

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 12– No. 29, April 2020 – www.ijais.org

Co-regular Total Domination in Graphs

M. H. Muddebihal Professor Department of Mathematics Gulbarga University Kalaburagi-585106 Karnataka, India

ABSTRACT

A total dominating set *D* of a graph G = (V, E) is a coregular total dominating set if the induced subgraph $\langle V - D \rangle$ is regular. The coregular total domination number $\gamma_{crt}(G)$ of *G* is the minimum cardinality of a coregular total dominating set. In this paper, we study its exact values for some standard graphs and many bounds on $\gamma_{crt}(G)$ were obtained. Its relation with other different domination parameter investigated.

Keywords

Graph, Domination number, Coregular total domination number

Subject classified number: AMS-05C69, 05C70.

1. INTRODUCTION

Let G = (V, E) be a finite, undirected, simple graph with p vertices and q edges. For any undefined term or notation in this paper can be found in Harary [4]. A vertex in a graph dominates itself and its neighbors. For G, let Δ and δ be the maximum and minimum degree. In general we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v)and N[v] denote the open and closed neighborhood of a vertex, respectively. The notation $\alpha_{\circ}(G)\alpha_{1}(G)$ is the minimum cardinality of vertices(edges) in a vertex(edge) cover of G. Also $\beta_{\circ}(G)\beta_{1}(G)$ is the minimum cardinality of vertices(edges) in a maximal independent set of a vertex (edge) of G. The degree of an edge e = uv of G is defined by deg (e) = deg(u) + deg(v) - 2 and $\delta'(G)\Delta'(G)$ is the minimum (maximum) degree among the edges of G(the degree of an edge is the number of edges adjacent to it). $\chi(G)\chi(G')$ is the minimum for which G has an n-vertices(n-edges) colourings. We begin with some standard definitions from domination theory.

A set $S \subseteq V$ is a dominating set of *G* if every vertex not in *S* is adjacent to a vertex in *S*. The domination number of *G* is denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. For detail on $\gamma(G)$ studied in [6,7].

A dominating set $S \subseteq V$ of *G* is connected dominating set if the induced subgraph $\langle S \rangle$ has one component .The connected domination number $\gamma_c(G)$ of *G* is the minimum cardinality of a connected dominating set of *G*.

A dominating set $S \subseteq V(G)$ is a restrained dominating set of *G* if every vertex not in *S* is adjacent to a vertex in V - S. The restrained domination number of *G* is denoted by $\gamma_r(G)$ is the smallest cardinality of a restrained dominating set of *G*. The concept of restrained domination in graphs introduced by Domke et.al (1999)see[3].

Priyanka H. Mandarvadkar Research Scholar Department of Mathematics Gulbarga University Kalaburagi-585106 Karnataka, India

Analogously, a dominating set *D* of a graph *G* is a cototal dominating set if the induced subgraph $\langle V - D \rangle$ has no isolated vertices. The cototal domination number number $\gamma_{ct}(G)$ is the minimum cardinality of a cototal dominating set of *G*.

A dominating set $S \subseteq V$ of *G* is split dominating set if the induced subgraph $\langle V - S \rangle$ has more than one component. The split domination number $\gamma_s(G)$ of *G* is the minimum cardinality of a split dominating set. For details see[8].

In this paper, we introduce the new concept in domination theory. A total dominating set *D* of *G* is a coregular total dominating set if the induced subgraph $\langle V - D \rangle$ is regular. The coregular total domination number $\gamma_{crt}(G)$ of *G* is the minimal cardinality of a coregular total dominating set of *G*.

2. RESULTS

We need the following theorems

Theorem A [8]: For any connected graph G, $\left\lfloor \frac{p}{\Delta(G)+1} \right\rfloor \leq \gamma(G)$.

Theorem B [1]: Let *G* be a connected graph of order *p*, then $\gamma'(G) \leq \left[\frac{p}{2}\right]$.

Theorem C [8]: For any graph G with end vertex $\gamma(G) = \gamma_s(G)$.

The following theorem relates $\gamma_{crt}(G)$ in terms of $\gamma_g(G)$ and edges of G.

Theorem 1: For any connected (p,q) graph G with $p \ge 3$ vertices,

$$2\gamma_g(G) - \gamma_{crt}(G) \le q.$$

Proof: Let $E = \{e_1, e_2, \dots, \dots, e_n\} \subseteq E(G)$ be the edge set of *G*. Let $\{v_1, v_2, \dots, v_p\}$ be the vertex set of *G* and let $A = \{v_1, v_2, \dots, v_p\}$ be the set of all nonendvertices which are adjacent to endvertices in *G*. Suppose $D = \{v_1, v_2, \dots, v_m\}, m \leq p$ be a dominating set of *G*. Such that N[D] = V(G) and $N[D] = N(\overline{G})$. Then *D* is a dominating set for both *G* and \overline{G} . Suppose the induced subgraph $\langle D \rangle \cup \{A\} > do$ not have isolated vertex then $\{D\} \cup \{A\}$ is a $\gamma_t(G)$ set. Further there exists $D' = [V(G) - \{D\} \cup \{A\}]$ and $\langle D' \rangle$ is regular then $\{D'\}$ is $\gamma_{crt}(G)$ set of *G*. Hence $2|D| - |D'| \leq |E|$ which gives , $2\gamma_g(G) - \gamma_{crt}(G) \leq q$.

Theorem 2: For any connected (p,q) graph G with $p \ge 3$ vertices,

$$\gamma_{crt}(G) + diam(G) \le p + \alpha_{\circ}(G).$$

Proof: Let $B = \{v_1, v_2, \dots, v_m\} \subseteq V(G), deg(v_i) \ge 2, \forall v_i \in B$ be the set of vertices which contains B' =

 $\{v_1, v_2, \dots, w_k\}$ such that the set of vertices B' covers all the edges in *G*. There exists an edge set $E_1 \subseteq E(G)$ constitute the longest path between two distinct vertices $u, v \in V(G)$ such that dist(u, v) = diam(G). Suppose $D = \{u_1, u_2, \dots, u_m\} \subseteq V(G)$ be the minimal set of vertices which covers all the vertices in *G* and the induced subgraph < D > has no isolated vertex then *D* itself is a $\gamma_t(G)$ set of *G*. Suppose the subgraph D' = [V(G) - D] and < D' >is regular then D' forms a $\gamma_{crt}(G)$ set of *G*. Therefore it follows that $|D'| + diam(G) \leq |V(G)| + |B'|$ and hence $\gamma_{crt}(G) + diam(G) \leq p + \alpha_\circ(G)$.

The following theorem relates the domination number of G and $\gamma_{crt}(G)$.

Theorem 3: For any connected (p,q) graph $G \quad \gamma_{crt}(G) \ge \gamma(G)$.

Proof: It is easy to see that $\gamma_t(G) \ge \gamma(G)$ and for $\gamma_{crt}(G)$ the above result may also exists for any connected graph.

Theorem 4: For any connected (p,q) graph G with $p \ge 3$ vertices,

$$\gamma_{crt}(G) \ge \left\lceil \frac{p}{\Delta(G)+1} \right\rceil.$$

Proof: By Theorem A and also by Theorem 3 we have the required result.

The concept of Roman domination function (RDF) was introduced by E. J. Cockayne, P.A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [2]. A Roman dominating function on a graph G = (V, E) is a function $f: V \to \{0,1,2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex of v of G for which f(v) = 2. The weight of a roman dominating function is the value $f(v) = \sum_{v \in V} f(x)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$ equals the minimum weight of a Roman dominating function on G.

Theorem 5: For any connected (p,q) graph G with $p \ge 3$ vertices,

$$_{t}(G) + \gamma_{R}(G) - 3 \leq 2\gamma_{crt}(G) + \chi(G).$$

ν

Proof : Let $F = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be the set of all endvertices in *G* and V' = V - F. Suppose $D' \subseteq V'$ be a minimal dominating set of *G*. Further if for some $\{v_i\} \in N(D')$ and $\langle D' \cup N(v_i) \rangle$ has no isolates, then $D' \cup N\{v_i\}$ forms a minimal total dominating set of *G*. If $\{v_i\} = \emptyset$, then there exists at least one vertex $v \in F$ such that $D' \cup N\{v\}$ forms a total dominating set of *G*. Suppose $f: V \to \{0,1,2\}$ and partitation the vertex set V(G) in to (V_0, V_1, V_2) by *f* with $|V_i| = n_i$ for i = 0,1,2,.Suppose the set V_2 dominates V_0 then $H = V_1 \cup V_2$ forms a minimal roman dominating set of *G*. Further if $\langle V - D' \cup \{v_i\} \rangle$ is regular then $D' \cup \{v_i\}$ is coregular total dominating set . Harary [4] has proved the chromatic number $\chi(G) \leq 1 + \Delta(G)$ and by Theorem 4, we have $|D' \cup N\{v\}| + |H| - 3 \leq 2|D' \cup \{v_i\}| + \chi(G)$ which gives, $\gamma_t(G) + \gamma_R(G) - 3 \leq 2\gamma_{crt}(G) + \chi(G)$.

A restrained dominating set *D* of a graph G = (V, E) is a coregular restrained dominating set if the induced subgraph $\langle V - D \rangle$ is regular. The coregular restrained domination number $\gamma_{crr}(G)$ of *G* is the minimum cardinality of a coregular restrained dominating set see[10].

The following Theorem relates with split domination number, coregular restrained domination number $\gamma_{crt}(G)$ and Roman domination number.

Theorem 6: For any connected (p, q) graph *G* with $p \ge 3$ vertices, $\gamma_{crt}(G) - \gamma_s(G) \le \gamma_{crr}(G) + \gamma_R(G) - 1$ and $G \ne K_p, G \ne K_{1,p}$.

Proof: Let D be a minimal dominating set of G. Suppose $\langle V - D \rangle$ is disconnected then D itself is a split dominating set of G. Further, if G has a set $B = \{v_1, v_2, \dots, v_n\}$ a set of end vertices in G. Then for $\forall v_i \in [V(G) - D \cup B]$ is adjacent to at least one vertex of $D \cup B$ and at least one vertex of $V(G) - \{D \cup B\}$. So $\{D \cup B\}$ is a minimal restrained dominating set of G. Suppose $\langle V - \{D \cup B\} \rangle$ is regular, then $\{D \cup B\}$ is a $\gamma_{crr}(G)$ set of G. For γ_R , let $f = (V_0, V_1, V_2)$ be any γ_R -function of G. Then $V_1 \cup V_2$ is a $\gamma_R(G)$ set of G. Let $D_1 = \{v_1, v_2, \dots, \dots, v_k\} \subseteq V(G)$ be the set of all nonendvertices in G. Suppose $D_2 \subseteq D_1$ be the minimum set of vertices in G and if deg $(v_i) \ge 1$, $\forall v_i \in D_2$. Then D_2 forms a total dominating set of G. Otherwise if deg $(v_i) < 1$ attach the vertices $w_i \in N(v_i)$ to make $\deg(v_i) \ge 1$, such that $\langle D_2 \cup \{w_i\} \rangle$ has no isolates. Clearly $\langle D_2 \cup \{w_i\} \rangle$ forms a minimal total dominating set of G. If the induced subgraph $\langle V(G) - D_2 \cup \{w_i\} \rangle$ is regular, then $D_2 \cup \{w_i\}$ is a coregular total dominating set of G. Hence $|D_2 \cup \{w_i\}|$ – $|D| \leq |D \cup B| + |V_1 \cup V_2|$ -1 which gives $\gamma_{crt}(G) - \gamma_s(G) \leq$ $\gamma_{crr}(G) + \gamma_R(G) - 1.$

Theorem 7: A coregular total dominating set $D' \subseteq V(G)$ is minimal if and only if for each vertex $x \in D'$ one of the following condition holds

- a) There exists a vertex $y \in V(G) D'$ such that $N(y) \cap D' = x$
- b) x is not an isolated vertex in $\langle D' \rangle$
- c) $\langle V(G) D' \rangle$ is regular.

Proof : Suppose D' is a minimal coregular total dominating set of *G* and there exists a vertex $x \in D'$ such that *x* does not hold only of the above conditions. Then for some vertex *w*, the set $D_1 = D' - \{w\}$ forms a coregular total dominating set in *G* by condition (a) and (b). Also by (c) < V(G) - D' > is regular. This implies that D' is coregular total dominating set of *G*, a contradiction.

Conversely, suppose $\forall x \in D'$, there exists a vertex $y \in V(G) - D'$ and condition (a) holds. Then $N(y) \cap D' = x$. For condition (b), deg $(x) \ge 1, \forall x \in D'$. Further if the condition (c) holds and $\langle V(G) - \{D' - x\} \rangle$ is not regular. Clearly D' is a coregular tota dominating set of *G*.

Theorem 8: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{crt}(G) \leq \left[\frac{p}{2}\right] + 2.$$

Proof: Let $D_1 = \{v_1, v_2, \dots, \dots, v_n\}$ is a dominating set of *G*. Suppose $V_1 = V(G) - D_1$. Further $D_2 \subset V_1$ and $\langle D_1 \cup D_2 \rangle$ has no isolates and $N[D_1 \cup D_2] = V(G)$ then $D_1 \cup D_2$ forms a total dominating set of *G*. If $D_3 = [V(G) - D_1 \cup D_2]$ and $\langle D_3 \rangle$ is regular then $\{D_3\}$ is $\gamma_{crt}(G)$ set of *G*. Also by Theorem B, $\gamma'(G) \leq \left[\frac{p}{2}\right]$. Clearly it follows that $|D_3| \leq \left[\frac{p}{2}\right] + 2$ and hence $\gamma_{crt}(G) \leq \left[\frac{p}{2}\right] + 2$.

Proposition 1: For any graph *G* with $p \ge 3$ vertices

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 12– No. 29, April 2020 – www.ijais.org

$$\gamma_{crt}(K_p) = \gamma_{crt}(K_{1,p}) = \gamma_t(G).$$

Theorem 9: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$2\gamma_{crt}(G) - \beta_1(G) \le \gamma_c(G) + \gamma_r(G) + \delta'(G).$$

Proof: Let $B = \{e_1, e_2, \dots, \dots, e_n\} \subseteq E(G)$ be the minimal independent set with $|B| = \beta_1(G)$. Suppose $S = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be the minimal set of vertices which covers all the vertices in *G*. Clearly S forms a minimal dominating set of *G*. If the subgraph $\langle S \rangle$ has one component then *S* itself is $\gamma_c(G)$ set. On the other hand $B_1 = \{u_1, u_2, \dots, \dots, u_n\}$ be the set all endvertices in *G* such that $S_1 \subseteq S$ then $B_1 \cup S_1$ forms a minimal restrained dominating set of *G*. Let $e \in E(G)$ with deg $(e) = \delta'(G)$. Further for some $v_j \in N(S)$ and the induced subgraph $\langle S \cup \{v_j\} \rangle$ does not contains an isolates then $S \cup \{v_j\}$ is a total dominating set of *G*. If $D = [V(G) - S \cup \{v_j\}]$ and $\langle D \rangle$ is regular then $\{D\}$ is a $\gamma_{crt}(G)$ set of *G*, it follows that $2|D| - |B| \leq |S| + |B_1 \cup S_1| + \delta'(G)$ which gives, $2\gamma_{crt}(G) - \beta_1(G) \leq \gamma_c(G) + \gamma_r(G) + \delta'(G)$.

Observation 1: Let T be a tree, then each $\gamma_{crt}(G)$ set is $\gamma_t(G)$ set.

Observation 2: Every support vertex of a graph is in every $\gamma_{crt}(G)$ set.

A split dominating set $D \subseteq V(G)$ is a coregular split dominating set if the induced subgraph $\langle V - D \rangle$ is regular and disconnected. The minimum cardinality of such a set is called a coregular split domination number and is denoted by $\gamma_{crs}(G)$. For detail see[9].

We establish the relationship with coregular split domination number with Coregular total domination number of G.

Theorem 10: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{crt}(G) \leq \gamma_{crs}(G) + \Delta(G)$$
 and $G \neq K_p$

Proof: Suppose $G = K_p$. Then by definition $\gamma_{crt}(G)$ set does not exists. Now consider D_1 be a dominating set of G and $V_1 = V(G) - D_1 \forall v_i \in V_1$ if $\langle D_1 \cup \{v_i\} \rangle$ has no isolates. Then $\langle D_1 \cup \{v_i\} \rangle$ forms a minimal total dominating set of G. Further if $V_2 = [V(G) - D_1 \cup \{v_i\}]$ and $\forall v_i \in \langle V_2 \rangle$ has same degree then $\{V_2\}$ is a $\gamma_{crt}(G)$ set of G. On the other hand let $B = \{v_1, v_2, \dots, v_m\}$ be the set of all nonendvertices $\forall B' \in D_1$ such that $\langle V(G) - B' \rangle$ is disconnected and is regular then B' forms a $\gamma_{crt}(G)$ set of G. Suppose there exists at least one vertex v of maximum degree $\Delta(G)$ it follows that $|V_2| \leq |B'| + \Delta(G)$ which gives , $\gamma_{crt}(G) \leq \gamma_{crs}(G) + \Delta(G)$.

Theorem 11: For any connected (p,q) graph G with $p \ge 3$ vertices, $2\alpha_1(G) - \gamma_{crt}(G) \ge \gamma_s(G)$ and $G \ne K_p$. $G \ne W_p$ (p = 4,6).

Proof: Suppose = K_p ($p \ge 2$). Then by the definition $\gamma_s(G)$ set does not exists. Further for the graph $G = W_p$, if p = 4 and 6 then $,2\alpha_1(G) - \gamma_{crt}(G) = 2 < \gamma_s(G)$. Let $S = \{e_1, e_2, \dots, \dots, e_n\}$ be the set of all endedges in G, where $K \subseteq E(G) - S$ such that $S \cup K$ be the minimal set of edges which covers all the vertices of G hence $|S \cup K| = \alpha_1(G)$. Further $A = \{v_1, v_2, \dots, v_m\} \subseteq V(G)$ be the set of all endvertices in G. Let B = V(G) - A and consider a set $F \subseteq B$ such that < V(G) - F > is disconnected and if N[F] = V(G). Hence F is a $\gamma_s(G)$ set of G. Let $A_1 \subseteq A$ and

 $B_1 \subseteq B$, now $\langle V(G) - \{A_1 \cup B_1\} \rangle$ has no isolates. Clearly $\{A_1 \cup B_1\}$ is a total dominating set of *G*. Suppose $\langle V(G) - \{A_1 \cup B_1\} \rangle$ is regular then $\{A_1 \cup B_1\}$ itself is a $\gamma_{crt}(G)$ set of *G*. Otherwise there exists $\{v_i\} \in [V(G) - \{A_1 \cup B_1\}]$, now to see that $\langle V(G) - A_1 \cup B_1 \cup \{v_i\} \rangle$ is regular. Hence $[A_1 \cup B_1 \cup \{v_i\}]$ is a $\gamma_{crt}(G)$ of *G*. Now $2|S \cup K| - |[A_1 \cup B_1 \cup \{v_i\}]| \geq |F|$, gives the required result $2\alpha_1(G) - \gamma_{crt}(G) \geq \gamma_S(G)$.

Theorem 12: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{crt}(G) \le q - \Delta'(G) + 1.$$

Proof: Let $E = \{e_1, e_2, \dots, e_n\}$ be the edge set in *G*. Let $F = \{v_1, v_2, \dots, v_m\}$ be the minimum set of vertices which covers all the vertices in *G*. Suppose deg $(v_i) \ge 1$, $\forall v_i \in F$ then *F* forms a $\gamma_t(G)$ set of *G*. Otherwise if $eg(v_i) < 1$, then attach the vertices $\forall v_j \in N(v_i)$ to make deg $(v_i) \ge 1$ such that $\langle F \cup \{v_j\} \rangle$ has no isolated vertex . Clearly $[F \cup \{v_j\}]$ forms a minimal total dominating set of *G*. Further $[V(G) - F \cup \{v_j\}] = S$ and $\langle S \rangle$ is regular, then $\{S\}$ is a coregular total dominating set of *G*. Suppose *e* be an edge of maximum degree $\Delta'(G)$ in *G*. Then $= uv \in \{S\}$. Hence $|S| \le |E| - \Delta'(G) + 1$ which gives , $\gamma_{crt}(G) \le q - \Delta'(G) + 1$.

A dominating set $D \subseteq V(G)$ is a double dominating set of G, if each vertex in V is dominated by at least two vertices in D. Or a subset D^d of G is a double dominating set if for every vertex $v \in V(G)$, $|N(v) \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbor in D^d or v is in $V(G) - D^d$ has at least two neighbours in D^d . The double domination number $\gamma_{dd}(G)$ of G is the minimu cardinality of a double dominating set of Gsee[5].

Theorem 13: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{crt}(G) + \gamma_{ct}(G) \le 2\gamma_{dd}(G) + 1.$$

Proof: Let $A = \{u_1, u_2, \dots, u_n\} \subseteq V(G)$ be the set of vertices. Suppose there exists a minimal set $B = \{u_1, u_2, \dots, u_n\} \in N(A)$ such that the subgraph $\langle A \cup B \rangle$ has no isolated vertex. Further if $A \cup B$ covers all vertices in *G*, then $A \cup B$ forms a mnimal total dominating set of *G*. If $\langle V(G) - \{A \cup B\} \rangle$ is regular then $\{A \cup B\}$ itself is a $\gamma_{crt}(G)$ set of *G*. Suppose $= \{v_1, v_2, \dots, v_p\} \subseteq V(G)$, such that N[D] = V(G). Then *D* is a dominating set of *G* and if $\langle V - D \rangle$ has no isolates. Then *D* itself is a $\gamma_{ct}(G)$ set. Now consider $V_2 = V(G) - D$ and $D_2 = \{v_1, v_2, \dots, v_p\} \subseteq V_2$, then $D^d = D \cup V_2$ forms a double dominating set of *G*. Since $|A \cup B| + |D| \leq 2|D \cup V_2| + 1$ which gives, $\gamma_{crt}(G) + \gamma_{ct}(G) \leq 2\gamma_{dd}(G) + 1$.

Theorem 14: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\left|\frac{diam(G)+1}{2}\right| \leq \gamma_{crt}(G).$$

Proof: Let $F = \{e_1, e_2, \dots, \dots, e_k\} \subseteq E(G)$ be the minimal set of edges which constitute the longest path between any two distinct vertices $u, v \in V(G)$ such that dist(u, v) =diam(G). Further let D be the minimal dominating set in G. Suppose $V_1 = V(G) - D$ and $B \subseteq V_1$ such that $B \in N(D)$ in . If $< V - D \cup B >$ is regular. Clearly $D \cup B$ is a $\gamma_{crt}(G)$ set

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 12– No. 29, April 2020 – www.ijais.org

of G. It follows that $\left|\frac{diam(G)+1}{2}\right| \le |D \cup B|$ which gives, $\left|\frac{diam(G)+1}{2}\right| \le \gamma_{crt}(G)$.

Theorem 15: For any graph $G \ \gamma_s(G) \leq \gamma_{crt}(G)$.

Also from Theorem C, $\gamma(G) = \gamma_s(G)$ (2)

From (1) and (2) we have $\gamma_s(G) \leq \gamma_{crt}(G)$.

3. REFERENCES

- [1] Araya Chaemchan, The edge domination number of connected graphs, Australasian journal of Combinatorics, Vol.48, 185-189.
- [2] E.J. Cockayne, P.A Dreyer, Jr.S.M. Hedetniemi and S.T Hedetniemi, Roman domination in graphs, Discrete Maths Vol-278,2004,11-22.
- [3] G.S.Domke J.H.Hattingh, S.T.Hedetniemi, R.C.Laskar and L.R.Markus, Restrained domination in graphs Discrete Mathematics Vol-203,1999, 61-69.

- [4] F.Harary, Graph Theory, Addison-wesly Reading Mass 1969.
- [5] F.Harary and T.W Haynes, Double domination in graphs , Ars, Combin Vol-55, 2000,201-213.
- [6] T.W. Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc, Newyork, 1998.
- [7] T.W. Haynes, S.T. Hedetniemi and P.J.Slater(Eds), Domination in Graphs : Advanced Topics , Marcecl , Newyark , 1999.
- [8] V.R Kulli, Theory of domination in graphs ,Vishwa International publications, 2010.
- [9] M.H.Muddebihal and priyanka. H. Mandarvadkar ,Coregular split domination in graphs JES,Vol-10 2019,259-264.
- [10] M.H.Muddebihal and priyanka H.Mandarvadkar Coregular restrained domination in graphs CEJ, Vol-11, 2020, 236-241.