
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

8 

A Multi-Nodal Implementation of Apriori Algorithm for 

Big Data Analytics using MapReduce Framework 

Terungwa Simon 
Yange 

Department of 
Mathematics, 

Statistics and Computer 
Science, 

University of Agriculture, 
Makurdi, Nigeria 

 

Ishaya Peni Gambo 
Dept of Computer 

Science & Engineering, 
Obafemi Awolowo 

University, 
Ile-Ife, Nigeria 

 

 
 

Rhoda Ikono 
Dept of Computer 

Science & Engineering, 
Obafemi Awolowo 

University, 
Ile-Ife, Nigeria 

 

 
 

Hettie A. Soriyan 
Dept of Computer 

Science & Engineering, 
Obafemi Awolowo 

University, 
Ile-Ife, Nigeria 

 
 
 

 

ABSTRACT 
This paper developed a distributed algorithm for Big Data 

Analytics to address the delay in the processing of big data. In 

order to achieve the aim of this research, an inspection of 

organizational documents, direct observation and collection of 

existing data from the National Health Insurance Scheme 

(NHIS) in Nigeria. The algorithm was formulated using Apriori 

Association Rule Mining and was specified using the enterprise 

application diagram. The implementation of the prototype for 

the algorithm was using MongoDB as the big data storage 

mechanism for the input. Comma Separated Values (CSV) files 

was used as the storage facility for the intermediate results 

generated during processing, and MySQL was used as the 

storage mechanism for the final output. Finally,  Apache 

MapReduce as the big data multi-nodal processing platform and 

Java programming language as the implementation technology. 

This prototype was able to analyze different formats of data 

(i.e., pdf, excel, csv and images) with high volume and velocity. 

The result showed that the response time was 0.25 seconds, and 

the throughput was 8865.29 records per second. The stability of 

the prototype was also evaluated using the confidence of the 

rules generated. In conclusion, this research has shown that 

unnecessary delays in the processing of big data were due to the 

lack of appropriate data analytics tool to enhance the process. 

This study eliminated these irregularities which paved the way 

for quicker disbursement of funds to providers and other 

stakeholders, as well as, a quicker response to requests on 

enrollment, update and referral.  

Keywords 
MapReduce, Node, Big Data, Analytics, MongoDB, Apriori 

1. INTRODUCTION 
The emergence of supercomputers was a significant 

breakthrough in data processing. However, their high cost 

hampered their adoption by data engineers. In a bid to 

effectively handle the increasing demand of users’ data 

processing need at a cheaper cost, computer scientists came up 

with the distributed computing model. The distributed model 

served as an alternative to the highly expensive supercomputers 

[1][2]. As opposed to supercomputers, distributed computing 

involves a network of large number of computers or entities 

known as nodes, connected. This architecture provides a high 

processing capability linking the different number of nodes via 

a fast network and resource sharing among multiple users at a 

lower cost as compared to supercomputers. Having multiple 

nodes processing the same item of data implies that the failure 

of a particular node in the network will not affect the entire 

process. With the adoption of web technologies, mobile devices 

and the reduction of cost of computing infrastructures from the 

late ’90s to date, has led to the explosion of data. To effectively 

exhume insights form this data for timely and accurate decision 

making, the performance of analytics against its features is 

required. Hence, the motivation for the application of 

distributed computing in the area of data analytics [2].  

Data has taken centre stage in every economy in recent time. It 

is a set of quantitative or qualitative facts about people, things, 

ideas and events derived from either via measurement or 

features of items during experiments [3][4]. Data is represented 

by symbols such as letters of the alphabets, numerals or other 

special symbols which are suitable for communication, 

interpretation, or processing by humans or by automatic means. 

It could either be big or small [3][5][6][7]. Small data refers to a 

dataset that contains particular attributes (i.e., a dataset with a 

well-defined structure). It is structured, focused and easily 

interpreted. In a similar vein, big data refers to very complex 

data characterized by its high volume, variety, velocity and 

veracity, as shown in Fig 1. As Fig 1 reflects, it becomes 

challenging for traditional data management tools, such as 

MySQL, Oracle, Excel to handle big data [8]. In other words, it 

is the dataset whose size is beyond the ability of orthodox data 

processing tools to capture, store, pre-process, and analyze 

within an acceptable time frame. Big data comes in various 

categories: structured, semi-structured and unstructured. Both 

big data and small data are valuable and could turn around an 

organization if they are effectively handled. Also, the small data 

is a subset of the big data. Hence, in this research, our focus is 

on big data which encapsulate all the types of data. The analysis 

of big data is known as big data analytics. It is the process of 

collecting, organizing and analyzing large, diverse dataset such 

as structured/unstructured and streaming/batch with the view to 

getting meaningful insights that aid in decision making. This 

was hitherto done with the human brain, which again has lots of 

limitations. Therefore, considering the volume, velocity and 

variety of data we are exposed to daily in recent times, it has 

become challenging to manually do this with the human brain 

[1]. 

Furthermore, the need to have an aid that supports the human 

brain for accurate and effective decision-making process has 

become more and more inevitable. This support is known as 

analytics [1][7]. Big data analytics derive meaningful insights 

from big data which could lead to more self-confidence in 

decision-making, and better conclusions could be achieved with 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

9 

higher operational efficiency, and reduction in both cost and 

risk. It develops strategies that could apply analytics in every 

facet of human endeavour to answer the questions right in time. 

Thus, it has been mainstreamed in the human decision-making 

process. Summarily, big data analytics is premised on making 

insights available to users, within actionable time, without 

bothering about the sources and devices used in storing and 

processing the same. This is where the principles of distributed 

computing have found a niche in big data analytics. The 

application of distributed computing in big data analytics can 

scale the processing and storage of data with an increase in 

volume, and the ability to use low-cost hardware. This would 

demystify big data analytics by lowering the cost of analytics, 

thus, making it affordable by all. 

Veracity

Trustworthiness

Authenticity

Accountability

Reputation

Volume

Velocity

 

Fig 1: Modified Basic Characteristics of Big Data [8] 

To properly reap the dividends of big data analytics, it is wise to 

apply distributed processing by harnessing the merits of 

distributed computing. This would involve storage, access, 

transfer, analysis, visualization using multiple low-cost 

infrastructures that derive insights within stipulated cost and 

time to be applied by humans or machines [1]. However, 

existing works in this area do not cover this aspect of 

distributed processing in big data analytics. Therefore, this 

paper aims to fill up this gap. In this research, a distributed 

algorithm was formulated for the processing of big data using 

the Apriori algorithm of the Association Rule Mining (ARM). 

A prototype implementation for the algorithm was done using 

the MapReduce Framework (provided the multi-nodal platform) 

and MongoDB (data storage for both structured, semi-

structured and unstructured data) as big data technologies, and 

MySQL and Java Programming Language. The National Health 

Insurance Scheme (NHIS) data was collected through 

observation and review of the document to evaluate this 

prototype using throughput and response time as the 

performance metrics [2][7]. 

This paper is organized in the following order. Section one 

presented the background to the research and also reviewed 

works that are related and relevant to this study. Section three 

described methods that are deployed in achieving the purpose of 

the paper; and the experiments and results are presented in 

Section three. In Section Four, the interpretation, relevance and 

limitations of the results presented in Section four are 

discussed. Section five gives the unique contributions of the 

paper, limitations of the research and some future research 

directions as the conclusion for the paper. 

 

2. RELATED WORKS 
Distributed computing refers to the use of distributed systems to 

solve computational problems. Here, a problem is divided into 

many tasks, each of which is solved by one or more computers 

[9]. A distributed computing system consists of several 

processing elements interconnected by a computer network and 

co-operating in performing specific assigned tasks. Big data 

technologies include distributed computational systems, 

distributed file systems, massively parallel-processing (MPP) 

systems, cloud-based storage and computing, and data mining 

based on grid computing etc. Apache Hadoop is de facto 

software platform that supports data-intensive distributed 

applications. NoSQL (Not only SQL) database is used for large 

and distributed data management and database design. 

Clustering big data is also developing to distributed and parallel 

implementation [10]. When the volume of data in a database 

becomes large, it is distributed across different sites. These 

distributed databases require distributed computing to 

efficiently store, retrieve and update data in a well-coordinated 

way [11]. The advent of big data has led to the search for new 

methods for its storage and analysis. In managing big data, 

technologies have been created that can use the computing 

power and the storage capacity of a cluster, with an increase in 

performance proportional to the number of machines present on 

the same. One of such technologies is Hadoop, a framework for 

distributed processing of large datasets across clusters of 

computers. The Hadoop distributed file system (HDFS) and 

MapReduce are two critical components of Hadoop. The HDFS 

handles the storage of big data. MapReduce distributes 

computing jobs to each server in a cluster and collects the 

results [12][13].  



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

10 

2.1 MapReduce  
MapReduce is a parallel data processing model for substantial 

data processing on cluster-based computing architectures. A 

single-threaded implementation of MapReduce is usually not 

faster than a traditional (non-MapReduce) implementation, but 

gains are achieved in multi-threaded implementations. Using 

MapReduce has benefited only when there are fault-tolerance 

features and the optimized distributed shuffle operation 

[12][13]. The input data define a MapReduce job; a procedure 

Map, which for each input element generates several key/value 

pairs; a phase of shuffle network; reduces a procedure, which 

receives as input elements with the same key and generates 

summary information from such elements; the output data. 

MapReduce guarantees that the same reducer will try all 

elements with the same key since all the mapper use the same 

hash function to decide which reducer send the key/value pairs 

[14][15]. It is based on a master-slave architecture in which a 

master node handles many slave nodes. At the initial stage, the 

MapReduce first divide the inputs into equal-sized data blocks 

for even load distribution. Each block is allotted to a slave node 

and subsequently processed by a mapper function, and results 

are generated. The slave node interrupts the master node 

whenever it is idle. The scheduler then allocates new jobs to the 

slave node [7][16]. The scheduler considers data locality and 

resources into consideration during the distribution of the data 

blocks. The components of the MapReduce architecture are 

shown in Fig 2. 

Job Clients: This component submits the task. This task 

comprised of the mapper function, reducer function and other 

configuration function that drives the job.   

Job Tracker: The job tracker is the master of task trackers; 

they execute the work on data nodes. This component comes up 

with an execution plan, coordinate and schedules it across the 

task trackers. 

Task Tracker: The task tracker divides the task into smaller 

components, i.e., map and reduce tasks.  

Internally, MapReduce has split, map, shuffle and sort, reducer 

and output phases (See Fig 3). 

Spilt: In this phase, the input format is used to extract data from 

the database and divide it into smaller units. By default, the 

input is of type text which splits the data in the file into the 

record by record. Each record is split and load to a mapper 

function. For instance, if the data is an image, the input format 

is binary. If it is a relational database, the input format is a 

database.  

Map: The mapper picks the data of interest and executes it on 

the pairs of keys available. It converts the input split into the 

pairs based on user-defined code. 

 

Fig 2: Block View of MapReduce [16] 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

11 

 

Fig 3: Internals of MapReduce [16] 

Shuffle and Sort: This phase picks all the data nodes that are 

part of the job and group them based on their keys. It sorts and 

sends it to the reducers.  

Reducers: Reducers work on the sorted data and cumulatively 

combine all the results.  

Output Format: This phase presents the result to the user and 

could also store it in the appropriate storage facility.  

2.2 Association Rule Mining  
Association Rule Mining (ARM) is a soft computing technique 

that attempts to find frequent itemsets among large datasets and 

describes the connection among different attributes. The most 

typical forms of this techniques are Apriori, Eclat, FP-Growth, 

and partition. Market basket analysis, text mining, web usage 

mining, protein sequences and Bioinformatics are the 

application areas for ARM [17]. Most researchers prefer it 

because of its non-invasive nature which allows it to handle 

both quantitative and qualitative data. This has made it to fit 

well in most real-world applications. ARM is a widespread 

technique for realizing interesting relations between features 

and patterns in large repositories [18]. It discovers robust rules 

in data storage facilities using different procedures of interest. 

ARM is a rule-based technique in unsupervised machine 

learning. It shares the common purpose of finding patterns in 

data that can be given in the form of an IF-THEN rule. 

Association rule contains particular features of data in the body 

of the rule that is related to other attributes in the head of the 

rule [18][19]. The importance of an association rule is measured 

by two features: support and confidence. Support determines 

the portion of all records in the repository that satisfy the rule. 

Rules with higher support are given higher priority. Confidence 

determines the segment of the records that satisfy the rule. 

Rules with high confidence have a higher connection between 

the features described in the head and the features defined in the 

body. The association mining task can be stated as follows: Let 

A be a set of items, and T a database of transactions, where 

each transaction has a unique identifier (tid) and contains a set 

of items. A set of items is also called an itemset [20]. The 

support of an itemset X, denoted by σ(X), is the number of 

transactions in which it occurs as a subset. An itemset is 

frequent if its support is more than a user-specified minimum 

support (min sup) value [18]. An association rule is an 

expression A → B, where A and B are itemsets. The support of 

the rule is given as σ (A ∪ B), and the confidence as σ(A ∪ 

B)/σ(A) (i.e., the conditional probability that a transaction 

contains B, given that it contains A). The mining task consists 

of two steps: 1) Find all frequent itemsets. 2) Generate high 

confidence rules. Rules of the form X\Y → Y (where Y ⊂ X) 

are generated for all frequent itemsets X, provided the rules 

have at least minimum confidence (min_conf).  

2.3 Apriori Algorithm   
Apriori is the most well-known technique of ARM due to its 

efficient results in knowledge discovery. It is customarily used 

for the mining of frequent itemset over databases. It continues 

by identifying the frequent items in the database and extending 

them to bigger item sets as long as those itemsets are often seen 

in the database. These frequent itemsets discovered via Apriori 

algorithm are used to determine association rules. It employed 

an iterative technique known as the breadth-first search strategy 

to count the support of itemsets [20]. The focus is that all 

nonempty subsets of a frequent itemset must be frequent. There 

are two main phases in Apriori: prune step - eliminates an 

itemset if its support is less than minimum support, and 

abandon the itemset if its subset is not frequent, and join step - 

candidates are generated by linking the frequent itemsets level 

wise. The critical setback of this step is that the multiple dataset 

scans. Suppose there is a transactional database D for a hospital. 

This hospital wants to analyze the patronage of NHIS patients - 

by finding the relations between those that often come to the 

hospital and those that rarely come. This will help the hospital 

to develop a strategy for handling patients that are under NHIS.   



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

12 

2.4 MapReduce-based Parallel Association 

Rule Mining Algorithms for Big Data 

Analytics  
The Apriori Association Rules Mining technique is one of the 

best conventional procedures for uncovering frequent itemsets 

from a transactional database [21][22][23][24]. Apriori 

algorithm finds frequent itemset and uses this item to produce 

rules. These rules are used for detecting unknown relationships, 

thus, producing outcomes that can be used for decision making.  

In handling enormous datasets using the Apriori algorithm, 

certain issues such as high memory usage and computational 

cost can be very prevalent [5][6][7][17]. Similarly, a single 

processor’s memory and central processing unit resources are 

limited, which accounts for the inability of this technique to 

perform efficiently. One way to improve the performance and 

efficiency of this technique (Apriori algorithm) is by 

parallelizing and distributing the process of generating frequent 

itemsets and association rules [22][24]. Parallelizing and 

distributing the Apriori algorithm would improve the 

performance of the mining process. However, this is also prone 

to some issues such as workload balancing, partitioning of input 

data, reduction of the communication costs and aggregation of 

information at local nodes to form the global information. Other 

problems prevailing in most distributed frameworks such as the 

overheads of managing the distributed system and the lack of a 

high-level parallel programming language are also likely to 

occur.  Again, working with a large number of computing nodes 

in a cluster or grid, there is always the potential of node 

failures, which cause multiple re-executions of tasks [16][23]. 

All these drawbacks can be tackled using the MapReduce 

Framework, which was introduced by Google [24].  

The MapReduce Framework, as discussed earlier, is a Java-

based software development model for readily and efficiently 

building applications that analyze enormous datasets in parallel 

on large clusters of commodity hardware in a trustworthy 

failure resilient manner. The user specifies a map function that 

processes a key/value pair to generate a set of intermediate 

key/value pairs and a reduce function that merges all 

intermediate values associated with the same intermediate key 

[23][24].    

Association rule mining identifies rules that describe a portion 

of large data to discover useful insight from it [20][22][23]. 

Implementing it with MapReduce framework has gone a long 

way in addressing big data analytics problems. For instance, 

Oweis et al. [25], developed a MapReduce model using lift 

association rule mining algorithm for the processing of big data. 

This was used to uncover some hidden knowledge and patterns 

from immense, complex, and multi-dimensional datasets. The 

conventional ARM methods cannot handle this enormous data 

available today; hence, implementing the algorithm with the 

MapReduce framework enabled it to handle large datasets with 

a large number of nodes. This work was very efficient in 

measuring the correlations between itemsets. The work of Singh 

and Miri [26] developed an algorithm using Apriori algorithm 

in parallel implementation based on MapReduce Framework 

that improves the processing time for the second iteration in 

frequent itemsets mining. This algorithm easily handles a large 

amount of data for mining with less processing time, which 

eased a big data analytics task. 

Finding frequent itemsets is one of the most critical features in 

big data mining, and Apriori algorithm is the most established 

algorithm for finding frequent itemsets from a transactional 

dataset; however, it needs to scan the dataset many times and to 

generate many candidate itemsets. Ramteke [27], developed an 

efficient parallelized Apriori algorithm using the MapReduce 

framework, which needs only two phases (MapReduce Jobs) to 

extract all frequent itemsets. This algorithm outperformed most 

existing algorithms. Similarly, Nancy et al. [28], harnessed the 

parallel nature of MapReduce and combined it with Association 

Rule Mining to build an analytic tool for the processing of big 

data.  Association rule mining is very vital in uncovering hidden 

patterns from the dataset, but when the volume of the data 

becomes excessively high, generating rules at a faster pace 

seems impossible. By applying the parallel execution in the 

MapReduce framework, the rules can be generated much faster 

and in an efficient way. This algorithm converted the input 

dataset into key-value pairs in MapReduce and parallelized all 

the stages of association rule mining algorithm as well.  

Prajapati et al. [29], studied the intriguing association rule 

mining with both consistent and inconsistent rule discovery 

from massive sales data in a distributed setting. The procedures 

of processing such massive dataset were computationally 

complex when using conventional techniques. In the research, a 

new method was developed to discover consistent and 

inconsistent association rules from enormous sales data located 

in a highly distributed environment to curtailed the issues with 

main memory and computing time of single computing systems 

by applying computations to multiple nodes clusters. This 

extracts frequent itemsets from each node using existing 

distributed frequent pattern mining algorithms. Thus, 

MapReduce based consistent and inconsistent rule detection 

algorithm detects the consistent and inconsistent rules from big 

data and provide useful and actionable knowledge to the 

domain experts. These pruned interesting rules also give useful 

knowledge for better marketing strategy as well. The extracted 

consistent and inconsistent rules were evaluated and compared 

based on different interestingness measures presented together 

with experimental results that lead to the conclusions. 

With the enormous amount of data available, especially in the 

healthcare industry, traditional methods of processing data are 

time-consuming and inefficient due to the complicated nature of 

medical processes and the complexity of the data. With this, a 

favourable niche has been created for criminal in this sector as 

most data remain unanalyzed for an extended period [30]. 

Conventional analysis methods are not suitable due to their 

inherent limitations to manage the volume, velocity, variety, 

veracity of the data in healthcare. In an attempt to address this 

problem, Devi and Sarojini [21], considered the applications of 

association rule mining to analyze data from different 

databases. This was done via the use of expert methods and 

techniques to recognize trends and profiles hidden in data. This 

aided in the processing of large and distributed databases - 

logistics, marketing and Government - almost all branches, e.g. 

defence, public safety, spatial database - GIS, relational 

database - industries, medical database- medical diagnosis, 

hospital, medical shops, scan centres.  

Deshpande and Anami [32] developed a system for the analysis 

of arthritis patients’ data using Association Rules Based. Data 

mining in health care is also known as predictive analysis and 

has been an area for research. The research involves the 

implementation of association rules using Apriori Algorithm for 

depicting the co-occurrences between particular arthritis and 

their factors. This contributed more in the quick detection of 

arthritis and its factors. Similarly, Kang’ethe and Wagacha [33], 

developed a system for mining diagnosis features in electronic 

medical records using association rule mining. This research 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

13 

disclosed that association rule mining could not only be applied 

to confirm what is already in existence from health data in the 

form of comorbidity patterns but also generate some exciting 

and strong disease diagnoses associations that could provide a 

good starting point and room for further exploration through 

studies by medical researchers to explain the patterns that are 

seemingly unknown or peculiar in the concerned populations.  

Al-Maolegi [34] indicate the limitations of the original Apriori 

algorithm of wasting time for scanning the whole database 

searching on the frequent itemsets and presented an improved 

Apriori algorithm that addressed the time waste during scanning 

of the database. The research showed experimental results that 

used the original Apriori and the improved Apriori. This shows 

that the new Apriori reduces the time consumed by 67.38% in 

comparison with the original Apriori, and makes the Apriori 

algorithm more efficient and less time consuming. The results 

show that the improved Apriori algorithm that scans only some 

transactions instead of the whole database reduces the 

consumed time. Similarly, Rao [35] presented a new scheme for 

finding the rules out of transactional datasets which improve the 

original Apriori in terms of the number of database scans, 

memory consumption, and the interestingness of the rules. It 

also avoids scanning the database again and again.  

Woo [36] presented an Apriori algorithm that runs on parallel 

MapReduce framework, namely Apache Hadoop over a cluster 

of computers. The author also discussed the time complexity, 

which theoretically shows that the algorithm has a higher 

performance than the sequential algorithm. The item sets 

produced by the algorithm can be used to compute and produce 

association rules for market analysis. Mahendra [37] developed 

an algorithm to mine the data from the cloud using 

sector/sphere framework with association rules. The researcher 

also discussed the integration of Sector/Sphere framework and 

Association rule. This enables the application of association 

rule algorithm to the wide range of cloud services available on 

the web. Sphere allows developers to write certain distributed 

data parallel applications with several simple APIs. A Sphere 

database consists of one or more physical files. A user-defined 

function does computation in the sphere. The result could be 

written to either the local disk or common destination files on 

other nodes.   

Hegazy [38] implements an efficient MapReduce Apriori 

algorithm based on Hadoop-MapReduce model which needs 

only two phases to find all frequent itemsets, the researcher also 

compared the new algorithm with two existed algorithms which 

need either one or more phases to find the same frequent 

itemsets. Experimental results showed that the proposed Apriori 

algorithm was efficient and exceeded the other two algorithms.   

Dean [39] developed a MapReduce system that runs on a large 

cluster of commodity machines and was highly scalable. The 

author added some optimizations in the implemented of the 

system that aims to reduce the amount of data sent across the 

network. The system gave a simple and powerful interface that 

enables automatic parallelization and distribution of large-scale 

computations, combined with an implementation of this 

interface that achieves high performance on large clusters of 

commodity PCs.  

Leem [40] developed a system to assist the database and open 

source communities in understanding various technical aspects 

of the MapReduce framework. The research discussed the 

MapReduce framework’s pros and cons. Also, the researcher 

introduced the optimization strategies and discussed challenges 

raised on parallel data analysis with MapReduce. It found that 

MapReduce is simple but provides excellent scalability and 

fault-tolerance for massive data processing.   

Yang [41] improved the MapReduce framework by adding a 

Merge phase so that it is more efficient and easier to process 

data relationships among heterogeneous datasets. Also, the 

researchers extended the MapReduce framework to the Map-

Reduce-Merge framework. It also adds a new Merge phase that 

can join reduced outputs.  The researcher found that Map-

Reduce-Merge model added to MapReduce’s many features. It 

also contains several configurable components that enable many 

data-processing patterns. 

2.5 MapReduce and NoSQL in Big Data 

Analytics  
There are so many approaches in NoSQL that focus on the 

management of different varying data formats (structured, semi-

structured and non-structured) and with the motive to address 

particular issues [42]. Many researchers (data scientists, 

researchers and business analysts) pay more attention to the 

agile approach that leads to prior insights into the datasets, 

which may be masked or constrained with a more formal 

development process. The NoSQL databases are open source in 

nature, horizontal scalability, easy to use, store complex data 

types, swift for adding new data and for simple 

operations/queries. Some commonly used NoSQL databases are 

MongoDB and Apache Cassandra [43][44][45].  

According to a survey carried out by Pothuganti [44], there are 

possibilities of combining MapReduce and NoSQL Databases 

to build an analytical tool for big data. The researcher 

considered exponential growth of data in the universe, which 

was likened to oxygen in the universe. It challenges to cutting - 

edge businesses such as Google, Yahoo, Amazon, Microsoft, 

Facebook, Twitter etc. were presented in the work. The growth 

of this unstructured, semi-structured and structured data that 

gets created from various applications, such as emails, weblogs, 

social media demands new strategies for processing and 

analyzing information because it has exceeded the processing 

capacity of conventional database systems. To this end, big data 

analytics techniques such as Hadoop MapReduce and NoSQL 

Database have been widely employed to address analytics 

issues in big data. 

Moreover, Maitrey and Jha [42] developed a simplified big data 

analysis system using MapReduce to curtail the problem of the 

continuous increase in the growth of data with the increasing 

need of data processing which is getting arisen from every 

scientific field. A big problem has been encountered in various 

fields for making the full use of these large-scale data which 

support decision making. The researchers used data mining 

techniques to discover new patterns from large data sets. 

MapReduce was used to implement the data analysis model for 

information retrieval field. 

Ananth and Raghuveer [46], developed a novel approach using 

MongoDB for big data analytics. In their view, everything 

around the universal is data, and everything in the universal 

generates many data. A smartphone, for instance, generates 

loads of data daily: phone logs, message logs, mail data etc. 

There are other gigantic devices today and just imagine each 

device churned out loads of such data! Likewise, there are more 

than a trillion websites today (there cannot be any more 

websites that could be created with the IPv4 protocol shortly). 

Each website puts up data in the form of ZetaBytes or even 

more. Facebook per se handles more than 30+ Petabytes of user 

data. What seems to be small today would be big tomorrow. It 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

14 

is no longer a trend but rather, a boon and exponential growth 

of data. Storage of such data and processing is always a 

problem.  

3. MATERIALS AND METHODS 
This section described the methods deployed in this research. 

3.1 Case Study 
NHIS was set up by the Federal Government of Nigeria to 

provide universal access to quality healthcare service in the 

country. It covers civil servants, the armed forces, the police, 

the organized private sector, students in tertiary institutions, the 

self-employed, vulnerable persons, and the unemployed, among 

others (NHIS, 2013). The beneficiaries are required to pay a 

premium to NHIS, which is used to pay for their healthcare 

services once they visit the facility. The primary purpose of the 

analytics of health insurance data is to investigate the cost of 

healthcare services (i.e., payment made for healthcare services 

by health insurance). Hence, this research aims at exploring the 

huge data available for increasing the effectiveness and 

efficiency of the scheme [2][7][45][46][47][48]. 

The inability to sufficiently derived insights from big data has 

led to a series of problems in organizations resulting in the 

provision of poor quality services to their clients. These 

problems range from corruption to the lack of appropriate data 

analytics tools for the processing of the data available. As a 

major problem in developing countries, corruption has played a 

significant role in diminishing the fortunes of many 

organizations. For instance, many organizations often engage 

the services of staffers who are not qualified because of either 

personal relationships or pecuniary attractions; also, resources 

designated for the operation of such organizations often times 

find vent in the private custody of the managers, thus leading to 

many challenges that account for its operational sluggishness 

[49][50][51]. A precursor to this high rate of corruption in the 

healthcare insurance industry, for instance, is the use of manual 

data analytics methods in the processing of the data resulting 

from its daily operations. These have led to critical delays in the 

analysis of such data which is continuously collected from 

different sources and formats via registration, update 

complaints/inquiries, claims, referral, subsidy gap funding, 

monitoring and quality assurance [49][50][51][52][53][54][55]. 

This has leftover 80% of the data un-analyzed, which is the 

reason for the non-availability or late delivery of the required 

information for decision-making [52][53][54][55]. Extant 

studies [54][55] focused on the automation of the process of 

capturing data into structured databases with little or no 

attention given to the processing of this data. Forcing this 

unstructured data into structured databases has led to the loss of 

some vital data required during data processing. This is 

responsible for the delay in the processing of enrollment, 

referral and claim data. However, deriving business outcomes 

via more in-depth insight from this data is a competitive 

necessity. It requires a new approach to combine and correlate 

the data.  

3.2  Data Collection 
The NHIS data were collected from various Health 

Maintenance Organisations (HMOs) and stored into MongoDB 

in its raw form. Collecting this data was one of the most 

difficult tasks in this work because most of the data were 

collected manually by NHIS through HMOs and stored in file 

cabinets. This was done via document examination and 

observation, which in either case, the data was collected from 

journals and NHIS databases. Data in hardcopy form was 

digitized by scanning it into the computer system before use. 

The documents are scanned as images either in .jpg, .png and 

.gif or pdf formats. Some healthcare facilities submit the data in 

pdf, excel, csv, docx or txt formats and some as scanned images 

which do not require further digitization. Categories and 

features of the data are shown in Table 1. Over ten million 

records were collected to identify the current challenges 

bedevilling the existing methods employed. Existing data was 

extracted using Optical Character Recognition tools, and model 

parameters identified.  

After collecting the data, it was pre-processed. This stage 

converts the different formats of data in the MongoDB into a 

single format. In this case, the data was converted into comma-

separated values (CSV). This has three (3) steps: the data is 

extracted from the MongoDB, then converted into CSV, and the 

data in the CSV file is partitioned into individual fields and 

passed to the map function. Here, the data is retrieved from 

MongoDB and features of interest are extracted with the aid of 

the Optical Character Recognition (OCR) library, which is 

implemented in the system. These features are stored in a 

temporary CSV file as an intermediate output of the pre-

processing.  

3.3 Distributed Apriori algorithm for 

MapReduce  
Building the distributed Apriori is the core of this research. As 

mentioned earlier in Section 2, the Apriori algorithm is a 

technique that is used to find frequent itemsets in the 

transactional database. To implement Apriori with MapReduce, 

there is a need to understand how it works:  

1. The first step is to find L1, which counts all the item 

in the database (in this case, it will count all the items 

in X (data of interest) after extraction).  

This step is very straightforward in MapReduce.  

a. In Map Task, each document will input to the map 

(Key, Value) function. The key is items, and the value 

is one. The Divide-and-Conquer Approach is applied 

to X at this point. 

b. The Reduce Task, after shuffling and sorting the data, 

is based on keys. This phase used the principle of the 

set intersection to collate similar items together using 

the Reduce (Key, Value []) function. The key is the 

item, and the value is a list of counts of that item. The 

Reduce task will iterate over the value and output of 

the final sum. 

2. When the level is 2, the join is required to find the 

next level. This can be done in the Map task. Reduce 

task will find the final sum of the items and filter 

them based on minimum support.   

3. It is stopping criteria if Lk is empty. This can be done 

quickly by checking the stop flag using an if-

statement.   

 

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

15 

Table 1: Data Categories 

Data Category  Description 

Enrolment Provider: Name, Address, Telephone, Fax/Phone, Email, Type of facility, Category of 

registration, State registration no, Name of Director, Name of supervising Medical Director (If 

applicable), Affiliated HMOs, Affiliated Insurance companies, NHIS registration number, 

Incorporation/business registration. 

Beneficiary: Name, Address, Date of birth, Sex, Next of Kin, Email address, Mobile, Telephone 

no. fixed, National ID no, Employer NHIS no., Date of NHIS registration, Nationality, Location 

of Posting, Photograph, Blood group, Genotype, Allergies, Relationship (Principal, Spouse, 

Child, Extra-dependant), Expiry date, Primary provider  

Payment  Claim: Name, NHIS No. of patient, Name and NHIS No. of patient’s primary provider, Name 

and NHIS No. of Secondary Provider, drug prescription sheet, Diagnosis/disease code, 

Treatment given, Date of treatment, Amount billed, Co-payment received (when applicable). 

Update Addition of dependents, change of facility, change of HMO 

Referrals Referral request, approvals, rejections 

 

Implementing this involves five main phases: pre-processing 

phase, generating frequent itemset for each split, generating 

frequent itemset for the entire data, generate association rules 

phase, and the output phase. Fig 4 shows the workflow of the 

proposed model, while Fig 5 shows the detailed representation 

of the proposed model. As a MapReduce processing model, in 

the first phase (i.e., the pre-processing phase), three (3) steps 

are conducted (i) the data of interest, X, is extracted from the 

MongoDB (ii) this data is converted into a CSV with m fields 

(iii) the data in the CSV file is partitioned into individual fields 

and passed to the map function. Each map function takes one 

split as input, and there are also a mapper and reducer functions. 

The output of this phase is a constant k- itemsets and their 

occurrence for each split as a list of intermediate key/values. 

The second phase has a MapReduce computation for generating 

frequent candidate itemsets for all the data. The input of this 

process is an input split, and a file containing all frequent partial 

k-itemsets that resulted from the first phase. The output is the 

frequent k-itemsets and its occurrence in the whole input data. 

Finally, the association rules are generated using frequent 

itemsets. 

As a MapReduce processing model, in the first phase (i.e., the 

pre-processing phase), three (3) steps are conducted (i) the data 

of interest, X, is extracted from the MongoDB (ii) this data is 

converted into a CSV with m fields (iii) the data in the CSV file 

is partitioned into individual fields and passed to the map 

function. Each map function takes one split as input, and there 

are also a mapper and reducer functions.  

Data collection: The NHIS data is collected from various 

HMOs and stored into MongoDB in its raw form. Collecting the 

NHIS data is one of the most difficult tasks in this work 

because this data is collected manually by NHIS through HMOs 

and stored in file cabinets. This requires digitizing the data by 

scanning it into the computer system before anything can be 

done on it. The data was collected from different HMOs whose 

identities have been concealed for obvious reasons.  

Pre-processing: Here, the data is retrieved from MongoDB and 

features of interest are extracted using OCR. These features are 

stored in a temporary CSV file as an intermediate form of the 

pre-processing. Applying the Apriori Approach usually requires 

a pre-processing stage that would convert the different formats 

of data in the MongoDB into a single format. In this case, the 

data is converted into the comma separated values (CSV). This 

is achieved by using the OCR to extract all the fields in the 

data. The algorithm for this phase is shown in Algorithm 1.  

Loading: The features stored in the CSV are split into 

individual features and executed in parallel by the MapReduce. 

The algorithm for this phase is shown in Algorithm 2. 

Generate frequent itemsets and their occurrence in the 

split: In this step, the itemsets are generated for the split 

resulted from the previous step, and the MapReduce model 

outputs the itemsets along with their occurrences in the split 

using a Map and Reduce function. In this phase, the data is 

divided into logical Input Splits, each of which is then assigned 

to a Map task then the map worker calls the map function to 

process the input split. The Map function shown in Algorithm 3 

reads one split at a time and output a list of intermediate (key, 

values) pairs where the key is the element of the attribute set, 

and the value is its occurrence. The data from the mapper is 

passed to the reducer (see Algorithm 4) which takes it and get 

all the values associated with the same key and writes the value 

in the output file in the increasing order of the keys. The output 

is a list L of (key, value) pairs where the key is an element of 

attribute set and the equal value one, and this list Li is stored in 

a temporary file. 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

16 

 

Fig 4: Workflow for BDAM4N 

 

Fig 5: Detailed Representation of BDAM4N

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

17 

Algorithm 1: Data Preprocessing  

Input: D the data in the MongoDB database.   

Output: csvfile  

Read documents from D.  

Value: ocred_content,     // content of the document after applying OCR   

ocred_content = OCR(content) 

split D into k partitions //combinatorial principle from Ramsey Theory 

extract docnam;   // apply the principle of set intersection to extract this document’s name 

extract content; //apply the principle of set intersection to extract the content of this document  

For each line ∈   ocred_content 

feature=extract (line);               // extracting features from documents   

insert comma (,);              // insert a comma after extracting the features 

If (ocred_content.hasMore.Features) 

 docFeat  �     docFeat  ∪ features;  

end if   

end for  

Context.write(csvfile, docFeat); 

END 

Algorithm 2: Data Loading  

Input: CSVfile.   

Output: features  

Read features from CSVfile.  

For each line ∈   features 

If (line.has.comma) 

 feature=extract (line);   // extracting features from documents  

splitFeat  �     feature;  

end if   

end for  

map(splitFeat); 

END 

 

Algorithm 3: Map Phase 

Input: split of the data, Si 

Output: (key, value),  

key: element of k-itemset,  

value: the occurrence of the element,   

Map(object )   // Map function  

L1=separate attributes of each beneficiary from Si  

For(k=2; Lk-1≠ ∅,;k ++)  

Generate new candidate Ck;  

For each candidate c ∈Ck c.count++;  



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

18 

Sort all the attributes with same key and order them by their unique number  

end for  

L={c∈Ck }  

if itemset � ∈ L  

output (I , c);  

end map  

END 

 

Algorithm 4: Reduce Phase 

Input: (key1, value1),  

Key1: element of k-itemset,  

Value1: the occurrence in the split,  

Output: (key2, 1),  

Key2: element of frequent candidate k-itemsets,  

Reduce(key1, value1 )    // Reduce function  

Out(key2, 1);    // collected in L1  

End reduce  

End   

 

Generate association rules: After generating the frequent 

itemsets for all the data, the association rules generated using 

Map and Reduce functions with predefined minimum support 

and confidence to generate strict rules. This is shown in 

Algorithm 5. The Map function takes the list of frequent 

itemsets and their support and takes the frequent itemset that 

survived the support threshold and group the entries of the same 

key. The Reduce function calculate the confidence of each 

itemset and output the itemsets which satisfy the confidence 

threshold. The output will be the rule with confidence.  

Algorithm 5: Map and Reduce function for Rules Generation 

Input: a set of all attributes, Va = {a1 U U a2 U…Uan} 

Output: set of rules   

Map Function (Va)   

for each attribute a, do 

for each correspondence object x, do 

construct the decision rule (c1 = v1 ∩ c2 = v2 ∩… ∩ cn = vn)���� du   = u 

End for  

Reduce Function(u):   

//For the enrollment of principal beneficiary, scan for the existence of the records 

Scan the u over an object x // name, date of birth, gender, phone number, email 

IF x does not exist THEN  

enroll x  

else x is already in existence //Double registration 

//For enrollment of spouse 

If NHIS No of the principal is valid, THEN 

 IF the marital status of the principal is Married, THEN 

  If the residential address of the spouse and the principal is not the same, THEN 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

19 

   Enrol Spouse with a different Health Facility 

  Else  

   Enrol Spouse with same Health Facility as the principal 

 Else 

  REJECT Spouse Enrollment, Principal not yet married 

Else 

REJECT Spouse Enrollment, and the principal does not exist 

END 

//For enrollment of a child 

If NHIS No is valid, THEN 

IF the marital status of the principal is Married, THEN 

 If the number of children enrolled so far is not up to four, THEN 

  If child/children age (s) is not more than eighteen, THEN 

  If the address (es) of the child (ren) is not the same as the principal, THEN 

   Enrol Child (ren) with a different primary Health Facility  

  Else  

Enrol Child with same Health Facility as the principal 

  Else 

   REJECT child (ren), Age (s) is/are above 18years 

 Else 

 REJECT child (ren), the number of children is more than four for this enrollee  

Else 

REJECT, not yet married 

Else 

REJECT, the principal does not exist 

END 

//For the enrollment of Extra dependant 

If NHIS No of principal is valid, THEN 

 If extra dependant for the principal is not up to one, THEN 

 If the extra dependant is not in the same location as the principal, then 

  Enrol dependants with the different primary provider  

 Else 

  Enrol Dependants with the same provider with the principal,  

Else  

 REJECT, the number of allowable dependants is exceeded 

Else 

REJECT, the principal does not exist 

END 

//Update (change of facility 

If NHIS No is valid, THEN 

If the last date update was carried out is up to six months, THEN 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

20 

Update facility for the enrollee 

Else 

REJECT, the last update was done less than 6months ago 

Else 

REJECT, Principal does not exist 

END 

//Note: update applies the same rules as in the enrollment 

 

//Referral 

IF NHIS No is valid THEN 

Extract the doctor’s diagnoses for the enrollee, dd 

Extract NHIS approved diagnoses, nd 

Extract the details of the facility they are referring to, rh 

Extract details of the primary facility as well, ph 

IF dd ∈ nd THEN  

IF rh==Secondary facility OR Tertiary OR rh specializes in cases like dd, THEN 

  Compute the distance d between ph and rh 

  Also, compute distance, fd, of other facilities in the same area with ph 

  IF d is less than OR equals fd, THEN 

   Approve the referral request  

  Else  

   Reject the referral request //Traces of Fraud observed 

 Else  

 Set approval status to ‘REJECTED’ //Traces of Fraud observed 

END 

Construct (ci, 1 ≤ i ≤ n) 

For every c ∈ C do 

Assign the value V to the corresponding attribute a 

End for 

Construct a decision attribute d 

Assign the value u to the decision attribute d 

Assign the value u to the corresponding decision attribute d 

End for 

End for 

End   

 

 

Report: An output is generated at this stage in the form of a 

report. This report shows whether a particular data category is 

marred with irregularities or not, e.g., a claim contains 

irregularities or free of irregularities. 

Storage: The output is then stored in a relational database 

where it can be accessed by the stakeholders either immediately 

or anytime the need arises. The relational database used here is 

the MySQL database. 

4. RESULTS 
The prototype of the system was implemented using Java 

Programming Language, Apriori algorithm as the machine 

learning algorithm, MongoDB as the big data storage 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

21 

mechanism, and MapReduce as the big data processing 

platform. The implementation of the system has two folds: a 

standalone data capturing system which was built to ease the 

data capturing processing since none of the data capturing 

systems developed for the scheme has not been implemented. 

(The prototype tool was developed using Java Enterprise 

Edition technology. It is web-based and can be used in a 

distributed setting. The front-end is built using Java Server 

Pages (JSP 2.3), the business logic is implemented using 

Enterprise Java Beans (EJB 3.2), and the back-end is 

implemented in two folds: input storage was implemented using 

MongoDB, and the output storage was implemented using 

Structured Query Language (SQL-MySQL). The input storage 

(MongoDB) accepts data in different formats (e.g., pdf, jpeg, 

png, gif, csv and excel) as inputs and process them to produce a 

report for the stakeholders which is stored in MySQL. The 

considerable input in the different formats is first divided into 

smaller units using the Divide-and-Conquer Algorithm, which 

is implemented in the MapReduce Framework to ease the 

processing of this data.  

4.1 Experimental Design 
In order to ascertain the response time and throughput of the 

system, two sets of four experiments were carried out. The first 

set of experiments were carried out with a single node in the 

MapReduce. In the second set of experiments, multiple nodes 

were used in the MapReduce. These number of nodes were 

varied according to the increment in the records under 

consideration. In the four experiments, the data was partitioned 

into four: 71543, 115427, 279950 and 396428, with the 

increment factor as 0%, 61%, 143% and 42% respectively. 

With this, the MapReduce nodes in the second set of 

experiments were 9, 15, 36 and 51, respectively. Table 2 shows 

details of the variation in the MapReduce framework in the rule 

generation phase of the system. 

Table 2: Variation of MapReduce Nodes 

NRs Increment in 

Data (%) 

Number of Nodes 

71543 0 9 

115427 61 15 

279950 143 36 

396428 42 51 

 

Abbreviations used in the Evaluation 

Response Time 

NU: Number of Users 

CRTE: Response Time for the processing of Enrollment data at 

Constant number of nodes 

CRTC: Response Time for the processing of Claims data at 

Constant number of nodes 

CRTR: Response Time for the processing of Referral data at 

Constant number of nodes 

CRTU: Response Time for the processing of Update data at 

Constant number of nodes 

VRTE: Response Time for the processing of Enrollment data at 

Varying number of nodes 

VRTC: Response Time for the processing of Claims data at 

Varying number of nodes 

VRTR: Response Time for the processing of Referral data at 

Varying number of nodes 

VRTU: Response Time for the processing of Update data at 

Varying number of nodes 

CART: Average Response Time for the processing of data at 

Constant number of nodes 

VART: Average Response Time for the processing of data at 

Varying number of nodes 

Throughput 

NR: Number of Records 

CTPE: Throughput for the processing of Enrollment data at 

Constant number of nodes 

CTPC: Throughput for the processing of Claims data at 

Constant number of nodes 

CTPR: Throughput for the processing of Referrals data at 

Constant number of nodes 

CTPU: Throughput for the processing of Update data at 

Constant number of nodes 

VTPE: Throughput for the processing of Enrollment data at 

Varying number of nodes 

VTPC: Throughput for the processing of Claims data at 

Varying number of nodes 

VTPR: Throughput for the processing of Referrals data at 

Varying number of nodes 

VTPU: Throughput for the processing of Update data at 

Varying number of nodes 

CATP: Average Throughput for the processing of data at 

Constant number of nodes 

VATP: Average Throughput for the processing of data at 

Varying number of nodes 

Result Summary 

CE: Enrollment data processing at Constant number of nodes 

CC: Claims data processing at Constant number of nodes 

CR: Referral data processing at Constant number of nodes 

CU: Update data processing at Constant number of nodes  

CA: Average data processing at Constant number of nodes 

VE: Enrollment data processing at Varying number of nodes 

VC: Claims data processing at Varying number of nodes 

VR: Referrals data processing at Varying number of nodes 

VU: Update data processing at Varying number of nodes 

VA: Average data processing at Varying number of nodes 

4.2 Response Time 
Literary speaking, response time is the time from the moment a 

user sends a request until the time the application indicates that 

the request has been completed. In establishing the response 

time of the model, the response time for all the categories of 

data (see Table 1) was tested. This was carried out four times 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

22 

using different sizes of data (see Table 2). The outcome of the 

testing is presented in Table 3a and Table 3b; the respective 

graphs are shown in Fig 6a and Fig 6b. Here, there was a great 

significant difference in the response time of the two 

experiments. 

Table 3a: Response Time for the Processing of the Data 

NU CRTE CRTC CRTR CRTU VRTE VRTC VRTR VRTU 

5 0.80 0.80 0.80 0.80 0.610 0.190 0.390 0.470 

7 0.85 0.85 0.86 0.86 0.464 0.107 0.227 0.297 

9 0.89 0.88 0.89 0.89 0.398 0.069 0.169 0.199 

12 0.91 0.91 1.00 1.00 0.293 0.007 0.110 0.020 

 

 

Fig 6a: Graph for the Response Time 

Table 3b: Average Response Time for the Model 

Category of Data Average Data per User CART VART 

Enrollment 23735.25 0.86 0.44 

Claims 23735.25 0.86 0.09 

Referrals 23735.25 0.89 0.22 

Update 23735.25 0.89 0.25 

Average 23735.25 0.56 0.25 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14

R
e

sp
o

n
se

 t
im

e

No of Users

Response Time

CRTE CRTC CRTR CRTU VRTE VRTC VRTR VRTU



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

23 

 

Fig 6b: Graph for the Average Response Time for the Model 

4.3 Throughput 
This is the volume of data processed in a given time. One of the 

main characteristics of big data is volume. The volume is 

always outrageous, and with high velocity, it is always difficult 

processing it most, especially when it is manually done as in the 

case of NHIS. Because of the parallel framework of the 

MapReduce, which is used in the implementation of this model, 

the throughput is quite high. In establishing the throughput of 

the model, all the categories of data (see Table 1) were tested. 

This was carried out four times using different sizes of data (see 

Table 2).  The outcome of the testing is presented in Table 4a 

and Table 4b; the respective graphs are shown in Fig 7a and Fig 

7b. The throughput for the model increases as the volume of 

data increases in both experiments, as shown in Table 4a and 

Table 4b, and Fig 7a and Fig 7b. The average throughput for the 

model for the first set of experiments is 2796.53 records per 

seconds. In contrast, in the second set of experiments, it was 

8865.29 records per seconds which means that the model can 

process this amount of data in one second irrespective of the 

formats. 

Table 4a: Throughput for the Processing of the Data 

NR CTPE CTPC CTPR CTPU VTPE VTPC VTPR VTPU 

71543.00 1172.84 831.90 1882.71 2044.09 3109.21 4354.41 5507.54 4930.6 

115427.00 1522.78 769.51 2748.26 2493.02 4140.14 5333.96 6695.3 6660.53 

279950.00 3313.02 1349.16 4868.70 4761.05 8870.41 11384.71 11907.7 13426.86 

396428.00 3450.20 1396.36 5838.41 6302.51 10722.96 12821.09 14720.68 17258.51 

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14

R
e

sp
o

n
se

 T
im

e

No of Users

Average Response Time

CART VART



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

24 

 

Fig 7a: Graph of the Throughput for the Processing of NHIS Data 

Table 4b: Average Throughput for the Model 

NR CATP VATP 

71543.00 1482.89 4475.44 

115427.00 1883.39 5707.48 

279950.00 3572.98 11397.42 

396428.00 4246.87 13880.81 

 

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

20000.00

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

T
h

ro
u

g
h

p
u

t

No of Records

Throughput

CTPE CTPC CTPR CTPU VTPE VTPC VTPR VTPU



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

25 

 

Fig 7b: Graph for the Average Throughput for the Model 

4.4 Stability 
Confidence is an important measure in determining the 

reliability of a rule which in turn forms the basis for stability. 

This is because a rule that has very low confidence may occur 

quite often, but its result will not be right. Confidence measures 

the reliability of the inference of a rule, hence the higher the 

value for a rule, the stronger the rule will be and the better the 

result that would be obtained. Table 4.6a showed the confidence 

for the first set of experiments when the number of nodes in the 

MapReduce was set to be constant.  

From the data depicted in Table 5a, the confidence of the rules 

generated tends to decrease from 80% to 20% as the volume 

(number of records in this case) of the data increases in the first 

set of experiments. Also, the number of rules increases from 

1568 to 21690, resulting in more complex rules which occur 

more frequently as the value for the support increases from 35 

to 70. This changes in the value of the confidence depict that 

the model was unstable as the data was changing. In the second 

set of the experiment where the number of nodes in the 

MapReduce was varied, there was slight increment (from 

83.2% to 83.9%) in the value of the confidence for the rules 

generated as the volume of the data increases. The number of 

rules generated reduces from 1068 to 216, resulting in more 

viable rules that occur more frequently as the value for the 

support increases from 39 to 80 (see Table 5b). This changes in 

the value of the confidence are minimal, and it depicts that the 

model was stable as the data was changing with an increasing 

number of nodes. 

Table 5a: Support and Confidence at Constant Number of Nodes 

No of Records Support Confidence (%) Number of rules 

71543.00 35 80 1568 

115427.00 45 50 3820 

279950.00 52 40 11322 

396428.00 70 20 21690 

 

Table 5b: Support and Confidence at Varying Number of Nodes 

No of Records Support Confidence (%) Number of rules 

71543.00 39 83.2 1068 

115427.00 59 83.6 856 

279950.00 63 83.7 522 

396428.00 80 83.9 216 

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

T
h

ro
u

g
h

p
u

t

No of Records

Average Throughput

CATP VATP



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

26 

This implies that the model was volatile when the volume of 

data was increased without a corresponding increase in the 

number of nodes in the MapReduce processing platform. The 

model was more stable in the second case, as there was no 

significant change in the value of confidence. Also, as the 

volume of the data increases, the pressure on the constant 

number of nodes of the MapReduce increases and this was the 

reason for the high value for the number of complex rules and 

their respective supports values. This pressure was drastically 

reduced in the second set of experiments, hence the 

insignificant increase in confidence values. This is because as 

the volume increases, the number of nodes also increases, and 

there is no much pressure on the nodes. 

5. DISCUSSION 
The existing system which is operated manually is 

characterized by unnecessary delays which have negatively 

affected the scheme. This manual processing is unfit for 

handling the recent upsurge in data which technological 

improvement is generating at high rates and volume. For 

instance, it takes three to twelve months to complete both 

registration and update of enrollees, it takes a similar period for 

the payment of capitation, co-payments, per diem and 

reimbursement of claims. Also, referral of patients that should 

take at most twenty-four hours takes days before being attended 

to. These and many more issues generated by corruption have 

beclouded the scheme, and the lack of appropriate data 

analytics tools is at the heart or centre of this problem. 

Big data analytics of NHIS data was achieved by parallelizing 

the Apriori ARM algorithm using the MapReduce distributed 

data processing framework. ARM was chosen for this research 

because of its power to process qualitative data more 

efficiently, unlike the other data mining techniques. Although, 

ARM, when implemented in the orthodox way to process big 

data, has issues of generating complex rules which slow down 

the system. To this end, by parallelizing ARM to run in a 

distributed environment curbed these issues, and this was 

achieved using the MapReduce framework. This framework is 

the most successful computing platform for analyzing big data 

because it adopts a data centric approach of distributed 

computing with the thought of moving computation/processing 

closer to data. With this, a complex piece of data could be 

partitioned and loaded into different nodes that would process it 

at a faster rate. The results of this research were presented and 

evaluated in Section 4. 

From the evaluation presented in Section 4, it was evident that 

the response time and throughput of the algorithm vary as the 

volume, velocity and variety of the data also varies. The 

summary of this result is shown in Table 6. This variation 

affects the entire analytics process (i.e., the extraction, pre-

processing, analysis and visualization). This evaluation was 

done in two phases: using a single node in the MapReduce 

framework during rules generation and varying the number of 

nodes in the MapReduce framework during rules generation. In 

the first instance, the throughput indicates that the system 

processes an average of 2796.53 records every second when the 

number of nodes in the MapReduce is constant. The average of 

the throughput was 8865.29 records per second when the nodes 

were increased in the second sets of experiments. Going by our 

experiments, the result implies that as the number of nodes 

increases, the time taken to process the records reduces 

drastically, and the throughput increased in return. From Table 

4 and Fig 7 the throughput increases from 1482.89 records to 

4246.87 for the first sets of experiments and increases from 

4475.44 to 13880.81 in the second sets of experiments as the 

volume of data increases from 71543 to 396428. This increment 

occurs regardless of the variety and velocity of the data.  

Table 6: Summary of the Result of this Research 

 CE CC CR CU  CA VE VC VR VU VA 

Response Time 0.86 0.86 0.88 0.88 0.87 0.441 0.093 0.224 0.247 0.251 

Throughput 2364.71 1086.73 3834.52 3900.17 2796.53 6710.68 8473.54 9707.81 10569.13 8865.29 

 

For the response time, there was also a significant difference in 

the two sets of experiments, and the average value was 

conspicuously different. The response time also increases in 

response to an increase in the volume of data, and the number of 

requests also increases in the first set of experiments. But 

decreases as the volume of data and the number of requests 

increases. In Tables 3 and Fig 6, the average response time for the 

first instance is 0.87seconds. In contrast, it is 0.25seconds in the 

second case irrespective of the volume, variety and velocity of the 

data. From the above, the performance of the system was 

evaluated using response time and throughput as metrics. In either 

case, as presented by the two sets of experiments above, the 

performance is good, and this implies that the delays that affect 

the processing of data submitted by the providers and enrollees to 

the HMOs, has been drastically reduced considering the 

performance metrics and the values gotten from the evaluation. 

This would ease the processing of the data and as a result improve 

the flow of resources (i.e., steady flow of resources to the 

facilities) in the form of capitation, fee-for-service, per diem, co-

payments, enrollment registers, updates and referrals. Thus, a 

steady improvement in the structures, processes and outcomes 

leading to improvement in the quality of services rendered to 

beneficiaries by the facilities. 

6. CONCLUSION 
In conclusion, this research developed a distributed algorithm for 

the processing of big data to enhanced decision making in 

organizations. This provided a parallel, distributed and non-

invasive technique for large-scale processing of data. With this, 

data scientists would have a tool for processing both structured 

and unstructured data with high volume and velocity.  It was 

tested with NHIS data in Nigeria to address the delay in the 

existing manual data processing system. The results show quick 

response time and high throughput. Thus, the processing time of 

NHIS data was reduced. This will enhance the flow of resources 

among stakeholders in the scheme, and thus, a steady 

improvement in the structures, processes and outcomes leading to 

improvement in the quality of services rendered to beneficiaries 

by the facility would be attained. In summary, the research 

addressed two important issues in data analytics: 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

27 

1. ability to effectively derived meaningful insights from 

structured, semi-structured and unstructured data for 

effective decision making by stakeholders. 

2. ability to drastically reduce delay in data analytics due 

to orthodox data processing techniques.  

7. REFERENCES 
[1] Mazumder, S., Bhadoria, R. S. and Deka, G. C. 2017. 

Distributed Computings in Big Data Analytics: Concepts, 

Technologies and Applications. Springer International 

Publishing, Gewerbestrasse 11, 6330 Cham, Switzerland. 

[2] Yange, S. T., Soriyan, H. A. and Oluoha, O. 2017. Design of 

a Data Analytics Model for National Health Insurance 

Scheme. Journal of Health Informatics Africa, 4(1): 42-50. 

[3] Mirkin, B. 2010.  Core Concepts in Data Analysis: 

Summarization, Correlation, Visualization. Department of 

Computer Science and Information Systems, Birkbeck, 

University of London, Malet Street, London WC1E 7HX 

UK. 

[4] Mouthaan, N. 2012. Effects of Big Data Analytics on 

Organizations’ Value Creation. Unpublished MSc. A thesis 

submitted to the Department of Business Information 

Systems, University of Amsterdam. 

[5] Zhang, H., Chen, G., Ooi, B.C., Tan, K.L. and Zhang, M. 

2015. In-Memory Big Data Management and Processing: A 

survey. IEEE Transactions on Knowledge and Data 

Engineering, 27: 1920–1948. 

[6] Famutimi, R.F. 2018. Design and Implementation of In-

Memory Technique for Managing Big Data Complexities. 

An Unpublished Ph.D. Thesis Submitted to the Department 

of Computer Science and Engineering, Obafemi Awolowo 

University, Ile-Ife, Nigeria. 

[7] Yange, S. T., Soriyan, H. A. and Oluoha, O. 2019. A Fraud 

Detection System for Health Insurance in Nigeria. Journal of 

Health Informatics Africa, 6(2): 64-73. 

[8] Das, S., Sismanis, Y., Beyer, K.S., Gemulla, R., Haas, P.J. 

and McPherson, J. 2010. Ricardo: Integrating R and Hadoop. 

SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA, 

987-998.  

[9] Saxena, P. and Govil, K. 2013. An Effective Reliability 

Efficient Algorithm for Enhancing the Overall Performance 

of Distributed Computing System. International Journal of 

Computer Applications, 82(5): 30-34.  

[10] Chen, C.L.P. and Zhang, C.Y. 2014. Data-Intensive 

Applications, Challenges, Techniques and Technologies: A 

survey on Big Data. Information Sciences, 275: 314–347. 

[11] Gilbert, S. and Lynch, N. 2002. Brewer’s Conjecture and the 

Feasibility of Consistent,  Available, Partition-

Tolerant Web Services. SIGACT News, 33: 51–59. 

[12] Kumar, U. and Kumar, J. 2014. A Comprehensive Review of 

Straggler Handling Algorithms for MapReduce Framework. 

International Journal of Grid Distribution Computing,7 (4): 

139-148.  

[13] Davenport, T. 2014. Big Data at Work: Dispelling the 

Myths, Uncovering the  Opportunities. Harvard Business 

Review Press, Boston, Massachusetts, USA.  

[14] Gandomi, A. and Haider, M. 2015. Beyond the Hype: Big 

Data Concepts, Methods and  Analytics. International 

Journal of Information Management, 35: 137–144. 

[15] Etikala, P.R. 2016. Designing & Implementing a Java Web 

Application to Interact with  Data Stored in a 

Distributed File System. An Unpublished M.Sc. Thesis 

Submitted to Graduate Faculty of St. Cloud State University. 

[16] Sajwan, V. and Yadav, V. 2015. MapReduce: Architecture 

and Internals. International Journal of Science and Research, 

4(5): 774-777. 

[17] Kotsiantis, S. and Kanellopoulos, D. 2006. Association 

Rules Mining: A Recent Overview. International 

Transactions on Computer Science and Engineering, 32 (1): 

71-78.  

[18] Babi, C., Rao, M.V. and Rao, V. V. 2017. Study of 

Association Rule Mining for Discovery of Frequent Item 

Sets on Big Data Sets. International Journal of Applied 

Engineering Research, 12(22): 12169-12175. 

[19] Agrawal, R. Imielinski, T. and Swami, A. 1993. Mining 

Association Rules Between Sets of Items in Large 

Databases. In the Proceedings of ACMSIGMOD Conf. on 

Management of Data, May 1993, 207-216. 

[20] Aggarwal, C. and Yu, P. 1998. Online Generation of 

Association Rules. In the Proceedings of the 14th Intl. Conf. 

on Data Engineering, 402-411. 

[21] Agrawal, R. 1994. Fast Algorithms for Mining Association 

Rules in Large Databases. Computer Science and 

Technology, 15: 487-499.   

[22] Singh, S., Garg, R. and Mishra, P. K. 2014. Review of 

Apriori Based Algorithms on MapReduce Framework. In the 

Proceedings of 2014 International Conference on 

Communication and Computing (ICC - 2014), Bangalore, 

India, 593–604. 

[23] Gautam, J. and Srivastava, N. 2015. Analysis of Medical 

Domain Using CMARM: Confabulation Mapreduce 

Association Rule Mining Algorithm for Frequent and Rare 

Itemsets. International Journal of Advanced Computer 

Science and Applications, 6(11): 224-228. 

[24] Saabith, S. A., Sundararajan, E. and Bakar, A. A. 2016. 

Parallel Implementation of Apriori Algorithms on the 

Hadoop-MapReduce Platform- An Evaluation of Literature. 

Journal of Theoretical and Applied Information Technology, 

85(3): 321-351. 

[25] Oweis, N. E., Fouad, M. M., Oweis, S. R., Owais, S. S. and 

Snasel, V. 2016.  A Novel  MapReduce Lift 

Association Rule Mining Algorithm (MRLAR) for Big Data. 

International Journal of Advanced Computer Science and 

Applications, 7(3): 151-157. 

[26] Singh, B. and Miri, R. 2016. An Efficient Parallel 

Association Rule Mining Algorithm based on MapReduce 

Framework. International Journal of Engineering Research & 

Technology, 5(6): 236-240. 

[27] Ramteke, S. 2016. Association Rule Mining Algorithm 

Using Big Data Analysis. International Journal on Recent 

and Innovation Trends in Computing and Communication, 

4(5): 73-75 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12– No.31, July 2020 – www.ijais.org 

 

28 

[28] Nancy, J. J., Rani, M. J. and Devaraj, D. 2016.  Association 

Rule Mining in Big Data using MapReduce Approach in 

Hadoop. GRD Journals|Global Research and Development 

Journal for Engineering/International Conference on 

Innovations in Engineering and Technology, 179-186.  

[29] Prajapati, D. J., Garg, S. and Chauhan, N. C. 2017. 

Interesting Association Rule Mining with Consistent and 

Inconsistent Rule Detection from Big Sales Data in 

Distributed Environment. Future Computing and Informatics 

Journal, 2: 19-30. 

[30] Bagde, P.R. and Chaudhari, M.S. 2016. Analysis of Fraud 

Detection Mechanism in Health Insurance Using Statistical 

Data Mining Techniques. International Journal of Computer 

Science and Information Technologies, 7 (2): 925-927. 

[31] Devi, M. R. and Sarojini, A. B. (2012). Applications of 

Association Rule Mining in Different  Databases. 

Journal of Global Research in Computer Science, 3(8): 30-

34. 

[32] Deshpande, D. & Anami, B. S. 2016. Association Rules 

Based Analysis for Arthritis  Patients’ Data. 

International Journal of Modern Trends in Engineering and 

Research, 3(3): 388-393. 

[33] Kang’ethe, S. M. and Wagacha, P. W.  2014. Extracting 

Diagnosis Patterns in Electronic Medical Records using 

Association Rule Mining. International Journal of Computer 

Applications, 108(15): 19-26. 

[34] Al-Maolegi, B. A. 2013. An Improved Apriori Algorithm for 

Association Rules. International Research Journal of 

Computer Science and Application, 1: 1-8.   

[35] Rao, P. G. 2012. Implementing Improved Algorithm Over 

Apriori Data Mining Association Rules Algorithm. 

International Journal of Computer Science and Technology, 

3: 489-493.   

[36] Woo, J. 2012. Apriori MapReduce Algorithm. International 

Conference on Parallel and Distributed Processing 

Techniques and Applications, 20-31.   

[37] Mahendra, N. T. 2012. Data Mining for High Performance 

Data Cloud using Association Rule Mining. IOSR Journal of 

Computer Engineering, 16-22.  

[38] Hegazy, O. Y. O. 2012. Ann Efficient Implementation of 

Apriori Algorithm Based on Hadoop MapReduce Model. 

International Journal of Reviews in Computing, 12: 59-67.   

[39] Dean, S. G. 2008. MapReduce: Simplified Data Processing 

on Large Clusters. ACM, 5:  107-113.   

[40] Leem, H. K. (2012). Parallel Data Processing with 

MapReduce: A Survey. ACM, 40: 11-20.   

[41] Yang, A. H. 2007. MapReduce Merge: A Simplified 

Relational Data Processing on Large Clusters. ACM, 1029-

1040.   

[42] Maitrey, S. and Jha, C. K. 2015. MapReduce: Simplified 

Data Analysis of Big Data. Procedia Computer Science, 57: 

563 – 571. 

[43] Kumar, L., Rajawat, S. and Joshi, K. 2015. Comparative 

analysis of NoSQL (MongoDB) with MySQL Database. 

International Journal of Modern Trends in Engineering and 

Research, 2(5): 120-128. 

[44] Pothuganti, A.  2015. Big Data Analytics: Hadoop-Map 

Reduce & NoSQL Databases. International Journal of 

Computer Science and Information Technologies, 6 (1): 522-

527. 

[45] Yange, S. T., Soriyan, H. A. and Oluoha, O. 2019. An 

Implementation of a Repository for Healthcare Insurance 

Using MongoDB. Proceeding of the 14th International 

Conference of Nigeria Computer Society (NCS), Gombe, 

Nigeria, 30: 54-67.   

[46] Ananth, G. S. and Raghuveer, K. 2017. A Novel Approach 

of Using MongoDB for Big  Data Analytics. 

International Journal of Innovative Studies in Sciences and 

Engineering Technology, 3(8): 7-12. 

[47] Yange, S. T., Soriyan, H. A. and Oluoha, O. 2017. A 

Schematic View of the Application of Big Data Analytics in 

Healthcare Crime Investigation. Journal of Health 

Informatics Africa, 4(1): 32-41. 

[48] Oyegoke, T.O. 2015. Development of an Integrated Health 

Management System for National Health Insurance Scheme. 

An Unpublished M.Sc. Thesis Submitted to the Department 

of Computer Science and Engineering, Obafemi Awolowo 

University, Ile-Ife, Nigeria. 

[49] Eteng, F.O. & Ijim-Agbor, U. 2016. Understanding the 

Challenges and Prospects of Administering the National 

Health Insurance Scheme in Nigeria. International Journal of 

Humanities and Social Science Research, 2(8): 43-48.  

[50] Alimi, O. M., Binuyo, O. G., Gambo I. G. & Jimoh, K. 2016. 

Realtime National Health Insurance Scheme (RNHIS): 

Means to Achieve Health for All. International Journal of 

Computer Science, Engineering and Applications (IJCSEA), 

6(2): 1-8. 

[51] Oyegoke, T. O., Ikono, R. N. and Soriyan, H. A. 2017. An 

Integrated Health Management System for National Health  

Insurance Scheme in Nigeria. Journal of Emerging Trends in 

Computing and Information Sciences, 8(1): 30-40.  

[52] NHIS (National Health Insurance Scheme), 2013. National 

Health Insurance Scheme Operational Guidelines. Accessed 

on 01.06.2017 from 

http://www.nhis.gov.ng/images/stories/hmoregister/NHIS_O

PERATIONAL_GUIDELINES.pdf.  

[53]  Hoyt, R.E. and Yoshihashi, A. (2014). Health Informatics: 

Practical Guide for Healthcare and Information Technology 

Professionals, Sixth Edition. Pensacola, FL, Lulu.com. 

[54] Ebenezer J. G. A. and Durga, S. (2015). Big Data Analytics 

in Healthcare: A Survey. ARPN Journal of Engineering and 

Applied Sciences, 10(8): 3645-3650. 

[55] Olaniyan, A. O. 2017. Assessment of the Implementation of 

National Health Insurance Scheme (NHIS) in South-Western 

Nigeria. Unpublished PhD Thesis submitted to the 

Department of Public Administration, Obafemi Awolowo 

University, Ile-Ife, Nigeria. 

 


