

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 12– No.27, February 2020 – www.ijais.org

Weak Domination in Block Graphs

M. H. Muddebihal Professor Department of Mathematics Gulbarga University, Kalaburagi-585106, Karnataka, India

ABSTRACT

For any graph G = (V, E), the block graph B(G) is a graph whose set of vertices is the union of set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. For any two adjacent vertices u and v we say that v weakly dominates u if $\deg(v) \leq \deg(u)$. A dominating set D of a graph B(G) is a weak block dominating set of B(G), if every vertex in V[B(G)] - D is weakly dominated by at least one vertex in D. A weak domination number of a block graph B(G) is the minimum cardinality of a weak dominating set of B(G). In this paper, we study a graph theoretic properties of $\gamma_{WB}(G)$ and many bounds were obtained in terms of elements of G and the relationship with other domination parameters were found.

Keywords

Dominating set; Strong split domination; Weak domination; Perfect domination; Weak block domination.

Subject classified number: AMS-05C69, 05C70.

1. INTRODUCTION

We consider finite, undirected, simple graphs. Let G be a graph, with vertex set V and edge set E. The open neighborhood of a vertex

 $v \in V$ is $N(v) = \{u \in V | uv \in E\}$ and the closed neighborhood is $N[V] = N(V) \cup \{v\}$. For a subset $S \subseteq$ V, the open neighborhood is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood is $N[S] = N(S) \cup S$. If v is vertex of V, then the degree of v denoted by deg(v), is the cardinality of its open neighborhood. By $\Delta(G)=\Delta$ we denote the maximum degree of a graph G. The minimum distance between any two furthest vertices of a connected graph G is called the diameter of G and is denoted by diam(G). In literature, the concept of graph theory terminology not presented here can be found in Harary [6].

A set $S \subseteq V(G)$ is said to be a dominating set of *G*, if every vertex in V - S is adjacent to some vertex in *S*. The minimum cardinality of vertices in such a set is called the domination number of *G* and is denoted by $\gamma(G)$.

Further, A set *F* of edges is an edge dominating set, if for every edge $e \in E - F$ there exist an edge $f \in F$ such that *e* and *f* have a vertex in common. The edge domination number $\gamma'(G)$ of a graph *G* is the minimum cardinality of an edge dominating set of *G* see [15].

A dominating set $S \subseteq V(G)$ is called the total dominating set, if for every vertex $v \in V$, there exist a vertex $u \in S$, $u \neq v$ such that u is adjacent to v. The total Geetadevi Baburao Research Scholar Department of Mathematics Gulbarga University, Kalaburagi-585106, Karnataka, India

dominationnumber of G is denoted by $\gamma_t(G)$ is the minimum cardinality of total dominating set of G. This was introduced by Cockayne [2].

In [12] Hadetniemi and Laskar defined a connected dominating set. A dominating set $S \subseteq V(G)$ is connected dominating set, if the induced subgraph $\langle S \rangle$ is connected. The connected domination number $\gamma_c(G)$ of a graph *G* is the minimum cardinality of connected dominating set of *G*.

An independent domination of a graph *G* was studied by Allan [1]. A dominating set *D* of a graph G = (V, E) is an independent dominating set, if the induced subgrapg $\langle D \rangle$ has no edges. The independent domination number i(G) of a graph *G* is the minimum cardinality of an independent dominating set.

A dominating set $S \subseteq V(G)$ is called the double dominating set for *G*, if each vertex in *V* is dominated by at least two vertices in *S*. The double domination number $\gamma_{dd}(G)$ of *G* is the minimum cardinality of a double dominating set of *G* see[7].

Analogously, a set $S \subseteq V(G)$ is a Restrained dominating set of *G*, if every vertex in V - S is adjacent to a vertex in *S* and another vertex in V - S. The Restrained domination number of a graph *G* is denoted by $\gamma_{Res}(G)$ is the minimum cardinality of a Restrained dominating set in *G* see in [5].

A dominating set $S \subseteq V(G)$ is called the Perfect dominating set of *G*, if each $u \in V(G) - S$ is dominated by exactly one element of *S*. The Perfect domination number of *G*, denoted by $\gamma_p(G)$ is the minimum cardinality of a Perfect dominating set of *G*. This was introduced by Cockayne [4].

The lict graph n(G) of a graph G is the graph whose set of vertices is the union of set of edges and the set of cutvertices of G in which two vertices are adjacent if and only if the corresponding edges are adjacent or the corresponding members of G are incident formed in [14].

A set $S \subseteq V(G)$ is a cototal dominating set, if the induced subgraph $\langle V - S \rangle$ has no isolated vertices. The cototal domination number $\gamma_{cot}(G)$ is the minimum cardinality of a cototal dominating set of *G* defined in [13].

A dominating set $S \subseteq V(G)$ is a split dominating set, if the induced subgraph $\langle V - D \rangle$ is disconnected. The split domination number $\gamma_s(G)$ of a graph *G* is the minimum cardinality of a split dominating set in [13].

A dominating set $D \subseteq V(G)$ is the strong split dominating set, if the induced subgraph $\langle V - D \rangle$ is totally

disconnected with at least two vertices. The strong split domination number $\gamma_{ss}(G)$ of a graph *G* is the minimum cardinality of a strong split dominating set of *G* see [13].

In [13] a dominating set $D \subseteq V(G)$ is a nonsplit dominating set, if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit domination number $\gamma_{ns}(G)$ of a graph G is the minimum cardinality of a nonsplit dominating set.

A dominating set $D \subseteq V(G)$ is a strong nonsplit dominating set, if the induced subgraph $\langle V - D \rangle$ is complete. The strong nonsplit domination number $\gamma_{sns}(G)$ of *G* is the minimum cardinality of a strong nonsplit dominating set formed in [13].

In [26], Sampathkumar and Pushpa Latha have introduced the concept of weak and strong domination in graphs. A subset $D \subseteq V$ is a weak dominating set (WDS) if every vertex $u \in V - S$ is adjacent to a vertex $v \in D$, where $deg(u) \ge deg(v)$. The subset D is a strong dominating set (SDS) if every vertex $v \in V - S$ is adjacent to a vertex $u \in D$, where $deg(u) \ge deg(v)$. The weak (strong, respectively) domination number $\gamma_w(T)(\gamma_s(T),$ respectively) is the minimum cardinality of a WDS(a SDS, respectively) of G. Strong and weak domination have been studied for example in [8, 9, 16, 23, 24, 25]. For more details on domination in graphs and its variation see the two books [10, 11]. Farther domination related graph valued functions been studied has in [17, 18, 19, 20, 21, 22].

In this paper we initiate the study of weak block domination in graphs.

2. RESULTS

We begin by the following straight forward observation.

Observation 1: Every weak block dominating set of a graph G contains all the end vertices of G.

Next result is a lower bound on the weak block domination number for trees.

Theorem 2.1: For any nontrivial tree *T*, $\gamma_{wb}(T) \ge \gamma(T)$.

Proof: Let $D = \{v_1, v_2, v_3, ..., v_m\} \subseteq V(T)$ such that N[D] = V(T). Then D itself is a dominating set of T. Let $A = \{e_1, e_2, e_3, ..., e_m\}$ be the edge set of T and $B = \{v_1, v_2, v_3, ..., v_m\} = V[B(T)]$ be the set of vertices corresponding to the edges of A and has no end vertices. Now we consider a set $B_1 \subseteq B$ be the set of minimum degree vertices which are nonend vertices in B(T). Suppose $B_2 \subseteq B_1$ such that $N[B_2] = V[B(T)]$. Then B_2 is dominating set of B(T). Which is also a $\gamma_{WB} - set$. Hence $|B_2| \ge |D|$ gives required result.

Further, if B(T) has end vertices then, $C = \{v_1, v_2, v_3, ..., v_m\}$ be the set of end vertices in B(T). Since B_2 is $\gamma_{WB} - set$, by the definition it is also true that $\{B_2 \cup C\}$ forms a $\gamma_{WB} - set$. Hence, again $|\{B_2 \cup C\}| \ge$ |D| and gives $\gamma_{WB}(T) \ge \gamma(T)$.

Now we establish the relationship between domination number, strong split domination with weak block domination number.

Theorem 2.2: For any tree T, $\gamma_{WB}(T) \leq \gamma_{ss}(T) + \gamma(T) + 1$.

Proof: Let $D = \{v_1, v_2, v_3, ..., v_n\} \subseteq V(T)$ be the set of nonend vertices such that N[D] = V[T]. Then *D* is a minimal dominating set of *T*.

If for every $v_i \in V - D$, with $\deg(v_i) = 0$ and $\langle V - D \rangle$ has at least two vertices, then *D* is a γ_{ss} – set of *T*. Otherwise if there exists a vertex set $H = \{v_1, v_2, v_3, ..., v_k\}$ and every vertex of *H* is incident to at least one edge, where $H \in V - D$. Now consider $H_1 \subseteq H \forall v_i \in \langle H - H_1 \rangle$, $\deg(v_i) = 0$ and $\langle V - \{D \cup H_1\} \rangle$ has at least two isolated vertices. Clearly $\{D \cup H_1\}$ is a γ_{ss} – set of *T*.

Let $A = \{b_1, b_2, b_3, ..., b_n\}$ be the set of blocks in *T*. Then $A_1 = \{v_1, v_2, v_3, ..., v_n\} = V[B(T)]$ corresponding to the blocks of *A*. Consider *J* as a dominating set of B(T). Suppose $\forall v_i \in J$, deg $(v_i) \leq deg(v_j)$, $\forall v_j \in V[B(T)] - J$. Then *J* itself is a weak dominating set of B(T). If not, then there exists a set $S \subseteq V[B(T)] - J$ such that deg $(v_k) < deg(v_i)$, $\forall v_k \in S$, hence the set $J \cup \{S\}$ gives a weak dominating set of B(T). So that $|J \cup \{S\}| \leq |D \cup H_1| + |D| + 1$, gives $\gamma_{WB}(T) \leq \gamma_{SS}(T) + \gamma(T) + 1$.

The following result gives an upper bound on $\gamma_{WB}(T)$ in terms of vertices and maximum degree of *G*.

Theorem 2.3: for any nontrivial (p,q) tree T, $\gamma_{WB}(T) \le p - \Delta(T)$.

Proof: Let $E = \{v_1, v_2, v_3, ..., v_i\}$ be the edge set of *T*. Then $D = \{v_1, v_2, v_3, ..., v_n\}$ be the set of vertices in B(T) corresponding to the edges of *E*. Let $D_1 \subseteq D$ be the set of all end vertices. Suppose $D_2 \subseteq D$ be the set of vertices with minimum degree which are adjacent to the cut vertices of B(T) and covers all the vertices of B(T). Then D_2 is minimal dominating set of B(T).

If $D_1 \neq \emptyset$, then $D_2 \cup D_1$ forms a $\gamma_{WB} - set$. Otherwise D_2 itself is a $\gamma_{WB} - set$. Since for any tree *T*, there exist at least one vertex v, $\deg(v) = \Delta(T)$ and p = V(T). It follows that $|D_2 \cup D_1|$ or $|D_2| \le |V(T)| - \Delta(T)$. Hence $\gamma_{WB}(T) \le p - \Delta(T)$.

In the following theorem we establish the relation between $\gamma_{WB}(T)$, $\gamma_{cot}(T)$ and diam(T).

Theorem 2.4: For any non trivial tree *T* with $n \ge 2$ blocks, $\gamma_{WB}(T) \le \gamma_{cot}(T) + diam(T) + 1$.

Proof: Let *J* = {*e*₁, *e*₂, *e*₃, ..., *e*_n} ⊆ *E*(*T*) be the minimal set of edges which constitute the longest path between any two distinct vertices *u*, *v* ∈ *V*(*T*) such that *dist*(*u*, *v*) = *diam*(*T*). Let *D* = {*v*₁, *v*₂, *v*₃, ..., *v*_n} ⊆ *V*(*T*) be the minimum set of vertices which covers all the vertices in *T*. Suppose the subgraph < *V*(*T*) − *D* > has no isolated vertex then *D* itself is a γ_{cot} − *set of T*. Otherwise if there exist a set *H* = {*v*₁, *v*₂, *v*₃, ..., *v*_j} ⊆ *V*(*T*) − *D* with deg(*v*_i) = 0, 1 ≤ *i* ≤ *j*. Now we make deg(*v*_i) = 1 by joining vertices {*v*_k} ⊆ *V*(*T*) − *D* and *N*(*v*_i) ∈ {*v*_k}. Clearly *D*₁ = *D* ∪ *H* − {*v*_k} forms a minimal cototal dominating set of *T*.

Suppose $B = \{b_1, b_2, b, ..., b_m\}$ be the set of vertices of block graph B(T). Suppose $B_1 \subseteq B \forall v_i \in B_1$ has deg $(v_i) < \Delta[B(T)]$ and $N[B_1] = V[B(T)]$ and deg $(v_i) \leq \deg(v_j), \forall v_j \in V[B(T)] - B_1$. Then B_1 is a $\gamma_{WB} - set$. It

follows that $|B_1| \le |D_1| + diam(T) + 1$ which gives $\gamma_{WB}(T) \le \gamma_{cot}(T) + diam(T) + 1$.

In the following theorem we develop the relation between $\gamma_{WB}(T)$, $\gamma_{Res}(T)$ and diam(T).

Theorem 2.5: For any non trivial tree T with $n \ge 2$ blocks, $\gamma_{WB}(T) \le \gamma_{Res}(T) + diam(T) + 1$.

Proof: Let $F = \{e_1, e_2, e_3, \dots, e_n\} \subseteq E(T)$ be the minimal set of edges which constitute the longest path between any two distinct vertices $u, v \in V(T)$ such that dist(u, v) = diam(T).

Suppose $B = \{v_1, v_2, v_3, ..., v_k\} \subseteq V(T)$ be the set of all end vertices. Suppose $S = B \cup B'$, where $B' \subseteq V(T) - B$ be the set of vertices covering all the vertices with $diam(u, v) \ge 3$, $\forall u \in B$, $\forall v \in B'$ or for every vertex $w \in V(T) - S$, there exists at least one vertex $z \in V(T) - S$ such that wz is an edge in V(T) - S. Clearly *S* forms a minimal $\gamma_{Res} - set$ of *T*.

Let $E = \{e_1, e_2, e_3, ..., e_n\}$ be the set of edges in *T*. Then $A = \{v_1, v_2, v_3, ..., v_m\} = V[B(T)]$ corresponding to the edges of *E*. Suppose $A_1 \subseteq A$, $\forall v_j \in A_1, \deg(v_j) = 1$ and $A_2 \subseteq A$ be the set of minimum degree vertices which are adjacent to a cut vertex of B(T), since each block of B(T) is complete and covers all the vertices of B(T). Then $\{A_1 \cup A_2\}$ is a minimal weak dominating set of B(T). Clearly $|A_1 \cup A_2| \leq |S| + |F| + 1$. Hence $\gamma_{WB}(T) \leq \gamma_{Res}(T) + diam(T) + 1$.

Roman domination: The concept of Roman domination function (*RDF*) was introduced by Cockayne [3]. A Roman domination function of a graph G = (V, E)is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function in G is the value of f(v) = $\sum_{u \in v} f(u)$. The Roman domination number of a graph G is denoted by $\gamma_R(G)$, equals the minimum weight of a Roman dominating function on G.

Further, we relates $\gamma_{WB}(T)$ with Roman domination number and domination number.

Theorem 2.6: For any (p, q) tree T, $\gamma_{WB}(T) \le \gamma_R(T) + \gamma(T) + 1$.

Proof: Let $S = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(T)$ be the set of vertices with deg $(v_i) \ge 2$, $\forall v_i \in S$, $1 \le i \le n$. Further, let there exist a set $S_1 \subseteq S$ of vertices with diam $(u, v) \ge$ 3, $\forall u, v \in S_1$ which covers all the vertices in T. Clearly, S_1 forms a dominating set of T. Otherwise, if diam(u, v) < 3, then there exists at least one vertex $x \notin S_1$ such that $S' = S_1 \cup \{x\}$ forms a minimal $\gamma - set$ set of T. Suppose $f: V(T) \rightarrow \{0, 1, 2\}$ and partition the vertex set V(T) into (V_0, V_1, V_2) induced by f with $|V_i| = n_i$ for i = 0, 1, 2. Suppose the set V_2 dominates V_o , then $H = V_1 \cup V_2$ forms a minimal Roman dominating set of T. Suppose D be a γ_{WB} – set of tree T and assume $E = \{e_1, e_2, e_3, \dots, e_n\} = E(T)$. Let $E_1 \subseteq E$ be the minimum degree edges in T and $E_2 \subseteq E$ be the maximum degree edges in T. If $E'_2 \subseteq E_2$ and since $\{E\} = V[B(T)]$, then $\{E_1 \cup E_2'\} \in V[B(T)]$. So that $\forall v_i \in V[B(T)] - \{E_1 \cup V_i \in V[B(T)]\}$ $E_2^{'}$ is adjacent to at least one vertex of $\{E_1 \cup E_2^{'}\}$. Further if deg $(v_i) \in V[B(T)] - \{E_1 \cup E_2'\}$ is greater than or equal

to $\deg(v_j) \in \{E_1 \cup E_2'\}$. Clearly $\{E_1 \cup E_2'\} = D$. Hence $|\{E_1 \cup E_2'\}| \le |H| + |S'| + 1$ and implies $\gamma_{WB}(T) \le \gamma_R(T) + \gamma(T) + 1$.

The following theorem gives upper bound for edges of tree in terms of $\gamma_p(T)$ and $\gamma_{WB}(T)$.

Theorem 2.7: For any non trivial tree T, then $\gamma_p(T) + \gamma_{WB}(T) \le q$, $T \ne p_4$.

Proof: Let $D = \{v_1, v_2, v_3, ..., v_n\} \subseteq V(T)$ such that $N(v_i) \cap N(v_j) = \emptyset$, $\forall v_i, v_j \in D$. Let $S = \{v_1, v_2, v_3, ..., v_m\} \subseteq V(T) - D$ be the minimal set of vertices which covers all the vertices in *T*. Suppose every vertex $v_k \in V(T) - S$ is adjacent to exactly one vertex of *S*. Then *S* is a γ_p - set of *T*.

Let $H = \{e_1, e_2, e_3, \dots, e_m\}$ be the edge set of T. In B(T), $M = \{v_1, v_2, v_3, \dots, v_m\} = V[B(T)]$ corresponding to the edges of H. Now we consider a set $M_1 \subseteq M$ be the set of end vertices in B(T). Let $M_2 \subseteq M$ be the set of minimum degree vertices which are nonend vertices in B(T). Suppose $M_3 \subseteq M_2$ and $N[M_1 \cup M_3] = V[B(T)]$. Then $S = \{M_1 \cup M_3\}$ is a $\gamma_{WB} - set$ of B(T). Thus $|S| + |M_1 \cup$ $M_3| \leq |E|$ which gives $\gamma_p(T) + \gamma_{WB}(T) \leq q$.

The following theorem gives an upper bound for $\gamma_{WB}(T)$.

Theorem 2.8: For any non trivial tree T, $\gamma_{WB}(T) \le \gamma_n(T) + \gamma_c(T) - 1$.

Proof: Let $V_l = \{v_1, v_2, v_3, ..., v_n\} \subseteq V(T)$ be the set of all nonend vertices in *T*. Suppose there exists a minimal set of vertices $S = \{v_1, v_2, v_3, ..., v_k\} \subseteq V_l$. Such that $N[v_i] = V(T)$, $\forall v_i \in S$, $1 \le i \le k$. Then *S* forms a minimal dominating set of *T*.

Further, if the subgraph $\langle S \rangle$ has exactly one component, then *S* itself is a connected dominating set of *T*. Suppose *S* has more than one component, then attach the minimum set of vertices *S'* of $V_l - S$, which are in every u - w path, $\forall w \in S$, $\forall u \in V_l - S$ gives a single component. $S_1 = S \cup S'$. Clearly S_1 forms a minimal $\gamma_c - set$ of *T*.

Let $E_1 = \{e_1, e_2, e_3, \dots, e_n\} \subseteq E(T)$, deg $(e_i) \ge 3$, $1 \le i \le n$ and $E_2 = E(T) - E_1$. Since $V[n(T)] = E_1 \cup E_2 \cup C$, $\forall v_i \in C$ is a cutvertices of *T*. Then there exists a minimal set $E'_1 \subseteq E_1$ which covers all the vertices of n(T). Clearly E'_1 forms a minimal $\gamma_n - set$ of *T*.

Now we consider the tree *T* such that each block of *T* is an edge. Let $B = \{B_1, B_2, B_3, ..., B_k\}$ be the set of blocks in *T*. Suppose $F = \{v_1, v_2, v_3, ..., v_k\} \subseteq V[B(T)]$ be the set of vertices with $\deg(v_j) \ge 1$. Suppose there exists a vertex set $D \subseteq F$ with N[D] = V[B(T)] and if $|\deg(x) - \deg(y)| \le 1$. $\forall x \in V[B(T)] - D$, $\forall y \in D$. Then *D* forms a weak block dominating set of *T*. Otherwise there exists at least one vertex $\{w\} \subseteq F$ where $\{w\} \notin D$ such that $D \cup \{w\}$ forms a minimal $\gamma_{WB} - set$. It follows that $|D| \le |E_1'| + |S_1| - 1$. Clearly $\gamma_{WB}(T) \le \gamma_n(T) + \gamma_c(T) - 1$.

Theorem 2.9: For any tree T, $\gamma_{WB}(T) \le \gamma'(T) + \gamma_t(T) + \Delta(T) + 1$.

Proof: Let $F' = \{e_1, e_2, e_3, ..., e_m\}$ be the set of all end edges in *T*. Suppose E - F' = I, then $S \subseteq I$ forms an $\gamma' - set$ of *T*. Further, if $E - F' = \emptyset$, then there exists at least one edge $\{e\} \in F'$ such that $S = \{e\}$ forms a minimal edge dominating set of *T*. If $A = \{v_1, v_2, v_3, ..., v_n\}$ be the minimal set of vertices with deg $(v_i) \ge 2$, $1 \le i \le n$ and $N[v_i] = V[T]$. And if the subgraph < A > has no isolated vertex, then *A* itself is a minimal total dominating set of *T*. Otherwise, if there exists a vertex $x \in A$, deg(x) = 0, then attach a vertex which is N(x) and $< A \cup \{x\} >$ has no isolates. Then $A \cup \{x\}$ is a minimal total dominating set of *T*.

Let $J = \{e_1, e_2, e_3, ..., e_m\}$ be the edge set of T. In B(T), $D = \{v_1, v_2, v_3, ..., v_m\} = V[B(T)]$ corresponding to the edges of J. Suppose $D_1 \subseteq D$ be the end vertices of B(T). Let $D_2 \subseteq D$ be the nonend vertices with minimum degree and $N[\{D_1 \cup D_2\}] = V[B(T)]$ with the property that $\deg(u) \ge \deg(v), \quad \forall u \in V[B(T)] - \{D_1 \cup D_2\}$ and $v \in \{D_1 \cup D_2\}$. Hence $\{D_1 \cup D_2\}$ forms a minimal weak block dominating set of T. Since for any tree T, there exists at least one vertex $v \in V(T)$ with $\deg(v) = \Delta(T)$. Clearly $|D_1 \cup D_2| \le |S| + |A + \{x\}| + \Delta(T) + 1$ which gives $\gamma_{WB}(T) \le \gamma'(T) + \gamma_t(T) + \Delta(T) + 1$.

Theorem2.10: For any non trivial *T*, $\gamma_{WB}(T) \leq \gamma_s(T) + \alpha_o(T) + \left\lceil \frac{c}{2} \right\rceil + 2$. where *C* is the number of cut vertices in *T*.

Proof: Let $B = \{v_1, v_2, v_3, ..., v_n\} \subseteq V(T)$ be the minimal set of vertices with $dist(u, v) \ge 2$ for all $u, v \in B$ covers all the edges in *T*. Clearly, $|B| = \alpha_0(T)$. Let $D \subseteq V(T)$ be the set of vertices such that N[D] = V(T) and if the subgraph < V(T) - D > contains more than one component, then *D* forms a split dominating set of *T*. Otherwise there exists at least one vertex $\{u\} \in V(T) - D$ such that $< V(T) - D - \{u\} >$ yields more than one component. Clearly, $D \cup \{u\}$ forms a minimal $\gamma_s - set$ of *T*.

Let $A = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge set of *T*. Let $H = \{u_1, u_2, u_3, \dots, u_n\} = V[B(T)]$ be the set of vertices corresponding to the edges of *A*. Let $J \subseteq H$ be the set of vertices with deg $(w) \ge 1$ for every $w \in J$ such that N[J] = V[B(T)] and if $\forall v_i \in J$ has degree at least 2 and $v_j \in V[B(T)] - J$ and deg $(v_j) \ge deg(v_i)$. Then *J* forms $\gamma_{WB} - set$. Let *C* be set of cut vertices which are nonend vertices in *T* which gives $|J| \le |D \cup \{u\}| + |B| + \frac{C}{2}| + 2$. Clearly $\gamma_{WB}(T) \le \gamma_s(T) + \alpha_0(T) + \frac{C}{2}| + 2$.

Theorem2.11: For any tree *T*, $\gamma_{WB}(T) \leq i(T) + \alpha_0(T) + \Delta(T) + m - 1$ where *m* is the number of support vertex in *T*.

Proof: Suppose $A = \{v_1, v_2, v_3, ..., v_n\} \subseteq V(T)$ be the set of vertices which covers all the vertices in *T*. Further, if the $\langle A \rangle \forall v_i \in A$, $\deg(v_i) = 0$, $1 \leq i \leq n$, then *A* itself is an independent dominating set of *T*. Otherwise $S = A' \cup I$, where $A' \subseteq A$ and $I \subseteq V(T) - A$ forms a minimal independent dominating set of *T*. Let $C = \{u_1, u_2, u_3, ..., u_n\} \subseteq V(T)$ be the minimal set of vertices which covers all the edges in *T* then $|C| = \alpha_0(T)$.

Suppose $V = \{v_1, v_2, v_3, ..., v_p\}$ be the set of vertices in *T* then there exists at least one vertex $v \in V$ such that $\deg(v) = \Delta(T)$.

Let $M = \{v_1, v_2, v_3, ..., v_m\}$ be the set of all support vertices in *T* with |M| = m.

Suppose $S = \{e_1, e_2, e_3, ..., e_n\}$ be the set of edges in *T*. Then $H = \{v_1, v_2, v_3, ..., v_n\}$ be the set of vertices in B(T) corresponding to the edges of *S*. Let $H_1 = \{v_1, v_2, v_3, ..., v_i\} \subseteq H$ be the set of cutvertices in B(T), since $\deg(v_i) \ge \deg(v_j)$, $\forall v_i \in H_1$ and $\forall v_j \in H - H_1$. Let *D* be the weak dominating set of B(T) such that $D \subseteq \{H - H_1\}$ and hence $|D| \le |S| + |C| + |\deg(v)| + |M| - 1$ which gives $\gamma_{WB}(T) \le i(T) + \alpha_0(T) + \Delta(T) + m - 1$.

We establish the following upper bound for $\gamma_{WB}(T)$.

Theorem 2.12: For any tree T, $\gamma_{WB}(T) \leq \gamma_W(T) + \Delta'(T) + 2$.

Proof: Let $F = \{v_1, v_2, v_3, ..., v_k\} \subseteq V(T)$ be the set of vertices with deg $(v_j) \ge 1$, $1 \le j \le k$. Suppose there exists a vertex set $D \subseteq F$ with N[D] = V(T) and if $|\deg(x) - \deg(y)| \le 1$, $\forall x \in [V(T)] - D$, $\forall y \in D$. Then *D* forms a weak dominating set in *T*. Otherwise there exists at least one vertex $\{w\} \in F$ with $\{w\} \notin D$ such that $D \cup \{w\}$ forms a minimal $\gamma_w - set$ in *T*.

Let $H = \{u_1, u_2, u_3, ..., u_n\} = V[B(T)]$, suppose $S \subseteq H$ be the set of vertices with deg(w) ≥ 1 for every $w \in S$ such that N[S] = V[B(T)] and if $\forall v_i \in S$ has degree at least 2 and $v_j \in V[B(T)] - S$ and deg $(v_j) \geq$ deg (v_i) . Then *S* forms $\gamma_{WB} - set$. For any graph *T*, there exists at least one edge $e \in E(T)$ with deg $(e) = \Delta'(T)$. Clearly it follows that $|S| \leq |D \cup \{w\}| + |\text{deg}(e)| + 2$ gives $\gamma_{WB}(T) \leq \gamma_W(T) + \Delta'(T) + 2$.

Theorem 2.13: For any tree T, with $n \ge 2$ blocks then $\gamma_{WB}(T) \ge \left[\frac{diam(T)+1}{3}\right]$.

 $\begin{array}{l} Proof: \mbox{ Let } V = \{v_1, v_2, v_3, \dots, v_j\} \mbox{ be the set of all vertices } in T such that there exists 2 vertices $u, $v \in V(T)$ and $dist(u, v) forms a diametral path in T. Clearly, $dist(u, v) = $diam(T)$. Let $F = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of edges in T and $F \subseteq E(T)$. Then in $B(T)$, $D = \{v_1, v_2, v_3, \dots, v_n\}$ which corresponds to $\forall $e_i \in F$. Let $deg(e_i)$, $\forall $e_i \in F$ and $deg(e_j)$ $\forall $e_j \in E(T) - F$ such that $deg(e_i) \le deg(e_j)$. Suppose $D_1 = \{v_1, v_2, v_3, \dots, v_i\} \subseteq D$ and $N[D_1] = V[B(T)]$. Then D_1 forms a $\gamma_{WB} - set$. It follow that $|D_1| \ge \left\lfloor \frac{diam(T)+1}{3} \right\rfloor$, gives $\gamma_{WB}(T) \ge \left\lfloor \frac{diam(T)+1}{3} \right\rfloor$. } \end{array}$

A relationship between weak block domination number and the edge covering number of T is given in the following result.

Theorem 2.14: For any nontrivial tree T, $\gamma_{ns}(T) \le \gamma_{WB}(T) + \alpha_1(T) + 1$.

Proof: Let $A = \{e_1, e_2, e_3, ..., e_n\} \subseteq E(T)$ be the edge set of *T*. Suppose $B = \{v_1, v_2, ..., v_n\}$ be the set of vertices which are incident with the edges of *A* and if |B| = p. Then *A* itself is an edge covering number. Otherwise

consider the minimum number of edges, $\{e_m\} \subseteq E(T) - A$ such that $A_1 = A \cup \{e_m\}$ forms a minimal edge covering set of *T*. Let $D = \{v_1, v_2, ..., v_n\} \subseteq V(T)$ is a dominating set *T*. If a vertex $v \in D$ there exists a vertex $u \in V(T) - D$ such that $N(u) \cap D = \{v\}$ gives minimum nonsplit dominating set such that $|D| = \gamma_{ns}(T)$.

Suppose $\{b_1, b_2, b_3, ..., b_n\}$ be the set of vertices of B(T) corresponding to the blocks $\{B_1, B_2, B_3, ..., B_n\}$ of T. Let $S = \{b_1, b_2, b_3, ..., b_m\}$ where m < n is a minimal dominating set of B(T) such that V[B(T)] - S = N, $\forall v_j \in N$, $\deg(v_i) \leq \deg(v_j)$, $\forall v_i \in S$. Then $|S| = \gamma_{WB}(T)$. Hence $|D| \leq |S| + |A_1| + 1$ gives $\gamma_{ns}(T) \leq \gamma_{WB}(T) + \alpha_1(T) + 1$.

Theorem 2.15: For any nontrivial tree T, $\gamma_{sns}(T) \le \gamma_{WB}(T) + \gamma_t(T) + \left\lceil \frac{p}{2} \right\rceil + 2.$

Proof: Let $K = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V(T)$ such that $N[u_i] \cap N[u_i] = \emptyset$ where $1 \le i \le n, 1 \le j \le n$. Suppose there exists a minimal set $K_1 = \{u_1, u_2, u_3, \dots, u_k\} \in N(K)$ such that the subgraph $\langle K \cup K_1 \rangle$ has no isolated vertex. Further, if $K \cup K_1$ covers all the vertices in *T*, then $K \cup K_1$ form a minimal total dominating set of T. Now suppose block of T edge. each is an Then $V(T) = \{v_1, v_2, v_3, \dots, v_n\}$ and there exists a set H = $\{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le n, H \subseteq V(T)$ such that $v_i, v_k \in V(T)$ and $v_i, v_k \in E(T)$. Hence $V(T) - \{H\} =$ v_i, v_k is complete. Clearly H is $\gamma_{sns} - set$.

Suppose $A = \{e_1, e_2, e_3, ..., e_l\} = E(T)$ be the edge set of T. In B(T), let $S = \{u_1, u_2, u_3, ..., u_n\} = V[B(T)]$ be the set of vertices corresponding to the edges of A. Suppose $D \subseteq S$ be the set of vertices with $\deg(w) \ge 1$ for every $w \in D$. Assume there exists $D' \subseteq D$ such that $\forall u_j \in D'$ $\deg(u_j) \le \deg(u_k), \forall u_k \in V[B(T)] - D'$. Clearly D' forms a weak block dominating set of T. Hence $|H| \le |D'| + |\{K \cup K_1\}| + \left|\frac{V(T)}{2}\right| + 2$. Clearly $\gamma_{nsn}(T) \le \gamma_{WB}(T) + \gamma_t(T) + \left|\frac{p}{2}\right| + 2$.

In the following theorem we establish the relation with double domination number of T.

Theorem2.16: For any tree *T*, $\gamma_{dd}(T) \leq \gamma_{WB}(T) + q$. Equality holds for $K_{1,n}$.

Proof: Let *D* be the minimal dominating set of *T*. If $F = \{u_1, u_2, u_3, ..., u_k\}$ be the set of all end vertices in *T*. Then $F \cup H = D^d$ where $H \subseteq V(T) - F$ forms a double dominating set of *T*, such that $|N(u) \cap D^d| \ge 2$, $\forall \in V(T) - D^d$.

Let $E_1 = \{e_1, e_2, e_3, ..., e_n\}$ be the set of edges in T and $E_1 \subseteq E(T)$. Then in B(T), $D = \{v_1, v_2, v_3, ..., v_n\}$ be the set of vertices corresponding to E. Let $\deg(e_i)$, $\forall e_i \in E_1$ and $\deg(e_j) \forall e_j \in E(T) - E_1$ such that $\deg(e_i) \leq \deg(e_j)$. Suppose $D_1 = \{v_1, v_2, ..., v_i\} \subseteq D$ and $N[v_k] = V[B(T)]$, $\forall v_k \in D_1$, $1 \leq k \leq i$. Then D_1 forms $\gamma_{WB} - set$. It follows that $|D^d| \leq |D_1| + |E(T)|$. Hence $\gamma_{dd}(T) \leq \gamma_{WB}(T) + q$.

To see the sharpness consider stars of order at least three.

3. REFERENCES

- R. B. Allan and R. Laskar, On domination and independent domination number of a graphs, Discrete Mathematics, Vol-23, 1978, 73-76.
- [2] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks, Vol-10, 1980, 211-219.
- [3] E. J. Cockayne, P. A. Dreyer. Jr, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Maths, V0I-278, 2004, 11-22.
- [4] E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi and R. Laskar, Perpect domination in graphs, J. Combin. Inform. System Sci, Vol – 18, 1993, 136 – 148.
- [5] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs, Discrete Mathematics, Vol- 203, 1999, 61-69.
- [6] F. Harary, Graph Theory, Adison Wesley, Reading Mass, 1974.
- [7] F. Harary and T. W. Haynes, Double domination in graphs, Ars combin, Vol-55, 2000, 201-213.
- [8] J. H. Hattingh and M. A. Hanning, On strong domination in graphs, J. Combin. Math. Combin. Comput, Vol – 26, 1998, 73 – 92.
- [9] J. H. Hattingh and R. C. Laskar, On weak domination in graphs, Ars Combinatoria, Vol – 49, 1998.
- [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in Graphs, Marcel Dekkar, Inc., New York, 1998.
- [11] T. W. Haynes, S. T. Hedetniemi, P. J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
- [12] S. T. Hedetniemi and R. C. Laskar, Connected domination in graphs, Graph theory and combinatories cambridge, (Academic press), Landon, 1948, 209-218.
- [13] V. R. Kulli, Theory of domination in graphs, Viswa international publications, India, 2010.
- [14] V. R. Kulli and M. H. Muddebihal, Lict Graph and Litact Graph of a Graphs, Journal of Analysis and computation, Vol – 2, 2006, 133 - 143.
- [15] S. L. Mitchell and S. T. Hedetniemi, Edge domination in Trees, Congruent Number, Vol-19, 1977, 489 – 509.
- [16] M. H. Muddebihal and Geetadevi Baburao, Weak line domination in graph theory, IJRAR, Vol – 6, 2019, 129 – 133.
- [17] M. H. Muddebihal and Nawazoddin U. Patel, Strong Lict domination in graphs, IJRASET, Vol – 45, 2017, 596 – 602.
- [18] M. H. Muddebihal and Priyanka H. Mandarvadkar, Global domination in Line graphs, IJRAR, Vol - 6, 2019, 648 – 652.
- [19] M. H. Muddebihal, G. Srinivas, A. R. Sedamkar, Domination in squares graphs, Ultra scientist, Vol – 23(3), 2011, 795 – 800.

- [20] M. H. Muddebihal and Suhas P. Gade, Lict double domination in graphs, Global Journal of pure and applied Mathematics, Vol-13, 2017, 3113-3120.
- [21] M. H. Muddebihal and Sumangaladevi, Roman Block domination in graphs, International journal for Research in Science and Advanced Technologies, Vol - 6, 2013, 267 – 275.
- [22] M. H. Muddebihal and Vedula Padmavathi, Connected block domination in graphs, Int, J. of Physical Science, Vol – 25, 2013, 453 - 458.
- [23] Mustapha Chellali and Nader Jafari Rad, Weak Total domination in graphs, Utilitas Mathematics, Vol – 94, 2014, 221 – 236.
- [24] D. Routenbach, Bounds on the weak domination number, Austral J. Combin, Vol – 18, 1998, 245 – 251.
- [25] D. Routenbach, Bounds on the strong domination number, Discrete Math, Vol 215, 2000, 201 212.
- [26] E. Sampathkumar and L. Puspa Latha, Strong weak domination number and domination balance in graphs, Discreate Math, Vol 161, 1996, 235 242.