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ABSTRACT
This paper focuses on the development of a new 2D time wavelets
family for image sequence that can capture different motion in
image sequence, ranging from highly directional ones to fully
isotropic ones. We propose a multiselectivity spatio-temporal anal-
ysis, defined by isotropic and multidirectional decomposition with
different angular selectivity. The result is a dictionary of wavelet
transform with different selectivity level, which provides a theo-
retical tool to select a best representation for motion and velocity.
This representation was used to developer a velocity capture algo-
rithm in image sequence. The Experimental results demonstrate the
effectiveness of the proposed approach.
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1. INTRODUCTION
Motion and velocity estimation is typically the most compute in-
tensive part of video processing, it has become of great interest in
several areas of video analysis such as motion compensated im-
age coding [1, 2], civil and military applications of object track-
ing and autonomous navigation[3, 4], identification of anoma-
lies using image processing in biological and medical images[5],
spatiotemporal video segmentation [6, 7, 8], obstacle evasion in
mobile robotic [4, 9], sport training, comparing behaviors respect
a mathematical model [10, 11],...
Motion estimation is an ill-posed problem as the motion is in
three dimensions but the images are a projection of the 3D scene
onto a 2D plane [12], numerous techniques have been proposed
to tackle such an inverse problem. Four methods are mainly used
in motion and velocity estimation [13, 14]. Those are: 1) Block
matching; 2) Multiresolution filtering (with or without compen-
sation); 3) Optical flow; 4) Non-transmission of movement in-
formation.
So far most algorithms for three-dimensional motion estima-
tion use optical flow. Optical flow approachs are based on the
assumption that pixel-values between frames change only be-
cause of motion, but not on regions or objects. They assume
that the object is constant from frame to frame and that the ob-
ject signature does not deform over time. They are not inher-
ently scalable either. These approaches generally cannot appro-
priately handle scenarios including noise, time varying object
signatures, and temporary ocelusions because the temporal sup-
port over which they operate is too limited, this limitation can
be relaxed by the extensions of continuous wavelet transform
to spatio-temporal space, these spatio-temporal wavelet Trans-
forms (2D+T WT) provide a good motion estimation in image
sequences[15, 16, 17, 18], and give an efficient alternative frame-
work to the optical flow. Extensions of continuous wavelet trans-
form to multiple dimensions have been successfully used for the
analysis and classification of 2D+time signals [13]. The group of
2D analysis parameters, i.e., usually position, scale and rotation,
has been extended to speed, acceleration and deformation. This

has led to various types of time dependent wavelets. We may cite
for instance, 2D+T Morlet wavelet [15, 16], 2D+T Gaussian-
Conical-Morlet (GCM) wavelet [17], Galilei wavelets[18, 13],
Accelerated spatio-temporal wavelet [19]...
Real image sequence contain very different motions, ranging
from very oriented ones, like translations, to more isotropic mo-
tions, like rotation motions. Between these two extreme behav-
iors, we find, for instance, curvilinear motions [13, 14]. Each
speed of these motions is well represented by 2D+time wavelets
with different angular selectivity. However, in all the spatio-
temporal wavelet transforms mentioned above, the wavelets
share the same angular selectivity. In order to overcome this lim-
itation of velocity capture, we construct a new spatio-temporal
wavelets with different angular selectivity, the construction of
these wavelets is done separately in frequency space, by a spa-
tial filter and a temporal 1D filter. We obtain a multiselectivity
spatio-temporal analysis which can capture the different struc-
tures of motion and velocity.
The outline of the paper is as follows. In section 2, we recall
the basic formulas of 2-D continuous wavelet transform. These
formulas will be extended to the 2D+T case in section 3. In sec-
tion 4 we propose a multiselectivity spatio-temporal analysis de-
fined by a new spatio-temporal wavelets with different angular
selectivity. The design and implementation problems and how
to use this analysis to capture velocity and analyze motion, are
discussed in section 5 and 6. We report the results of our experi-
ments in section 7 and conclude the paper in section 8.

2. PRELIMINARIES: 2-D CONTINUOUS
WAVELET TRANSFORM

In order to fix the notations, we first recall the basic formulas
of 2-D continuous wavelet transform. Let f ∈ L2(R2) be an
image of finite energy. Given a wavelet ψ ∈ L2(R2) satisfying
the admissibility condition

cψ = 2π3

∫
R2

|ψ̂∗(~k)|2

|~k|2
, d~k < +∞. (1)

The hat denotes the standard Fourier transform on L2(R2), these
condition is called the wavelet admissibility condition [20, 21].
To guarantee that this integral is finite, we must ensure that
ψ̂(~0) = 0, which explains why wavelets must have a zero av-
erage. This condition is nearly sufficient. If ψ̂(~0) = 0 and ψ̂
is continuously differentiable, then the admissibility condition is
satisfied.
The continuous wavelet transform of f is the function[20, 22]

W~b,a,θ = 〈ψ~b,a,θ|f〉 (2)

= a−2

∫
R2

ψ∗
(
r−1
θ

~x−~b
a

)
f(~x) d2~x (3)

= a2

∫
R2

ψ̂∗(ar−1
θ
~k) f̂(~k) ei

~k·~b d2~k, (4)

1



International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12 - No. 29, May 2020 - www.ijais.org

where the wavelet ψ~b,a,θ is an L1-normalized copy of ψ, trans-

lated by ~b ∈ R2, dilated by a ∈ R∗+ and rotated by θ ∈ S1 '
[0, 2π).

r−1
θ

(
cos θ sin θ
−sin θ cos θ

)
. (5)

These formulas will be extended to the 2D+T case in following
section.

3. 2D+T CONTINUOUS WAVELET TRANSFORM
Image sequence is an object of three dimensions: spatial (2D)
and temporal (1D), for analysis this sequence, we must first build
a ( 2D+T) Hilbert spatio-temporal space, Correspondingly, we
consider the space of square-integrable signals over space and
timeH = L2(R2 ×R, d~xdt). The corresponding scalar product
and norm are

〈g|f〉 =

∫
R

∫
R2

g∗(~x, t) f(~x, t) d~xdt (6)

=

∫
R

∫
S1

∫
R+

g∗(ρ, σ, t) f(ρ, σ, t) d2sdt, (7)

and

‖f‖2 =

∫
R2

∫
R
|f(~x, t)|2 d~xdt (8)

=

∫
R

∫
S1

∫
R+

|f(ρ, σ, t)|2d2sdt, (9)

where ~x = (ρ, σ), ρ = ‖~x‖, σ = arg ~x and d2s = ρdρdσ. The
Fourier transform of f is defined, as usual, by

f̂(~k,w) = (2π)−3/2

∫
R

∫
R2

e−j(
~k~x+wt)f(~x, t) d~xdt (10)

=
1

(2π)3/2

∫
R

∫
S1

∫
R+

J(r, θ, w, ρ, σ, t) d2sdt,(11)

where

J(r, θ, w, ρ, σ, t) = e−j(rρcos(σ−θ)+wt)f(ρ, σ, t), (12)

~k is the spatial frequency,w is the temporal frequency, ~k =

(r, θ), r = ‖~k‖ and θ = arg~k.
The relationship between the energy distribution of a static ob-
ject f(~x, t) = h(~x) and the energy of the same object in linear
motion f~v(x~− ~vt, t) = h(x~− ~vt) can be mathematically repre-
sented by Fourier pairs. For a static object we have:

f̂(~k,w) = (2π)−3/2

∫
R

∫
R2

e−j(
~k~x+wt)f(~x, t) d~xdt

= (2π)−3/2

∫
R

∫
R2

e−j(
~k~x+wt)h(~x) d~xdt

= (2π)−3/2

∫
R2

e−j(
~k~x)h(~x)d~x

∫
R
e−j(wt) dt

= ĥ(~k)δ(w),

and

f̂~v(~k,w) = (2π)−3/2

∫
R

∫
R2

e−j(
~k~x+wtf~v(~x, t) d~xdt

= (2π)−3/2

∫
R

∫
R2

e−j(
~k~x+wt)h(~x− ~vt) d~xdt

= (2π)−3/2

∫
R

∫
R2

e−j(
~k~y)−j(~k~v+w)th(~y) d~ydt

= (2π)−3/2

∫
R2

e−j(
~k~y)h(~y)d~y

∫
R
e−j(

~k~v+w)t dt

= ĥ(~k)δ(~k~v + w).

The energy of static object is concentrated in the null frequencies
plane, w = 0. In the presence of a linear motion, this energy is
distributed over a plane defined by:

~k~v + w = 0. (13)

Several motion operators can be applied to the mother wavelet ψ,
namely, scaling (Da), translation (T~b), rotation (Rβ) and speed
tuning (Ac)[13, 14].

3.1 Scaling

[Daψ](~x, t) = a−3/2ψ(
~x

a
,
t

a
) (14)

or, equivalently in the space of Fourier transforms,

[D̂aψ](~k,w) = a3/2ψ̂(a~k, aw), (15)

where a ∈ R+.

3.2 Space-time translation

[T
~b,τψ](~x, t) = ψ(~x−~b, t− τ), (16)

or, equivalently in the space of Fourier transforms,

[T̂~b,τψ](~k,w) = e−j(
~k.~b−wτ)ψ̂(~k,w), (17)

where (~b, τ) ∈ R2 × R.

3.3 Rotation

[Rβψ](~x, t) = ψ(r−1
β ~x, t), (18)

or, equivalently in the space of Fourier transforms,

[R̂βψ](~k,w) = ψ̂(r−1
β
~k,w), (19)

where

r−1
β

(
cos β sin β
−sin β cos β

)
. (20)

And β ∈ [0, 2π].

3.4 Speed tuning
The speed tuning transformation, denoted Ac, can be as two in-
dependent scaling operation performed on the spatial and tem-
porel variables.

[Acψ](~x, t) = ψ(c−p~x, cqt), (21)

where c ∈ R+ and (p, q) ∈ R2, the speed tuning transformation
is unitary

‖ψ‖2 = ‖[Acψ]‖2

=

∫
R

∫
R2

|ψ(c−p~x, cqt)|2d~xdt

= c2p−q
∫
R

∫
R2

|ψ(~x, t)|2d~xdt

= c2p−q‖ψ‖2

Hence

q = 2p. (22)

In the space of Fourier transforms,

[Âcψ](~k,w) = ψ̂(cp~k, c−qw), (23)

the application the speed tuning transformation to c~v plane of the
equation 13 yields that

cp~k~v = −c−qw, (24)
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w = −cq+p~k~v (25)

w = −c~k~v, (26)

this requires that

p+ q = 1. (27)

The system formed by the constraints 22 and 27 thus leads to the
admissible values: q = 2/3 and p = 1/3.
These transformation operators written above have identified a
parameter space Λ, which increases the capacity of the wavelet
analysis beyond the traditional parameters of scale (frequency)
and the position. The new parameter space is:

Λ = {(a,~b, τ, β, c) ∈ R+ × R2 × R× [0, 2π]× R+}. (28)

The application of all operators leads to a transformation com-
posite ΩΛ consisting of: spatio-temporal dilation, spatial and
temporal translation, rotation, and speed tuning. Its application
to a 2D+t wavelet ψ gives:

ΩΛψ(~x, t) = T
~b,τRβAcDaψ(~x, t), (29)

and by replacing each operator by its expression of transforma-
tion, we obtain the developed expression of the 2D+t wavelet ψ,

[ΩΛψ](~x, t) = a−3/2ψ
(c−p
a
r−1
β (~x−~b), c

q

a
(t− τ)

)
. (30)

In the same way, for the Fourier space:

[Ω̂Λψ](~k,w) = a3/2ψ
(
acpr−1

β (~k), ac−qw
)
e−j(

~k.~b−wτ). (31)

If the wavelet ψ satisfies

cψ = 2π3

∫
R

∫
R2

|ψ̂∗(~k,w)|2

|~k|2|w|
, d2~kdw < +∞. (32)

The 2D+t continuous wavelet transform of the image sequence
f ∈ H and wavelet ΩΛψ, is scalar product of f and ΩΛψ, con-
sidered as a function of (a,~b, τ, β, c)[13, 14, 23].

Wa,~b,τ,β,c = 〈ΩΛψ|f〉 (33)

=

∫
R

∫
R2

ΩΛψ(~x, t)f(~x, t) d~xdt (34)

=

∫
R

∫
R2

ψa,β,c(~x−~b, t− τ)f(~x, t) d~xdt,(35)

where

ψa,β,c(~x, t) = a−3/2ψ
(c−p
a
r−1
β (~x),

cq

a
t
)
, (36)

or, equivalently in the space of Fourier transforms,

ψ̂a,β,c(~k,w) = a3/2ψ̂
(
acpr−1

β (~k), ac−qw
)
. (37)

The condition 32 is called the wavelet admissibility condition.
To guarantee that this integral is finite, we must ensure that

ψ̂(~0, w) = 0 ∀w ∈ R, (38)

ψ̂(~k, 0) = 0 ∀~k ∈ R2, (39)

which explains why wavelets must have a zero average. This
condition is nearly sufficient. If 38 and 39 are satisfies and ψ̂
is continuously differentiable, then the admissibility condition is
satisfied.

4. MULTISELECTIVITY SPATIO-TEMPORAL
ANALYSIS

In this section we propose a multiselectivity spatio-temporal
analysis, defined by Isotropic wavelet, and Anisotropic wavelets
with different angular selectivity. The angular selectivity of these
wavelets growths with selectivity level. We first construct a
isotropic wavelet in spatial frequency variables

ψ̂(~k,w) = φ̂(r)ϕ̂(w), r = ‖~k‖, (40)

where φ̂ and ϕ̂ are Fourier transforms of two 1D-wavelets and
satisfies the following properties

φ̂(0) = ϕ̂(0) = 0. (41)

The application of spatio-temporal dilation, rotation, and speed
tuning to wavelet ψ gives:

ψ̂a,c(~k,w) = a3/2φ̂(acpr)ϕ̂(ac−qw). (42)

The wavelet ψ̂ is shown in Figure 1, and in Figure 2, we show
the isotropic wavelet ψ̂a,c together with speed-tunings at c > 1,
c = 1, c < 1 speeds and scale a = 2.
When the aim is to detect directional velocity , one has to use a
spatial directional wavelets[24, 20, 25].

DEFINITION 1. A 2D wavelet ψ is said to be directional if
the effective support of its Fourier transform ψ̂ is contained in a
convex cone in frequency space, with apex at the origin.

A directional wavelet ψ is characterized by its angular selectivity
(or Angular Resolving Power ), that is, its ability to distinguish
features with close orientations. This quantity is by definition
inversely proportional to the aperture of the support cone of ψ̂.

We consider 2π-periodic function dα defined by

dα(θ) =


γ( θ−α

α
), θ ∈ [0, 2α];

1, θ ∈ [2α, π];
γ(π+α−θ

α
), θ ∈ [π, π + 2α];

0, θ ∈ [π + 2α, 2π].

(43)

where α ∈ [0, π] and the function γ is defined in [−1, 1] and
satisfies the following property :

γ2(t) + γ2(−t) = 1. (44)

For L ∈ N∗ and α = π
2L

, we create 2l different 2π-periodic
functions ηl,m indexed by 0 ≤ m < 2l for any l ∈ {0, ..., L}
and defined by:

η0,0(θ) = 1, (45)

ηl+1,2m(θ) = ηl,m(θ)dα(θ − (2m+ 1)π

2l
), (46)

ηl+1,2m+1(θ) = ηl,m(θ)dα(θ − (2m+ 1)π

2l
− π). (47)

We construct a new wavelet whose Fourier transforms are:

ψ̂a,m,c,l(~k,w) = ψ̂a,c(~k,w) ηl,m(θ), (48)

where
r = ‖~k‖, and θ = arg~k.

PROPOSITION 1. for any l ∈ {1, ..., L}

ηl,0(θ) =


γ( θ−α

α
), θ ∈ [0, 2α];

1, θ ∈ [2α, π
2l−1

];

γ(
π

2l−1
+α−θ
α

), θ ∈ [ π
2l−1

, π
2l−1

+ 2α];
0, θ ∈ [ π

2l−1
+ 2α, 2π].

(49)
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Fig. 1. 3D sectional views of isotropic wavelet ψ̂ in Fourier space (kx, ky , w).

c < 1 c = 1 c > 1

Fig. 2. The 2D+T isotropic wavelet ψa,c tuned to various velocities with 3D view.

and ∀m ∈ {0, ..., 2l − 1}

ψ̂a,m,c,l(~k,w) = ψ̂a,c(r,w)ηl,0(θ − βl,m), (50)

where

βl,m = m
2π

2l
. (51)

PROOF. According to the expression (43) of the function dα,
one have for any l ∈ {1, ..., L} :

dα(θ − π

2l
) =



0, θ ∈ [0, π
2l

];

γ(
θ− π

2l
−α

α
), θ ∈ [ π

2l
, π

2l
+ 2α];

1, θ ∈ [ π
2l

+ 2α, π
2l

+ π];

γ(
π+ π

2l
+α−θ
α

), θ ∈ [ π
2l

+ π, π
2l

+ π + 2α];
0, θ ∈ [ π

2l
+ π + 2α, 2π],

(52)

dα(θ−π− π
2l

) =



1, θ ∈ [0, π
2l

];

γ(
π
2l

+α−θ
α

), θ ∈ [ π
2l
, π

2l
+ 2α];

0, θ ∈ [ π
2l

+ 2α, π
2l

+ π];

γ(
θ−π− π

2l
−α

α
), θ ∈ [ π

2l
+ π, π

2l
+ π + 2α];

1, θ ∈ [ π
2l

+ π + 2α, 2π].
(53)

We shall now prove that for any l ∈ {1, ..., L}

ηl,0(θ) =


γ( θ−α

α
), θ ∈ [0, 2α];

1, θ ∈ [2α, π
2l−1

];

γ(
π

2l−1
+α−θ
α

), θ ∈ [ π
2l−1

, π
2l−1

+ 2α];
0, θ ∈ [ π

2l−1
+ 2α, 2π].

(54)

Let’s prove this by induction: Since η1,0(θ) = η0,0(θ)dα(θ −
π − π) = dα(θ), the function η1,0 expressed as (54). Now as-
sume that for a fixed l, the function ηl,0 expressed as (54). The

inclusion of this induction hypothesis and equation (53) in the
expression (46) gives:

ηl+1,0(θ) =


γ( θ−α

α
), θ ∈ [0, 2α];

1, θ ∈ [2α, π
2l

];

γ(
π
2l

+α−θ
α

), θ ∈ [ π
2l
, π

2l
+ 2α];

0, θ ∈ [ π
2l

+ 2α, 2π].

(55)

This last result completes the proof of the induction.
The insertion of the expressions (52) and (54) in equation (47)
shows that: for any l ∈ {1, ..., L}

ηl,1(θ) =



0, θ ∈ [0, π
2l−1

];

γ(
θ− π

2l−1
−α

α
), θ ∈ [ π

2l−1
, π

2l−1
+ 2α];

1, θ ∈ [ π
2l−1

+ 2α, π
2l−2

];

γ(
π

2l−2
+α−θ
α

), θ ∈ [ π
2l−2

, π
2l−2

+ 2α];
0, θ ∈ [ π

2l−2
+ 2α, 2π].

(56)

Therefore, for any l ∈ {1, ..., L}

ηl,1(θ) = ηl,0(θ − π

2l−1
). (57)

We shall now prove that, for any l ∈ {1, ..., L}

ηl,m(θ) = ηl,0(θ − βl,m) m = 0, 1, ..., 2l − 1. (58)

with βl,m = m 2π
2l

.
Let’s prove this by induction: Now assume that for a fixed l:

ηl,m(θ) = ηl,0(θ − βl,m), m = 0, 1, ..., 2l − 1, (59)

4
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The inclusion of the induction hypothesis and equation (57) in
the expressions (46) and (47) gives:

ηl+1,2m(θ) = ηl,m(θ)τα(θ − π − (2m+ 1)π

2l
)

= ηl,0(θ − βl,m)τα(θ − π − βl,m −
π

2l
)

= ηl,0(θ − βl+1,2m)τα(θ − π − βl+1,2m −
π

2l
)

= ηl+1,0(θ − βl+1,2m),

ηl+1,2m+1(θ) = ηl,m(θ)τα(θ − (2m+ 1)π

2l
)

= ηl,0(θ − βl,m)τα(θ − βl,m −
π

2l
)

= ηl,0(θ − βl+1,2m)τα(θ − βl+1,2m −
π

2l
)

= ηl+1,1(θ − βl+1,2m)

= ηl+1,0(θ − βl+1,2m+1).

The proposition shows that for any l ∈ {1, ..., L} the parameter
m describes a rotation of angle βl,n = n 2π

2l
:

ψ̂a,m,c,l(~k,w) = ψ̂a,c(r, w)ηl,m(θ) (60)

= ψ̂a,c(r, w)ηl,0(θ − βl,m) (61)

= ψ̂a,0,c,l(r
−1
βl,m

~k,w) (62)

= ψ̂a,c(r, w)ηl,m(θ) (63)

= φ̂(acpr)ηl,0(θ − βl,m)ϕ̂(ac−qw) (64)

= ψ̂l(ac
pr−1
βl,m

~k, c−qw), (65)

with

ψ̂l(~k,w) = φ̂(r)ηl,0(θ)ϕ̂(w). (66)

for each level of construction l, the functions ηl,m are continu-
ous with compact support of size 2π

2l
+2α. So the aperture of the

cone supporting of ψ̂a,m,c,l is equal to 2π
2l

+2α, the 3D frequency
view and the support properties of these wavelets are illustrated
in figures 3 and 4 . Indeed, the parameter l determines a selectiv-
ity level and the angular selectivity of these wavelets grow with
l. In particular, ψ̂a,0,c,0 = ψ̂a,c is a totally isotropic wavelet.

Fig. 4. Support properties of the directional wavelet ψ̂l.

If the Fourier transform of wavelet ψl is continuously differen-
tiable, admissibility condition is satisfied

cψ = 2π3

∫
R2

∫
R

|ψ̂∗(~k,w)|2

|~k|2|w|
, dw d2~k < +∞. (67)

The 2D+t continuous wavelet transform of the video sequence f
and wavelet ΩΛψl(~x, t) = T

~b,τRβl,mAcDaψ(~x, t), is scalar

product of f and ΩΛψl(~x, t)

Wa,~b,τ,βl,m,c,l
= 〈ΩΛψl|f〉 (68)

=

∫
R

∫
R2

ΩΛψl(~x, t)f(~x, t) d~xdt. (69)

Alternatively, the 2D+t continuous wavelet transform can be ex-
pressed in wavenumber-frequency domain (~k,w)

Wa,~b,τ,βl,m,c,l
(70)

= 〈Ω̂Λψl|f̂〉 (71)

=

∫
R2

∫
R
e−j(

~k.~b−wτ)ψ̂a,m,c,l(~k,w)f(~k,w) d~kdw (72)

=

∫
R

∫
S1

∫
R+

ψ̂a,c(r,w)ηl,m(θ)J(r, θ, w)rdrdθdw,(73)

with

J(r, θ, w, r̃, σ, τ) = f̂(r, θ, w)e−j (rr̃ cos(σ−θ)+wτ), (74)

r̃ = ‖~b‖ and σ = arg~b. The last equation may be rewritten as

W (a,~b, τ, βl,m, c, l) = 〈ηl,n/Ra,~b,c〉S1
, (75)

where 〈f/g〉S1
=
∫
S1
f ∗(α)g(α) dα, is the scalar product on

the circle S1 of the 2π-periodic functions f and g, and

Ra,~b,c(θ) =

∫
R

∫
R+

ψ̂a,c(r,w) f̂(r, θ, w).J(r, θ, w, r̃, σ, τ) rdr dw

(76)
In other words, the relation 75 means that the wavelet coeffi-
cients of the image f can be interpreted as the angular approx-
imation at angular selectivity 2l of Ra,~b,c, on a kind of scaling
function ηl,n localized in θn ∈ S1.
The multiselectivity spatio-temporal analysis of the of image se-
quence f can be defined as the set of wavelet coefficients up
to a selectivity level L, over the spatial and temporal variables
~b ∈ R2 and τ ∈ R, while fixing the velocity parameters c ∈ R+

and the scale a ∈ R+.

[Wa,~b,τ,βl,m,c,l
,~b ∈ R2, τ ∈ R, 0 ≤ n < 2l, 0 ≤ l ≤ L]. (77)

5. FREQUENCY-DOMAIN IMPLEMENTATION
In this section we show how to construct examples of wavelets
ψl, for l ∈ {0, 1, ..., L}, satisfying the properties described in
sections 3 and 4. The 2D+T continuous wavelet transform of im-
age sequence f and wavelet ΩΛψ, is convolution product of f
and ψa,θ,c in (~b, τ) ∈ R2 × R

Wa,~b,τ,βl,m,c,l
(78)

= 〈ΩΛψl|f〉 (79)

=

∫
R

∫
R2

ΩΛψl(~x, t)f(~x, t) d~xdt (80)

f(~x, t) dtd2~x (81)

= [a3/2ψ
(c−p
a
r−1
βl,m

.,
cq

a
.
)
∗ f(., .)](~b, τ)(82)

= [ψa,βl,m,c,l ∗ f ](~b, τ). (83)

The valuesWa,~b,τ,βl,m,c,l
are represented as the result of inverse

Fourier transform of the product ψ̂a,βl,m,c,l and f̂ ,

Ŵa,βl,m,c,l(
~k,w) = ψ̂a,βl,m,c,l(

~k,w)f̂(~k,w). (84)

Therefore, if f and ψ is band-limited, that is, if f, ψ ∈ Bπ

Bπ = {h ∈ H : ĥ(~k,w) = 0 if (~k,w) /∈ [−π, π)3}, (85)
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a b c

Fig. 3. The 3D view of 2D+T wavelets ψ̂2,m,1,l: (a) l = 1 and m = 0. (c) l = 1 and m ∈ {0, 1}. (b) l = 2 and m ∈ {0, 1, 2, 3}.

|ϕ| for n = 2 |φ| for n = 2

|ϕ| for n = 10 |φ| for n = 10

Fig. 5. The spatial spline waveletφ̂ and temporal spline wavelet ϕ̂.

the fast Fourier transform (FFT3D) implementation permits to
compute Wa,~b,τ,βl,m,c,l

. In this particular context, we construct
the isotropic wavelet described in section 4.
The spline 1D-wavelet is a good candidate for it owns the proper-
ties of compactness in time and frequency, as seen before, which
offers the possibility to realize computations in the Fourier space
while keeping a good accuracy in the temporal speed domain
[21].

φ̂(r) =
√

2 exp(
−iεr

1
)sin(r/

√
2)n

n∑
s=0

cos(r/
√

2)2s, (86)

ϕ̂(w) =
√

2 exp(
−iεr

1
)sin(w/

√
2)n

n∑
s=0

cos(w/
√

2)2s,

(87)
with ε = 0 for n even and ε = 1 for n odd. The spatial and
temporal selectivity of ϕ̂ and φ̂ is an important point in this ap-
proach, in figure 5, we show that this selectivity is controlled by
the parameter n. It’s clear that the Fourier transform of wavelets
φ and ϕ are continuously differentiables and

φ̂(0) = 0, (88)

ϕ̂(0) = 0, (89)

then the admissibility condition is satisfied

cψ = 2π3

∫
R2

∫
R

|ψ̂∗(~k,w)|2

|~k|2|w|
, dw d2~k (90)

= 4π4

∫
R+

|φ̂(r)|2

r
dr

∫ π

−π

|ϕ̂(w)|2

|w|
dw < +∞. (91)

The 2D+t continuous wavelet transform of the image sequence f
and wavelet ΩΛψl(~x, t) = T

~b,τRβl,mAcDaψl(~x, t), is scalar
product of f and ΩΛψl(~x, t)

Wa,~b,τ,βl,m,c,l
= 〈ΩΛψl|f〉 (92)

=

∫
R2

∫
R

ΩΛψl(~x, t)f(~x, t) dtd~x, (93)

and

Ŵa,βl,m,c,l(
~k,w) = ψ̂a,βl,m,c,l(

~k,w)f̂(~k,w), (94)

with

ψ̂l,0(~k,w) = ψ̂(~k,w)ηl,0(θ) = φ̂(r)ϕ̂(w)ηl,0(θ), (95)

ψ̂a,βl,m,c,l(
~k,w) = a3/2φ̂(acpr)ϕ̂(ac−qw)ηl,m(θ), (96)

where ~k = (r, θ), r = ‖~k‖ and θ = arg~k.
the properties 46 and 47 imply that for any l ∈ {0, ..., L}:

Ŵa,β̌,c,l+1(~k,w) (97)

= ψ̂a,c,0(r, w)ηl+1,0(θ − β̌)f̂(~k,w) (98)

= ψ̂a,c,0(r, w)ηl,0(θ − βl,m)dα(θ − β̄)f̂(~k,w) (99)

= Ŵa,βl,m,c,l(
~k,w)dα(θ − β̄), (100)

Ŵa,β̄,c,l+1(~k,w) (101)

= ψ̂a,c,0(r, w)ηl+1,0(θ − β̄)f̂(~k,w) (102)

= ψ̂a,c,0(r, w)ηηl,0(θ − βl,m)dα(θ − β̄ − π)f̂(~k,w) (103)

= Ŵa,βl,m,c,l(
~k,w)dα(θ − β̄ − π), (104)

where β̌ = βl+1,2m and β̄ = βl+1,2m+1.

6. VELOCITY CAPTURE ALGORITHM
In sections 4 and 5 we constructed a spatio-temporal dictionary

D = [Wa,~b,τ,βl,m,c
j ,l,
~b ∈ R2, τ ∈ R], (105)

where −J ≤ j ≤ J , 0 ≤ m < 2l, and 0 ≤ l ≤ L, this dic-
tionary include more than (2J + 1)(2L+1− 1) Spatio-Temporal

6
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representations with different angular selectivity l, Orientation
βl,m, and speed cj . In this section we study the select of the best
representation in dictionary D for tracking motion and velocity
capture in image sequence.
We define speed energy density normalized function, which rep-
resents the contribution to the signal energy at a given location
(~b, τ), scale a, speed c, orientation βl,m and selectivity level l.

Pa,βl,m,c,l(
~b, τ) = Nor(|Wa,~b,τ,βl,m,c,l

|2), (106)

where for image sequence M(~b, τ)

Nor(M) =
|M | − Vmin
Vmax − Vmin

, (107)

Vmin = min
~b,τ
|M(~b, τ)|, (108)

Vmax = max
~b,τ
|M(~b, τ)|, (109)

The energy density Pa,βl,m,c,L is computed for each selectiv-
ity level l over each orientation βl,m. we define the speed-
orientation energy density at selectivity level l as

Pa,c,l(~b, τ) = max
βl,m

Pa,βl,m,c,l(
~b, τ). (110)

We can also define the speed-multiselectivity energy density by

Pa,c(a,~b, τ) = max
l
Pa,c,l(~b, τ). (111)

The steps of the proposed velocity capture algorithm are de-
scribed briefly as follows:

(1) Fix the scale a, the speed c, the largest speed level J ∈ N
and the highest selectivity level L ∈ N.

(2) Calculate f̂ by 3D FFT.
(3) Calculate the Fourier transform of isotropic wavelets

ψ̂a,cj ,0,

ψ̂a,cj ,0(~k,w) = a3/2φ̂(acjpr)ϕ̂(ac−jqw) − J ≤ j ≤ J.
(112)

(4) Multispeed tuning in the Fourier space Ŵa,cj ,0(~k,w) com-
puted by the convolution the image sequence and wavelets
in Fourier space:

Ŵa,cj ,0(~k,w) = ψ̂a,cj ,0(~k,w)f̂(~k,w). (113)

(5) Multiselectivity decomposition in the Fourier space
[{Ŵa,βl,m,c

j ,l}−J≤j≤J,0≤m<2l,0≤l≤L] computed from

Ŵ ψ̂a,cj ,0(~k,w) by equations 97 and 101.
(6) Apply 3D inverse FFT to get the multiselectivity spatio-

temporal analysis [Wa,~b,τ,βl,m,c
j ,l, J ≤ j ≤ J, 0 ≤ m <

2l, 0 ≤ l ≤ L].
(7) Compute energy densities Pa,βl,m,cj ,l,Pa,cj ,l and Pa,cj .

7. APPLICATIONS
As a first application, we tested our velocity capture algorithm
at a sequence of four rectangles in isotropic motion and vertical
translations at two constant speeds in the plane: two rectangles
are in vertical translation with speeds v1 = 0.5 and v2 = 2
pix/fr and two are in rotation motion with the same speeds. We
refer to this sequence as the test 1 sequence, and it contains 130
frames of 240x240 pixels. A spatio-temporal representation of
trajectories of rectangles in this sequence are shown in figure 6.
In the experiments, we choose a = 2, c =

√
2, J = 4 and

L = 4.

a b

Fig. 6. (a) First frame of test 1 sequence. (b) Motion trajectories of the
four rectangles.

The figure 7 shows isotropic wavelet energy density Pa,cj ,0 for
frames 20 and 60 with different speeds. The two speeds cor-
responding to the isotropic motion are clearly identified from
isotropic wavelets and coincide with the velocities present in
the tiest1 sequence (The maximums are exactly reached for
c−2 = 0.5 = v1 pixels/fr and c2 = 2 = v2 pixels/fr), but for
the directional motion, the poor angular selectivity of wavelet,
thus makes the directional capture of the vertical translation very
difficult. This does not happen with high selectivity level L = 4
and vertical orientation, as shown in figures 8 and 9.

a b

Fig. 10. (a) First frame of test 2 sequence. (b) Motion trajectories of
the four rectangles.

We also tested our velocity capture algorithm using a sequence
of four rectangles in different directional translations with speed
v1 = 1 pix/fr . We refer to this sequence as the test 2 se-
quence and contains 130 frames of 240x240 pixels. A spatio-
temporal representation of trajectories of rectangles in this se-
quence are shown in figure 10. In figure 11, We show that speed-
multiselectivity energy density Pa,c0 can represent the signal di-
rectional speed at all orientation.
.

8. CONCLUSION
We have introduced a new algorithm for Motion and speed anal-
ysis in video sequences, based on the concept of angular multis-
electivity. In this paper, we have developed in frequency domain
a new spatio-temporal wavelets with variable angular selectivity,
the 2D+T continuous wavelet transform of these new wavelets
can generate a multiselectivity analysis, wich can capture the
different structures of the motion and velocity, and we have suc-
ceeded in demonstrating that our 2D+T wavelets are very effec-
tive for the calculation of motion parameters.
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