivity. Individuals, organizations, 

governments, businesses to mention but a few in one way or 

the other connect or communicate remotely. Businesses have 

spread up to the extent of defying geographical boundaries 

whiles individuals and organizations do transact business and 

at the same time stores their data remotely. Typical example 

that readily come in mind is cloud computing. These activities 

are made possible because the system is distributed. A 

distributed system is a collection of independent computers 

that appear to its users as a single coherent system. In order 

words, a distributed system is a collection of independent 

computers that are used jointly to perform a single task or to 

provide a single service.  Most distributed systems are 

scalable including present and future applications of which 

web based distributed systems is no exception. Typical 

applications, e-commerce, multimedia news services, distance 

learning, remote medicine, enterprise management, and 

network management are also some of the examples of 

distributed services. A distributed system should be 

deployable in a wide range of scales, in terms of numbers of 

users and services, quantities of data stored and manipulated, 

rates of processing, numbers of nodes, geographical coverage, 

and sizes of networks and storage devices. As businesses 

grow, the systems that support their functions also need to 

grow to support more users, process more data, or both. As 

they grow, it is important to maintain their performance in 

terms of responsiveness or throughput. Poor performance in 

these applications often translates into appreciable costs. 

Customers will oftenshop elsewhere rather than endure long 

waits. Slow responses in CRM applications mean that more 

customer-service representatives are needed. And, failure to 

process financial tradesin a timely fashion can result in 

statutory penalties as well as lost customers. Despite its 

importance, scalability is poorly understood and few 

organizations understand how to quantitatively evaluate an 

application’s scalability. As a result, they often make 

assumptions about the scalability of their software. If wrong, 

these assumptions can be costly.  

Many scaled systems suffer from the problem of maintaining 

productivity and that of delay in transmitting data from one 

system to another. In the field of telecommunication industry, 

frequent call drops coupled with high cost of managing 

distributed networks is a major headache to the managers in 

telecommunication business as more often than not, scaled 

networks performance does not commensurate with the cost 

incurred by scaling the systems, due to unavailable well laid 

down scalable metrics.  

Therefore, the objectives of this study are as follows  
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 To have metrics that will maintain productivity as 

the system is scaled so as to enhance call-processing 

system and make it scalable in order to support large 

number of callers per hour at an appreciable 

throughput and at the same time curtail frequent call 

drops. 

  To come out with an efficient scalability metrics 

that ensures cost-effectiveness in distributed 

systems as the system is been scaled. 

 To have a detailed welllaid down metric that even 

an individual can follow in order to scale his/her 

system. 

 

2. LITERATURE REVIEW 
Different scalability metrics have been developed for 

massively parallel computation, to evaluate the effectiveness 

of a given algorithm running on different sized platforms, and 

to compare the scalability of algorithms. These metrics 

assume that the program runs by itself, on a set of k 

processors with a given architecture, and that the completion 

time T measures the performance. 

 

2.1 Review of Available Metrics 
Performance metrics such as speedup [1], scaled speedup [2], 

sizeup [3], experimentally determined serial fraction [4], and 

isoefficiency function [5] have been proposed for quantifying 

the scalability of parallel systems. While these metrics are 

extremely useful for tracking performance trends, they do not 

provide adequate information needed to understand the reason 

why an algorithm does not scale well on an Architecture.  An 

understanding of the interaction between the algorithmic and 

architectural characteristics of a parallel system can give us 

some fair idea. Studies undertaken by Kung [6] and Jamieson 

[7] help identify some of these characteristics from a 

theoretical perspective, but that one toodoes not provide any 

means of quantifying their effects. Severalperformance studies 

address issues such as latency, contention and 

synchronization. The limits on interconnection network 

performance [8], [9] and the scalability of synchronization 

primitives supported by the hardware [10] , [11] are examples 

of such studies undertaken over the years. While such issues 

are extremely important, it is necessary to put the impact of 

these factors into perspective by considering them in the 

context of overall application performance. There are studies 

that use real applications to address specific issues like the 

effect of sharing in parallel programs on the cache and bus 

performance [12] and the impact of synchronization and task 

granularity on parallel system performance [13]. [14],  

identify the architectural requirements such as floating point 

operations, communications, and input/output for message-

passing scientific applications. [15] conduct a similar study 

towards identifying the cache and memory size requirements 

for several applications. 

  

2.2 Speedup (S) 
The speedup (S) obtained from a parallel systemis defined as 

the ratio of the sequential execution time to the parallel 

execution time. Therefore, 

  
  
  
 

   
     

 

 Parallel computers promise the following enhancements over 

their sequential counterparts, each of which leads to a 

corresponding scaling strategy: 1) the number of processing 

elements is increased enabling a potential performance 

improvement for the same problem (constantproblem size 

scaling); 2) other system resources like primary and 

secondary storage are also increased enhancing the capability 

to solve larger problems (memory-constrained scaling); 3) 

due to the larger number of processing elements, a much 

larger problem may be solved in the same time it takes to 

solve a smaller problem on a sequential machine (time-

constrained scaling). Speedup captures only the constant 

problem size scaling strategy. It is well known that for a 

problem with a fixed size, the maximum possible speedup 

with increasing number of processors is limited by the serial 

fraction in the application [1]. But very often, parallel 

computers are used for solving larger problems and in many 

of these cases the sequential portion of the application may 

not increase appreciably regardless of the problem size [2] 

yielding a lower serial fraction for larger problems. In such 

cases, memory-constrained and time-constrained scaling 

strategies are more useful.In parallel computing, as in its serial 

counterpart, time and memory are the dominant performance 

metrics. Between alternate methods that use differing amounts 

of memory, any user would prefer the faster method, provided 

enough memory is available to run both methods. That is, 

there is no advantage to using less memory than might be 

made available to the application unless the use of less 

memory reduces execution time or cost. So, the execution 

time or time complexity remains an important metric. Also, 

because of the lack of program portability, in considering the 

complexity of a parallel algorithm the analysis of an algorithm 

with respect to particular parallel computer architecture must 

be talked about. The desire to know how much faster an 

application runs on a parallel computer has made performance 

measurements in the parallel domain more complex. What 

benefits derive from the use of parallelism? How much 

speedup results? While there is general agreements that 

speedups is the ratio of serial execution time to parallel 

execution time, there are diverse definitions of serial and 

parallel execution times. This diversity results in at least five 

different definitions of speedup which are presented in Table 

1 below  

 

2.3 Limits to speedup 
Suppose two 100x100 matrices must be added manually 

manually. The matrices are initially written on a long wall 

where the results will be written. If this were to be done only, 

it would take about a day. Using an additional person will take 

in a little over one-half of a day. If 10,000 people were 

standing as in a 100x100 matrix, each would be tasked to add 

a unique pair of matrix elements. The addition task would be 

accomplished in alittle over one-ten-thousandth of a day, for a 

speedup of almost 10,000. With a million people, however, 

the job could not be done any faster-there wouldn’t be enough 

work to go around. In fact, the ensuing pandemonium might 

actually make the job take longer, resulting in a smaller 

speedup. Because it is assumed that each problem instance is 

solvable by a finite amount of work, it follows that by 

increasing the number of processors indefinitely, a point will 

be reached when there isn’t any work to be distributed to the 

newly added processors. No further speedup will be possible. 

However, depending on the amount of work available, the 

attainable speedup might be very large and might be able to 

gainfully employ [2] introduced metric called scaled-speedup 

that tries to capture the memory-constrained scaling strategy. 
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2.4 Isoefficiency function 
Isoefficiency function [5] tries to capture the impact of 

problem sizes along the application dimension and the number 

of processors along the architectural dimension. For a problem 

with a fixed size, the processor utilization (efficiency) 

normally decreases with an increase in the number of 

processors. Similarly, if the problem size is scaled up keeping 

the number of processors fixed, the efficiency usually 

increases. Isoefficiency function relates these two artifacts in 

typical parallel systems and is defined asː the rate at which the 

problem size needs to grow with respect to the number of 

processors inorder to keep the efficiency constant. An 

isoefficiency whose growth is faster than linear suggests that 

overheads in the hardware are a limiting factor in the 

scalability of the system, while a growth that is linear or less 

is indicative of a more scalable hardware. Apart from 

providing a bound on achievable performance (Amdahl’s 

law), the theoretical serial fraction of an application is not 

very usefulin giving a realistic estimate of performance on 

actual hardware. [4]use an experimentallydetermined serial 

fraction for a problem with a fixed sizein evaluating parallel 

systemsis computed by executing the application on the actual 

hardware and calculating the effective loss in speedup.  

 

 

Table 1. Speedup metric definitions 

 

2.5 Overhead functions and lost cycles 
Overhead functions and lost cycles [16] are metrics that have 

been proposed to capture the growth of overheads in a parallel 

system. Both these metrics quantify the contribution of each 

overhead towards the overall execution time. The studies 

differ in the techniques used to quantify these metrics. 

Experimentation is used in [16]  to quantify lost cycles, while  

simulation is used in [17] to quantify overhead functions. In 

addition to quantifying the overheads in a given parallel 

system, a performance evaluation technique should also be 

able to quantify the growth of overheads as a function of 

system parameters such as problem size, number of 

processors, processor clock speed, and network speed. This 

information can prove usefulin predicting the scalability of 

systems  governed by a different set of parameters. A range of 

performance metrics, from simple metrics like speedup which 

provide scalar information about the performance of the 

system, to more complicated vector metrics like overhead 

functions that provide a wide range of statistics about the 

parallel system execution is explained in Table 2. The metrics 

that reveal only scalar information are much easier to 

calculate. In fact, the overall execution times of the parallel 

system parameterized by number of processors and problem 

sizes would suffice to calculate metrics like speedup, scaled 

speedup, sizeup, isoefficiency function and experimentally 

determined serial fraction. On the other hand, the 

measurement of overhead functions and lost cycles would 

(I = Problem instance, P = number of processors; Q =Parallel program; n= Size of I) 

   

METRIC FORMULA COMMENTS 

Relative 

Speedup (I,P) 
                                               

                                                
 

 

 

Depends on the characteristics of 

the instance I being solved as well 

as the size P of the parallel 

computer. 

 

Real Speadup 

(I,P)                                                           

                                                
 

 

 

The fastest Algorithm might not 

be known and no single algorithm 

might be fastest in allinstance for 

some applications, so the runtime 

of the sequential algorithm is 

most frequently used in practice. 

Absolute 

Speedup (I,P)                                                                   

                                                
 

 Can also use the sequential 

algorithm most often used in 

practice. 

Asymptotic real 

speedup (n)                                               

                                                             
 

 For problems such as sorting 

where the asymptotic complexity 

is not uniquely characterized by 

the instance size n,  the worst-

case complexity is used 

 

Asymptotic 

relative speedup 

(n) 

                                            

                                                             
 

 Like asymptotic real speedup, it 

does not rely on the number of 

processors available in the 

parallel system, because it is 

assumed this number is 

unbounded. 
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need more sophisticated techniques that use a considerable 

amount of instrumentation. 
 

 

Table 2: Performance Metrics 

METRICS MERITS DRAWBACKS 

 

Speedup, Scaled Speedup, Sizeup 

Useful for quantifying performance 

improvements as a function of the 

number of processors and problem 

sizes. 

Do not identify or quantify bottlenecks 

in the system, providing no 

additionalinformation when the system 

doesn’t scale as expected. 

 

Isoeffiency function, Experimentally 

determined serial fraction, Nussbaum 

and Agarwal’s metric  

 

Attempt to identify if the application 

or architecture is at fault in limiting 

the scalability of the system. 

The information provided may not be 

adequate to identify and quantify the 

individual application and architectural 

features that limit the scalability of the 

system. 

 

 

 

Overhead functions, Lost cycles 

Identify and quantify all the 

application and architectural 

overheads in a parallel system that 

limit its scalability, providing a 

detailed understanding of parallel 

system behaviour. 

 

 

Quantification of these metrics needs 

more sophisticated instrumentation 

techniques. 

 

3. METHODOLOGY 
The scalability metric adopted by this paper is founded on 

some fundamental quantities which is defined  in this section 

and also the various algebraic relationships among these 

quantities. Critical use cases, scenarios that are important to 

scalability would be identified. Precise, quantitative, 

measurable scalability requirements would be identified. The 

scalability will be applied to idealized cases.   

 

3.1 The Scalability Metric 
 Scalability ψ (k1, k2) from one scale k1 to another scale k2is 

the ratio of the efficiency figures for the two cases, ψ (k1, k2) 

= E(k2) / E(k1).It also has an ideal value of unity. A typical 

metric is the fixed size speedup, in which the scaled-up base 

case has the same total computational work, and the speedup 

Sis the ratio of the completion times (i.e., S(k) = T(1) / T(k)). 

The scalability framework is based on a scaling strategy for 

scaling up or down a given system, controlled by a scale 

factor k. Given that each scaled configuration is determined by 

a set of variables say, x(k),y(k) using numeric values, or 

enumerated alternative choices, categorizedinto two groups as 

follows:  

(x)k represents a set of scaling variables, determined by the 

strategy for each value of k, 

(y)k represents a set of adjustable variables, termed scaling 

enablers, which are tuned to maximize the productivity for 

any given k. Since k determines x by the strategy, and xalso 

influences y through the optimal tuning, the values of y are 

effectively determined by k. 

The creation of threads within processes, the memory 

available for buffers, the allocation of processes to the 

processors, tuning of the middleware parameters, priorities, 

replication of processes and data, network bandwidth and the 

choice of communication protocols are all examples of 

scalability enablers. For the purpose of this paper, utilization 

means the proportion of time the server is busy, residence 

time is the average time spent at the service center by a 

customer, both queueing and receiving service, queue length 

is the average number of customers at the service center, both 

waiting and receiving service, and throughput is the rate at 

which customers pass through the service center. Service 

centers represent system resources, and customers, which 

represent users or transactions.The scalability metric is based 

on productivity and for that matter when productivity is 

maintained as the scale changes, the system is said to be 

scalable. Given these three quantities: 

λ(k) = throughput in responses per sec, at scale k 

f(k) = average value of each response, calculated from its 

quality of service at scale k, 

C(k) = cost at scale k, expressed as a running cost per second 

to be uniform with  λ, 

Therefore, the productivity F(k) is the value delivered per 

second, divided by the cost per second: 

     
          

    
                         (1) 

 The scalability metric relating systems at two different scale 

factors is therefore defined as the ratio of their productivity 

figures: 

         
     

     
                          (2) 

The above equationis the scalability metric that the paper will 

be based on. Frequently,   is fixed at a known value and the 

metric is written as ψ(  ) or ψ(k). The system is deemed as 

"scalable" if productivity keeps pace with costs from 

configuration A to configuration B, in which case the metric ψ 

will have a value greater than or not much less than unity. In 

this paper, a threshold value of 0.8 will be used to say, the 

system is scalable if 0.8 < ψ; as the threshold value should 

reflect what is an acceptable cost-benefit ratio to the system 

operator. The value of k at the threshold is the scalability limit 

of the system. If ψ rises above 1.0, then it is said that the 

system has "positive scalability" example is super-linear 

speedup. With all the three quantities that enter the metric, 

throughput is self-evident. In the case of the cost, itis not a 

one-time capital cost, but is expressed as a rental cost, to 

express costs and benefits consistently per unit time. 

Examples of cost include the cost of software, processor, 

networks, storage, help desks, management, etc. This paper 

willdwell on few of these examples of cost, for illustration. 

The value function f(k)  is determined by evaluating the 

performance of the scaled system, and may be a function of 

any appropriate system measure, including delay measures 

(mean, variance or jitter, probability of delay exceeding a 

threshold), availability, or the probability of data loss or 

timeouts. The paper, will consider only the mean response 

time T(k) at scale factor k, compared to a target value Ṫ, in the 

following value function: 

     
 

          
                          (3) 
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From the above value function of Equations, the scalability 

metric for scale k2relative to k1is, after a little simplification: 

         
               

            
                   (4) 

 

3.2 Algorithm for Calculating Scalability 

Bound 

The following are the detailed steps to follow in calculating 

the scalability bound: 

Step 1. Determine the productivity for the base case, F(1) by a 

detailed calculation Step 2. For each scale factor k, determine 

the scaled system configuration from the scaling strategy and 

then compute the total seconds of execution of each device, 

averaged per response, As follows: 

1. Execution and overhead, which is determined and 

assigned to each device by the scaling strategy is 

calculated first. 

2. The remaining execution demand is added up over the 

remaining tasks and spread (optimistically) over all the 

devices, so as to produce the most even distribution of 

the total demand, expressed in seconds of execution per 

response. Meaning, it is allocated without regard to 

allocating entire tasks to one device, but with regard to 

whether the device can do the work (so, CPU demand is 

spread over CPUs and disk demand over disks). 

Optimistic assumptions about overheads mean that they 

are set to the lowest value consistent with the scaling 

strategy; thus, if two tasks included in the remaining 

demand should be allocated separately (by the scaling 

strategy), internode communications overhead is 

included. The result of this step is a set of demands 

which may still be unequally distributed over the 

devices, because of constraints in spreading the 

workload. 

Step 3. At scale k, set C(k) to the cost of the scaled system, 

and find bounds on λ and T: 

a. set λ(k) to the minimum of 1) the balanced system 

throughput bound for a queuing network with the 

same servers, and 2) the asymptotic throughput 

bound for the given set of demands 

b.  Set T(k) to the balanced job value 

c. Compute F(k) from (6). 

Step 4. Set the scalability metric bound to ψ =F(k) / F(1), and 

then the bound-based scalability limit is the first value of k 

giving that ydrops below the "moderate scalability" limit of 1- 

ɛ. The queueing network model with the evenly spread 

workload is constructed so that it intuitively gives a 

performance bound; that notwithstanding, the relationship is 

not rigorously proven. The intuitive reasons for believing it 

gives a bound as: 

a. software resource constraints are ignored, which can 

only improve performance 

b. allocation decisions which are enablers in the strategy 

are represented in the bound by the   greatest possible 

degree of load balancing, which should give better 

performance than the best feasible allocation that 

respects task granularity, and 

c. overhead that is not explicitly required by the scaling 

strategy is omitted. The bounds can show the 

consequences of changing demands and power with k.  

Suppose that the scaling strategy resulted in a total demand (in 

seconds of execution, adding over all nodes) of      
     , the number of nodes (all equally fast) is      , and 

there is a user delay (not included in the response time) of   . 

Then the bound calculation is: 

                
     

     
             (5) 

                                  (6) 

                                                                 
(7) 

                                    (8) 

The bound on the scalability metric can then be expressed as: 

        
       

    
                      (9) 

 

    
  

              
     
     

  
     

         

  
 

    
 

     
 

 
               

     

     
 

     

         
        

     (10) 

When the system is saturated, both the numerator and 

denominator are dominated by the terms in the big round 

brackets multiplied by (N - 1). The direct effect of adding 

work (increasing      ) is always to decrease ψ. The direct 

effect of adding nodes is to increase       and      both, so 

as far as the bound is concerned the effect is neutral when the 

system is saturated, and harmful to scalability when it is not. 

The direct effect of causing a bottleneck node, due to a scaling 

path that does not allow the load to be properly balanced, is to 

increase      and decrease scalability through the last term in 

the numerator. All of these effects are expected, but the 

equation gives a picture of the order of the relationship. A 

second version of the bounds analysis, which is closer to a 

kind of approximation, is to use the bounding value for 

performance and productivity in the base case also. This puts 

all scale factors on an equal footing in regard to the looseness 

of the bounds. However, it reduces the certainty that the value 

of     is in fact a bound, since the denominator may be 

overestimated. 

 

3.3 Overview of The Connection-

Management System 
The connection management system discussed in this paper is 

based on the design and parameters of a real industrial 

prototype. It is a design which evolved out of a connection-

management design described previously in [18]. The 

prototype was heavily influenced by standards such as G.805. 

It was designed to be able to: 

1. set up a virtual private network joining user specified 

end-points, and allocating the network resources in such 

a manner as to meet the QoS requirement, 

2. Manage a variety of heterogeneous switching 

equipment, for the purpose of setting up end-to-end 

connections, 

3. Use the allocated resources of the virtual private 

network and let the user set-up/tear down connections 

arbitrarily, among any of the sites.  

The prototype was implemented using a network of 

workstations running UNIX, with DCE middleware to handle 

inter task communications and transparency, and a backbone 

network based on a SONET OC-12 (622 Mbit/s) optical fiber 

ring with proprietary switching equipment on which cross-

connections can be made or released as required.  

The software tasks can be roughly classified into three logical 

layers: 

1. The topology layer that deals with the connection 

topology of the virtual private network (VPN), 

connecting all the user-specified endpoints (e.g., the 

User-Network Interface identifiers UNI's in the case of 

an ATM network). Once a virtual private network is 

established, the objects in the topology layer can 

directly communicate with the lowest layer (called 
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SONET here), in order to set up virtual channels over 

this VPN. 

2. The virtual path (VP) layer, that deals with connecting 

all the sites in a virtual private network with a virtual 

path. This corresponds to provisioning the network 

resources to meet user specified bandwidth and QoS, to 

support future connections.  

3. The SONET layer that supports a virtual path by setting 

up appropriate connections on the SONET ring.  

The client tasks represents the users that set up (or dismantle) 

the virtual private network and set up (or dismantle) 

connections on an existing virtual private network. The clients 

could be the software tasks that manage higher level 

applications, e.g., a video conferencing system that uses the 

given connection management system. The clients interact 

with the topology layer to set up the virtual private network, 

as well as the connections on it (VC's or the virtual channels). 

The frequency of setting up/releasing a VPN, which is like a 

leased line, is much lower than that of setting up/releasing 

temporary connections by a ratio of 1:50. 

o Topo_setup and Topo_delete: these tasks belong to the 

topology layer discussed above, and support setting up 

VPNs as well as connections within a VPN. The necessary 

routing functions are built into the setup entries of these 

tasks and of their servers. 

o VP: This task sets up and deletes virtual paths (VPs) that 

make up a VPN. 

o SONET: This task manages the fibre-level portto-port 

connections required to support the setting up of the VP 

layer trails, which in turn help set up the VPN. 

Subnet_connect: This task directly controls the SONET 

network elements. 

Database: The database stores objects related to the various 

functionallayers in the system and provides state data to all the 

functions. The database, which is accessed heavily by almost 

all the tasks in the system, clearly is a potential hot spot in the 

system. By measurement it was verified that the database 

indeed had the greatest demands for both VPN setup/release, 

as well as connection setup/release, and would limit 

scalability if its capacity were not increased. One approach to 

this is database replication, which was considered as an 

element in the scaling strategy. The prototype system was 

instrumented and measured to obtain workload parameters for 

the performance model, which was used to evaluate the 

scalability. 

 

3.4 Using the Metric to Scale the 

Connection Management System 
The scaling strategy was to introduce replications of the 

database, using the location-based replication paradigm 

described by [19]. For each database replica, an additional 

processor was also added to the system. (It is noted that the 

location-based paradigm was motivated by reliability as well 

as performance, and the reliability effects are not rewarded in 

the value function f used here.) The scale factor was set to be 

the number of database replicas. A fixed number of five 

processors was provided to run the other tasks in a fixed 

configuration, and the number of users was taken as a 

scalability enabler. Further enablers that were not used could 

have been the allocation of the tasks other than the database 

tasks to the processors, and replicas and additional processors 

for the other functions. For each scale factor a performance 

model was set up with the replicas and their overheads, with 

overhead amounts calculated from the number of replicas, and 

the requests sent from any client entry to the database task 

were equally divided among all the replicas. The fixed remote 

invocation overheads were incorporated in the execution 

demands of the task entries. The fact that the accesses to the 

database replicas were symmetric happens to permit a special 

efficient approximation for symmetric replication of 

subsystems to be used in the solver [20]. In order to model the 

consistency management overhead (in terms of extra 

execution), each replica of the database is associated with a 

transaction overhead pseudo-task on the same CPU. The 

transaction overhead task accounts for the synchronous and 

asynchronous broadcasting overheads, locking overheads, 

etc., for consistency management, and the calls made by the 

database entries to the overhead task during the operation 

prepare, commit, and abort phases are proportional to the 

number of database replicas in the system. The number of 

write transactions is significant, but the granularity of the 

database objects is small, so the probability of conflict on 

locks was assumed to be negligible and lock queueing delays 

were not modeled. However, the execution overheads of 

locking were substantial and were included. The response of 

the system was modeled as a cycle of effort for one 

conference, including setting up and tearing down five virtual 

channels for a video conference between the two sites, plus 

one time in ten it included setting up a VPN, as well. The 

cycle had a target time of 15 minutes (Ṫ = 15 min.). Load was 

generated by a number of users, who were modeled as having 

a "thinking time" of 10 minutes, between one cycle and the 

next. The provisioning cost for the base configuration, 

including one copy of the database server, and one processor 

per software task, is taken as GHc100,000. Each extra copy of 

the database server (including a new dedicated processor) is 

assumed to cost an additional GHc 5,000. This gives a cost 

per unit time of the form Constant (1 + 0.05k). The reference 

configuration of the system had a single database copy, and 

was also optimized with respect to the number of clients, 

giving a reference productivity of 702 cycles of activity per 

hour per unit cost, and a reference throughput of 95 cycles of 

activity per hour. (That is, setting up and tearing down 9.5 

virtual private networks, and setting up and tearing down 

about 475 virtual channels per hour). 

 

3.5 Calculating the Scalability Bound of 

The Connection Management System 
Step 1. The base configuration with six processors is 

optimized with respect to the number of clients, to obtain 23 

clients, 95 operation units per hour and productivity  

           units/hour. 

Step 2. At each scale factor, with k database replicas and k 

database processors, the balanced demand is calculated, 

including the overheads. In this case,  

Total demand, D = 14.44 + (22.11k) sec 

Average demand,                                  sec 

          sec 

Response time =                        

           
Cost,                         

Steps 3 and 4. The solution gives the response time     
                   and throughput           for 

the balanced system. Substituting into Equation 13 gives the 

following expression for the scalability bound:  
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3.6 Procedure for scaling the system 

Four improvements that can be made to the system using the 

models of the metric are considered. These are listed below, 

along with an indication of how each would be reflected in the 

parameters of the model: 

1. Replace the CPU with one that is twice as fast.       

2. Shift some files from the faster disk to the slower disk, 

balancing their demands. The primary effect is only 

considered, which is the change in disk speed, and 

ignore possible secondary effects such as the fact that 

the average size of blocks transferred may differ 

between the two disks. The new disk service demands 

are derived as follows. 

         . Because        and        , this 

is the same as 
    
    

  
    
    

      

                 

   
 

    
 

 

    
      

And            dividing by the appropriate 

service times, the new visit counts is obtained:       

and       

3. Add a second fast disk (center 4) to handle half the load 

of the busier existing disk. Once again, the primary 

effects of the change is considered only.         
           

4. The three changes made together: the faster CPU and a 

balanced load across two fast disks and one slow disk. 

Service demands become                 
                 These were derived in a manner 

similar to that employed above.               to 

ensure that            ː 
    
    

  
    
    

  
    
    

     

   
 

    
 

 

    
 

 

    
      

           
      

    
           

 

3.7 Overview of the Call Processing System 
The handling and processing of voice and video calls is a 

critical function provided by IP telephony systems. This 

functionality is handled by some type of call processing entity 

or agent. Given the critical nature of call processing 

operations, it is important to design unified communications 

deployments to ensure that call processing systems are 

scalable enough to handle the required number of users and 

devices and are resilient enough to handle various network 

and application outages or failures. 

 

3.8 Applying the metric to call processing 

system 
The metric is applied to the call processing system of digital 

telephony, based on proprietary message oriented middleware. 

The objective is to assess the following cardinal points.  

1. Up to what point a product would be scalable, if built using 

the same basic design decisions, 

2.  How muchinvestment should be made in the hardware and 

software components of the system for supporting different 

numbers of users, andlastly 

3.  The impact of the location service-based replication model 

for database transactions [19]  

 

4. RESULTS AND DISCUSSION 
This section explains the results of the two case studies, call 

processing system, and connection management system as the 

metric is used to scale and analyze their performance and 

output. 

 

4.1 Results and Discussions of the 

Connection Management System 
From the results summarized in Table 3, the full calculation 

optimizes the productivity function with respect to the number 

of clients which is the scalability enabler at each scale factor. 

The results in the table shows that the scaling strategy and 

optimization gives response times which are well within the 

target at all scales, except that the scalability is only moderate. 

The results also shows that, the throughput increases from 

           and then levels off whereas costs rises, which 

drives the scalability down. More also, the database CPU 

columns shows that most of the database work is overhead 

and at the larger scales. The graphs of Fig. 2 and 3 shows the 

plots of detailed scalability measure and the bound. The 

results shows that, the system is spinning its wheels and 

thereby generating overhead but not performance. 

 

Table 3 Scalability Metric Results for the Connection Management  System 

(The Normalized Response Time is the mean response time divided by the target of 15 min.)  

 

 

Scale 

Factor 

 

Productivity 

(Optimized)       per 

unit cost) x 1e-2 

 

 

Scalability 

metric value 

(Optimized) 

 

 

Throughput 

(operations per 

hour) 

 

 

NormalizedRes

ponse Time 

Database CPU Utilization  

 

System 

Cost 

(Units) 

 

Total 

Due to 

transaction 

overheads 

1 1.95485 1.0 95 0.3017 92.59 * 1.05 

2 2.02031 1.0335 108.62 0.3645 86.86 67.85 1.1 

3 1.90128 0.9726 111.18 0.4126 82.43 69.45 1.15 

4 1.75662 0.8986 112.01 0.4761 79.77 69.97 1.2 

5 1.61546 0.8264 112.26 0.5449 77.98 70.12 1.25 

6 1.4861 0.7602 110.95 0.5953 75.77 69.30 1.3 

7 1.36948 0.7006 110.94 0.6675 74.84 69.30 1.35 
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Fig. 2 Scalability bound for the connection management 

system 

 

 

Fig. 3 Scalability metric for the connection  management 

system 

4.2 Results and Discussions of the Call 

Processing System 
The results of the call processing system as scaled by the 

metric and same tabulated shows that, the scalability metric 

values plotted in Fig. 4 drops to 0.8 at the scale factor which is 

about k = 4. This indicate that the system is scalable up to 

scale factor of 4. The graph of throughput Verses scale factor 

in Fig. 5 shows the throughput with a knee at about k = 3 and 

at this point it has been increased from about 1.08 million 

calls per hour to about 3.4 million per hour whiles at the same 

time maintaining good quality of service (QoS). For scale 

factors (k) beyond 3, the optimization gives a response time 

which is a little higher than the target value. This is 

encouraged by the metric, because it also gives a higher 

throughput. The results of the table and that of the graph 

plotted in Fig. 4 also shows that the available productivity of 

the system drops gradually up to k = 3 and from there very 

sharply. In summary, the results indicate that the scalability is 

reasonable up to the scale factor of 3 and beyond that, the 

scalability metric degrades, even though the capacity 

continues to increase up to about the scale factor of 10. 

Beyond this factor, the system is bottlenecked and at the same 

time capacity is saturated. Fig. 6 also shows the graph of 

scalability against scale factor. 

 

Table 4 Scalability Metric Results for the Call Processing System 

(*The response time is normalized to the target mean response time of 10min.) 

Scale 

factor 

Optical No. of replica Productivity 

(Optimized) (ms-

1 per unit cost) 

Scalability 

metric value 

(Optimized) 

Throughput 

(Calls per 

hour) x 106 

Normalized* 

Response Time 

System 

Cost 

(units) 
Database Location 

server 

1 1 1 0.1600 1 1.0958 0.72 1.1 

2 1 1 0.1492 0.9325 2.1273 0.88 2.1 

3 1 6 0.1444 0.9025 3.0531 0.89 3.1 

5 4 2 0.0866 0.5415 3.6485 1.16 5.4 

10 2 4 0.0589 0.3683 4.4934 1.11 10.2 

15 2 10 0.0387 0.2421 4.4934 1.12 15.2 
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Fig. 4 A Graph of Productivity vrs Scale factor 

 

 
Fig. 5 A Graph of throughput vrs Scale factor 

 

 
Fig. 6 A Graph of Scalability vrs Scale factor 

 

5. CONCLUSION AND 

RECOMMENDATIONS 
The metric derived in this paper is a strategy based scalability 

metric that generalizes the well-known metrics for scalability 

of parallel computations to describe heterogeneous distributed 

systems. It is worthy to note that, in these systems, a uniform 

increase in all components types is ideally not a reasonable 

scaling strategy. What makes this derived metric unique is the 

fact that, it separates the impact of throughput and response 

time on the metric, formalizing the notation of a scaling 

strategy, introducing QoS evaluation and more also, 

introducing formal scalability enablers which are optimized at 

each scale factor. The derived metric is the ratio of the 

system’s productivity in a scaled version to the productivity of 

a base case. It also gives a reasonable results for a large 

collection of idealized and well understood systems nodes 

which is in the form of queueing modes suitable for 

distributed systems unlike the other metric like fixed size 

speedup, where the scaling strategy is to use k processors, 

throughput is the inverse of completion time, cost is k and 

quality of service function is given as F = 1. More also, the 

scalability that deals with fixed time speedup also deals with 

the use of k processors, but it changes the workload (W) to a 

value which keeps the completion time constant. In that 

strategy, throughput is constant, cost is k and quality of 

service function is F = W.      

In the case of call processing system, it can be concluded that 

the call processing system is scalable up to the scale factor of 

4 and at that level, it is capable of supporting roughly 3.3 

million calls per hour. If it becomes necessary to scale further 

than this, then recommendations would be as followsː 

1. The software objects organization into concurrent 

tasks ought to be redesigned in order to make their 

execution and communication demands more equal. 

2. Modification of the database schema can be triedin 

order to partition the database in various domains 

instead of replicating it and also, the consistency 

management overheads can be reduced.    
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