Mobile Agents in Distributed Environment for Information Retrieval

Jackson Mwiti Isaiah
School of Computing and Informatics
Meru University of Science and Technology, Kenya

Andrew M. Kahonge, PhD
School of Computing and Informatics
University of Nairobi, Kenya

E. Abande, PhD
School of Computing and Informatics
University of Nairobi, Kenya

ABSTRACT
With increase in amount of information being stored in remote locations, there is a need to have an efficient method that facilitates information retrieval. Most information retrieval operations use client server architecture which ends up taking much of bandwidth. Client server architecture moves data during operation and this takes too much bandwidth. This paper discusses mobile agents which present an ideal method that can be used in information retrieval due their ability to move the code instead of data and this property makes them suitable in saving bandwidth. Mobile agent is a technology generating a lot of interest due to its benefits in areas such as e-commerce, information retrieval. Mobile agent is a program that acts on behalf of the user and it is capable of moving from one location to another and performs action. The experiment was carried out to compare the performance of mobile agents and client server method in which it was found that mobile agents formed better that client server.

General Terms
Mobile Agents, distributed systems, information searching.

Keywords
Information retrieval, Agents communications, client server

1. INTRODUCTION
Distributed systems have continued to gain popularity due to the amount of data that need to be accessed. Use of client server architecture has presented bandwidth problems hence there is a need to address the problem. In today’s information society, users are getting overwhelmed by the amount of information they are confronted on a daily basis. Most of the operating systems do not allow file manipulations without compromising on bandwidth and computer performance. Instead of moving large amounts of data to the search engine so that it can create search indexes, agents are usually dispatched in remote information sources, where they locally create search indexes that can later be shipped back to the origin [1].

Client server model has scalability and network bandwidth problems. To overcome that, mobile agent based model is the suitable technology for the applications such as information retrieval system [2]. Mobile agents (MAs) run at one location, move with their state to another host, and continue execution at that host. Mobile code and mobile objects are normally moved by an external entity while MAs are usually migrated autonomously.

Agent is an autonomous, problem-solving computational entity capable of effective operation in dynamic and open environments [3]. Agents are often deployed in environments in which they interact, and maybe cooperate, with other agents (including both people and software) that have possibly conflicting aims. Such environments are known as multi-agent systems. These mobile Agents can be distinguished from objects (in the sense of object oriented software) in that they are autonomous entities capable of exercising choice over their actions and interactions [11]. Agents are not usually invoked directly invoked like objects. However, they may be constructed using object technology. This paper discusses how mobile agents can be used in a distributed environment to retrieve information. The paper starts by introducing the concept of agent communication and its importance in mobile agent environment. Section three of this paper discusses code mobility which is the art mobile agent while section four tackles implications of mobile agents in a networked environment. Section five presents experimental results and discussion on the findings of this paper.

2. AGENT COMMUNICATION
When communicating with other agents, an agent uses a specific Agent Communication Language (ACL)[12]. An ACL provides agents with a means of exchanging information and knowledge. [4] Has gone as far to equate agency with the ability of a system to exchange knowledge using an ACL. Mobile agent communications are not only the communications between mobile agents themselves, but most importantly they also communicate with agents, agent servers and agent owners [5].

![Agent Architecture](image)

In various situations, mobile agents need to communicate with each other hence inter-agent communication is thus a fundamental facility in mobile agent systems. Although
process communication has been so much a thing in distributed systems environments, agent mobility raises a number of new challenges in designing message delivery mechanisms for effective and efficient communications between mobile agents [12].

3. CODE MOBILITY
Each operation that involves code mobility can be divided into three steps: determining the code operation targets, transferring the code, and integrating the code into the target system [6]. In static system architecture, the target determination step can be done at compilation time. If the system architecture is dynamic, such that it is determined at runtime, then the operation targets should be computed immediately prior to transferring the code. Mobility is the primary characteristic of mobile agent. Mobility makes use of process migration, which consists of transferring a process from one computer to another [7].

4. IMPLICATIONS OF MOBILE AGENTS
Distributed systems often rely on communications protocols that involve multiple interactions to accomplish a given task. This is especially true when security measures are enabled and this result is a lot of network traffic.

Mobile agents can increase the performance in these areas by achieving the following tasks: Reduce the network load, MAs allow users to package and migrate their operations to be carried out locally. This is useful where huge volumes of data are required to be processed; the data will be manipulated locally rather than transferred over the network. In other words, move the computation to the data rather than the data to the computation [10].

5. EXPERIMENTS AND RESULTS
The implementation was carried out using mobile agent platform based on Java programming language due to its platform independence which allows for serialization and persistency and comes with security built into the virtual machine.
From the above results, mobile agent seems to perform better than client server method which seems to experience delays. For this case mobile agent are far better than client server method which take more bandwidth. Mobile Agents transparently use the network to accomplish their tasks, while taking full advantage of resources local to the many machines in the network. They process data at the data source, rather than fetching it remotely, allowing higher performance operation. They use the full spectrum of services available at each point in the network, such as GUIs at the user and database interface on servers.

6. ACKNOWLEDGMENTS
Our thanks to Meru University of Science and Technology as well the University of Nairobi whose resources were vital to achievement of this research.

7. REFERENCES