

A Fast Deterministic Kmeans Initialization

Omar Kettani Scientific Institute, Physics of the Earth Laboratory Mohamed V- University Rabat, Morocco

ABSTRACT

The k-means algorithm remains one of the most widely used clustering methods, in spite of its sensitivity to the initial settings. This paper explores a simple, computationally low, deterministic method which provides k-means with initial seeds to cluster a given data set. It is simply based on computing the means of k samples with equal parts taken from the given data set. We test and compare this method to the related well know kkz initialization algorithm for k-means, using both simulated and real data, and find it to be more efficient in many cases.

General Terms

Data Mining, Clustering.

Keywords

k-means initialization, kkz.

1. INTRODUCTION

Clustering is a basic task in many fields, such as artificial intelligence, machine learning and data mining. Clustering consists of grouping a given dataset into a predefined number of disjoint sets, called clusters, so that the elements in the same cluster are more similar to each other and more different from the elements in the other cluster. This optimization problem is known to be NP-hard, even when the clustering process deals with only two clusters [1]. Therefore, many heuristics and approximation algorithms have been proposed, in order to find near optimal clustering solution in reasonable computational time. The most prominent clustering algorithm k-means is a greedy algorithm which has two stages: Initialization, in which we set the seed set of centroids, and an iterative stage, called Lloyd's algorithm [2]. It is widely reported in the literature that the performance of the Lloyd's algorithm highly depends upon the initialization stage [3].

In the next section, some related work are briefly discussed. Then the proposed method and its computational complexity are described in Section 3. Section 4 applies this clustering approach to some standard data sets and reports its performance. Finally, conclusion of the paper is summarized in Section 5.

2. RELATED WORK

There exist several approaches to initialize k-means. One of the earliest,, was proposed by Forgy in 1965 [4]. It consists of setting the initial centroids set as k randomly selected instances from the

dataset. Another initialization procedure that is based on simple probabilistic seeding procedures. In particular, the kmeans++ method, proposed by Arthur and Vassilvitskii in [5], consists of randomly selecting only the first centroid from the dataset. The greedy k-means++ method Faical Ramdani Scientific Institute, Physics of the Earth Laboratory Mohamed V- University Rabat, Morocco

probabilistically selects log(K) centers in each round and then greedily selects the center that most reduces the SSE. It chooses the first center randomly and the i-th (I $\in \{2, 3, ..., k\}$) center is chosen to be $x' \in X$ with a probability of

n

 $md(x')^2/\Box md(xj)^2$

j=1

where md(x) denotes the minimum-distance from a point x to the previously selected centers. The drawback of this approach is referred to its sequential nature, as well as to the fact that it requires k scans of the entire dataset, therefore it has a complexity of O(nkd). Moreover, the sequential nature of this initialization technique hinders its parallelization.

Bahmani et al [6] proposed a parallel version of the k-means++, called k-means||. The idea behind this method is to sample O(k) points per iteration, instead of one single instance, as proposed in the k-means++. This approach outperforms k-means++ in both sequential and parallel settings.

Among the deterministic initialization methods, KKZ was proposed by [7] which consists to find the

data points that are most far apart from each other, since those data points are more likely to belong to

different clusters. The pseudo-code for KKZ is as follows:

- 1. Choose the point with the maximum L2-norm as the first centroid.
- 2. For j = 2, ..., k, each centroid mj is set in the following way: For any remaining data x_i , its distance d_i to the existing centroids is computed. d_i is calculated as the distance between x_i to its closest existing centroid. Then, the point with the largest d_i is selected as m_i .

In this work, we propose an approach (called ss_kmeans, for sequential sampling) based on a simple deterministic sampling of the input dataset.

3. PROPOSED APPROACH

The main idea of the proposed method, is to sample the given data set into equal parts, and to compute the means of these initial clusters as the seeds of the method. More details are presented in the following pseudo-code:

Input: A data set X whose cardinality is n and an integer k

Output: k seeds c_i

p=round(n/k)

For j=1:k

c(j,:)=mean(X(1+(j-1)*p:j*p,:))

end For

[I,C]=kmeans(X,k,'start',c)

Like kkz, this method has a complexity of O(nkd), but practically our experimental results showed that it is often faster than kkz.

4. EXPERIMENTAL RESULTS

Algorithm validation is conducted using different data sets from the UCI Machine Learning Repository[8]. We evaluated its performance by applying on several benchmark datasets and compare with KKZ_ k-means.

Silhouette index [9] which measures the cohesion based on the distance between all the points in the same cluster and the separation based on the nearest neighbor distance, was used in these experiments in order to evaluate clustering accuracy. (bigger average silhouette value indicates a higher clustering accuracy).

Experimental results are reported in table 1, figure 1 and figure 2, and some clustering results are depicted in figure 3 to 6.

Table 1. Experimental results of ss_kmeans and kkz_kmeans application on different datasets in term of elapsed time (s) before convergence and mean Silhouette value

		kkz_k	means	ss_kmeans			
Dataset	k	Elapsed time	Average Sil.	Elapsed time	Average Sil.		
Iris	3	0.0760	0.8152	0.1463	0.8152		
Breast	2	0.3557	0.7542	0.1644	0.7542		
Flame	2	0.0711	0.8760	0.1424	0.8760		
Glass	7	0.0840	0.4732	0.1514	0.4484		
Jain	2	0.1327	0.9078	0.1581	0.9078		
PathBased	3	0.1059 0.7253		0.1393	0.6332		
R15	15	0.2808	0.9356	0.1639	0.9356		
Aggregation	7	0.4604	0.7366	0.1566	0.7366		
Compound	6	0.1424	0.7684	0.1624	0.6445		
D31	31	1.7261	0.9037	0.2182	0.9182		
Spiral	3	0.1085	0.5234	0.1335	0.5234		
Thyroid	2	0.0654	0.0654 0.7701		0.7701		

Wdbc	2	0.2709	0.5676	0.1655	0.5676	
Wine	3	0.0585	0.5043	0.1561	0.5043	
Yeast	10	1.5656	0.3486	0.2245	0.3066	
Ruspini	4	0.0346	0.9097	0.1542	0.9097	
A1	20	1.5938	0.7366	0.1930	0.7565	
A2	35	2.2674	0.6818	0.3079	0.7754	
A3	50	3.1799	3.1799 0.7554		0.7615	
S1	15	1.9341	0.8805	0.2094	0.8805	
S2	15	1.9157	0.8009	0.2140	0.8009	
S3	15	2.0358	0.6281	0.2285	0.6671	
S4	15	1.9976	0.6133	0.2547	0.6396	
dim2	9	1.2806	0.8982	0.1503	0.9945	
dim3	9	0.7352	0.9959	0.1523	0.9959	
dim4	9	1.2649	0.9749	0.1613	0.9968	
dim5	9	2.0149	0.9918	0.1683	0.9918	
dim6	9	1.2937	0.9557	0.1612	0.9940	
dim7	9	1.7558	0.9553	0.1919	0.9865	
dim8	9	2.2547	0.9938	0.1871	0.9938	
dim9	9	1.6087	0.9260	0.1983	0.9928	
dim10	9	2.0072	0.9115	0.2126	0.9933	
dim11	9	2.4107	0.9041	0.2209	0.9937	
dim12	9	1.8378	0.9140	0.2422	0.9915	
dim13	9	2.1986	0.9304	0.2757	0.9918	
dim14	9	2.5017	0.9258	0.3214	0.9920	
dim15	9	2.0844	0.9087	0.2861	0.9908	
DIM32	16	0.7923	0.9961	0.1866	0.9961	

DIM64	16	0.8591	0.9984	0.2462	0.9984		DIM512	16	1.8907	0.9998	1.0992	0.9998
DIM128	16	1.0009	0.9991	0.3790	0.9991		DIM1024	16	3.7001	0.9999	3.2046	0.9999
DIM256	16	1.2668	0.9996	0.6059	0.9996							
	Lame Glass Jain	PathBased R15 R15 Aggregation Compound	D31 Spiral Thyroid Wedbc	Vune Veast A1 A1 A2	8.8.8	dim2	dim4 dim5 dim7 dim8 dim8	dim9 dim10 dim11	dim12 dim13 dim16	DIM64 DIM64 DIM128 DIM6256		■ kkz_kmeans ■ ss_kmeans

Fig 1: Chart of ss_kmeans and kkz_kmeans application on different datasets in term of average Silhouette value

Fig 2: Chart of ss_kmeans and kkz_kmeans Application on different Datasets in Term of Elapsed Time (s) before Convergence

Fig 3: Clustering results of a2 dataset using kkz_kmeans (on left) and ss_kmeans (on right)

Fig 4: Clustering results of dim2 dataset using kkz_kmeans (on left) and ss_kmeans (on right)

Fig 5: Clustering results of s3 dataset using kkz_kmeans (on left) and ss_kmeans (on right)

Fig 6: Clustering results of s4 dataset using kkz_kmeans (on left) and ss_kmeans (on right)

5. CONCLUSION

In this paper, a simple deterministic k-means initialization algorithm was suggested. Performance evaluation was done by applying on several standard datasets and comparing with kkz, a well know related approach. Experimental results have demonstrated that this approach is effective in producing consistent clustering results faster than kkz.

In future work, a parallel version of this method could be considered. Another possible enhancement will consist to find a way such that this approach will become independent to data ordering.

6. ACKNOWLEDGMENTS

Our thanks to the anonymous reviewers for their helpful comments.

7. REFERENCES

- Aloise D., Deshpande A., Hansen P., Popat P.: NPhardness of Euclidean sum-of- squares clustering. Machine Learning, 75, 245 – 249 (2009).
- [2] Lloyd., S. P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory 28 (2): 129–137. doi:10.1109/TIT.1982.1056489.
- [3] Peña J.M., Lozano J.A., Larrañaga P.: An empirical

comparison of four initialization methods for the kmeans algorithm. Pattern Recognition Letters, 20(10), 1027 – 1040 (1999).

- [4] 4.. Forgy E., "Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications". Biometrics, 21, 768 – 769 (1965).
- [5] Arthur D., Vassilvitskii S.: k-means++: the advantages of careful seeding. In: Proceedings of the 18th annual ACM-SIAM Symp. on Disc. Alg, pp. 1027 – 1035 (2007).
- [6] Bahmani B., Moseley B., Vattani A., Kumar R., Vassilvitskii S.:Scalable K-means++. In: Proceedings of the VLDB Endowment (2012).
- [7] I. Katsavounidis, C.-C. J. Kuo, Z. Zhang, A New Initialization Technique for Generalized Lloyd Iteration, IEEE Signal Processing Letters 1 (10) (1994) 144–146.
- [8] 8.Asuncion, A. and Newman, D.J. (2007). UCI Machine LearningRepository[http://www.ics.uci.edu/~mlearn/ML Repository.html]. Irvine, CA: University of California, School of Information and Computer Science.
- [9] L. Kaufman and P. J. Rousseeuw. Finding groups in Data: "an Introduction to Cluster Analysis". Wiley, 1990.