

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.32, August 2020 – www.ijais.org

6

Feature Mining from APK Files for Malware Detection

Prerna Agrawal
Faculty of Computer Technology (MCA)

GLS University

Gujarat, India

Bhushan Trivedi
Faculty of Computer Technology (MCA)

GLS University
Gujarat, India

ABSTRACT
The practice of using Machine Learning Methods in detecting

Malware is growing massively. The prerequisite for

implementing Machine Learning methods is the input of the

dataset to it. A researcher needs to create a dataset of its own

for performing Malware Detection using Machine Learning.

Our dataset generation process includes Android File

Collection, Decompilation, and Feature Mining Phases. We

have already collected 15508 Malware Files and 4000 benign

files in our Android File Collection phase and decompiled

them in the Decompilation phase. Here we are discussing our

Feature Mining Phase. So our goal in this paper is to select

appropriate features for dataset generation. For the selection

of proper features, we have also performed a Static Analysis

process using online Malware Scanners. By using our static

Analysis process we have selected a total of 215 features.

Here we also propose the process of automating the Feature

Mining from the APK files. We also have developed and

implemented a Feature Mining Script in Python. Using the

automated Feature Mining Script we have generated a final

dataset of 16300 files. We have also discussed the working

flow of feature mining script and in this paper.

Keywords
APK file, Malware, Dataset, Android, Machine Learning,

Feature Mining, and Malware Detection.

1. INTRODUCTION
The usage of Machine Learning methods for malware

detection compared to conventional methods is increasing

immensely [3] [5]. Machine Learning methods are capable of

detecting unknown malware also [4]. The Dataset is a

prerequisite for using supervised machine learning methods

for Malware Detection. For the proper investigation of

malware, there is a need for features of different independent

flavors. We tried to search for an existing dataset having

different features but we found only the Drebin dataset that

was available with lesser features. So for different

independent flavors of features that we wanted to explore we

created our dataset for getting better results. Our dataset

generation process mainly involves Android File Collection,

Decompilation, and Feature Mining phases. In the Android

File Collection phase [2], we have successfully collected

15508 malware files from Android’s world-famous Malware

Datasets and 4000 benign files. In the decompilation phase[1],

we have successfully decompiled all the collected files in

Android File Collection. In this paper, we will discuss our

Feature Mining phase. The Android File Collection and

Decompilation phases are already discussed in our earlier

papers.

There was also no proper mechanism available for proper

selection of features for malware detection. So there was a

need for Static Analysis to observe the behavior of current

malware scanners on the malware files and for the selection of

the proper features for malware detection. We have performed

the Static Analysis process for proper feature selection using

online malware scanners [4] in the first phase. In this paper,

we present a solution to select appropriate features for

malware detection from APK files. Using our Static Analysis

process we have selected a total of 215 features. The Static

Analysis process was performed using online malware

scanners named Andrototal, AVC Undroid, VirScan, Hybrid

Analysis, VirusTotal, and NvisoAPKScan [4] [6 - 11]. The

Static Analysis results of all these online scanners were

analyzed and based on that the features were selected. The

main features selected are Permissions, Intents, and API calls.

The Permissions and Intents are extracted from the

Manifest.xml file and the API calls are extracted from the java

source code files. In the Android File Collection [2] the

malware files consist of different varieties of malware

families. The Drebin dataset [2] contains malware files from

179 different malware families and PRAGuard contains

malware files from 50 different Malware families [2]. The

features were selected based on the study of some malware

families. Every application uses some permissions, API calls,

and Intents. Specific malware exploits some typical

permissions, API calls, and Intents. The features selected are

both normal and dangerous based on the Malware and Benign

APK files collected. Based on the static analysis results all the

sensitive features were mainly selected. Table 1 consists of a

list of some sensitive features. The sensitive features mainly

contain READ and WRITE permissions of the different

resources, Sending SMS permissions, Accessing Location

permissions, getting access to Accounts, Internet and WIFI

permissions, etc.

In this paper, we propose a process to automate the feature

mining from the APK files. For automating the Feature

Mining process we have created a Feature Mining Script in

python which will retrieve the contents of the APK files

search for the features, extract them and save into the dataset.

Using our Feature Mining Phase we have successfully

generated the dataset of around 16300 files. As discussed in

the earlier paper our Android Malware Detection process also

contains the Machine Learning phase and our final generated

dataset will be provided as input to our generalized detection

engine. The Machine Learning phase will be discussed in

another paper.

This paper is divided into the following sections. Section 2

describes our Static Analysis phase and Feature Selection

process. Section 3 describes our Feature Mining Phase and

Section 4 describes the conclusion of the paper.

2. STATIC ANALYSIS FOR FEATURE

SELECTION
The static analysis process plays an essential role in Feature

Selection. The appropriate selection of features helps in

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.32, August 2020 – www.ijais.org

7

proper investigation of the malware for obtaining better

results. Here we discuss our methodology of the Static

Analysis Phase and Feature Selection process. The features

are divided into 2 protection levels normal and dangerous. The

normal level features are also considered as lower risk

features that give requesting applications access to only

application-level features with the minimum risk to all other

applications, systems, or users. For normal level features, the

system automatically grants them to a requesting application

without taking the user’s approval explicitly. The dangerous

level features are also considered as higher risk features that

give access to private user data or control over the device to

the requesting application that can negatively impact the user.

These type of features introduces potential risk to the system.

An application will contain both the types of features but the

segregation of dangerous features is equally important as

malware exploits the higher risk features only for getting

access to the private user data or control over the system and

to harm them. The permission

READ_EXTERNAL_STORAGE is considered to be

dangerous as it may allow the application to access the user’s

private data of the external storage. The permission

READ_CONTACTS is considered to be dangerous as it

allows the application to access the user’s private contacts. So

malware exploits dangerous features and gains access to the

user’s private data or device.

2.1 Static Analysis
This section describes the Architectural flow of the Static

Analysis Phase. The static analysis process is performed to

investigate and select the appropriate features from the APK

files which differentiates a Malware and benign file. Using

this process one can determine the exact features to be

selected and extracted from the APK file. This process is

performed using online Android Malware scanners named

Andrototal, AVC Undroid, VirScan, Hybrid Analysis,

VirusTotal, and NvisoAPKScan [4] [6 - 11]. An APK file is

selected from the Android Files Repository and uploaded on

the website. The website after getting connected to the server

sends the file for processing. The server after receiving the

APK file scans the file and performs Malware Analysis. After

processing the file the server responds to the website with the

Malware Analysis results. The Malware Analysis results are

saved to some physical location. All the collected Malware

files in the Android File Collection phase are scanned with

online Malware scanning tools by using the Static Analysis

process for appropriate Feature Selection.

Android
Files

Static Analysis
(Execute, File)

(Process, File)
Website

(Upload, File)

Server

(Send, Results)

(View, Results)

Static Analysis
Results

(Save, Results)

Figure 1: Architectural Flow of Static Analysis Phase

2.2 Feature Selection Process
Feature Selection is an important process for investigating

Android Malware. The Static Analysis results stored in the

Repository were analyzed and used for appropriate Feature

selection. Sandroid Results [12] and Android Malware

datasets [12] were also analyzed and studied for the Feature

selection process. The classification of the Malware Detection

Scanners and Sandroid Reports [6-11] [12] is based on the

features like Requested Permissions, API calls responsible for

used Permissions, Potentially Dangerous or Sensitive API

Calls, Intents, Services, Broadcast Receivers, and Activities.

Requested permissions are those which are requested by an

application for using the resources or information outside its

sandbox. If the application wants to use the internet than it

will request the INTERNET permission. Used permissions are

the subset of the requested permissions that are used by an

application. API calls are the functions that are invoked

through the code and require the permissions to use for their

execution. The API calls which refer to dangerous

permissions are known as Sensitive API calls. Sensitive API

calls are the functions that are dangerous and provide access

to the user’s data or system’s complete access to the

application invoking that call. The Sensitive API calls will use

dangerous permissions from the Manifest.xml file. The

Network API call sendDataMassage() requests SEND_SMS

permission to send the SMS. So the malware exploits the

Network API call and sends the sensitive data outside through

SMS. The non-sensitive calls are the functions that are normal

and allows only application-level access and will use normal

permissions from the Manifest.xml file. Intents are the

asynchronous messages that allow you to interact with

components of the same application as well as other

components of different applications. A service runs in the

background to perform long operations. Broadcast receivers

allow you to register for system or application events. An

activity represents a single screen in an android application

and an application consists of multiple activities. Intents

activate services, activities, and Broadcast Receivers and

register their type using intent-filters in the Android

Manifest.xml file. When a Malware File invokes Sensitive

API calls than some dangerous permissions, activities,

services, and broadcast receivers are often exposed and used.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.32, August 2020 – www.ijais.org

8

Features

Permissions API Calls Intents

Normal

Dangerous

Normal

Dangerous / Sensitive

Figure 2: Classification of Features

Based on the classification of the Malware Detection Scanners

Results and Sandroid Reports [6-11] [12] we have focused on

the selection of features like API calls, Intents, and

Permissions. Figure 2 presents the classification of features.

The Permission protection level can be further classified into

normal and dangerous [12]. According to the Malware

Detection Scanners Results [6-11], the permissions are

divided into Requested Permissions and Used Permissions.

The requested permissions contain all the listed permissions

that an application may request for use. It contains both

Normal and Dangerous permissions. The used permissions are

those which are used by the application and a Malware

application contains Dangerous permissions. The API calls

can be further classified into normal and dangerous/sensitive

[6]. The sensitive API calls invoke the dangerous permissions

and exploit them. If a normal SMS Application requests the

permission of READ_EXTERNAL_STORAGE and

BLUETOOTH than it suspects some malicious behavior.

After performing the Feature Selection process we have

selected a total of 215 features containing Permissions, API

calls, and Intents. The next section contains the Feature

Mining phase of all the selected features from the APK files.

Table 1 describes some identified potentially dangerous

permissions and Sensitive API calls [6 -11] [12].

Table 1: Sensitive Features

Features Category

ACCESS_COARSE_LOCATION

Dangerous Permissions

CALL_PHONE

CAMERA

CHANGE_WIFI_STATE

INTERNET

MANAGE_ACCOUNTS

READ/WRITE_CALENDAR

READ/WRITE_CONTACTS

READ/WRITE_EXTERNAL_STORAGE

BLUETOOTH

DISABLE_KEYGUARD

READ_LOGS

GET_TASKS

SEND_SMS

WRITE_MEDIA_STORAGE

SYSTEM_ALERT_WINDOW

INSTALL/UNINSTALL_SHORTCUT

sendMultipartTextMessage

getSubscriberId

sendDataMessage

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.32, August 2020 – www.ijais.org

9

getPackageInfo

Sensitive API Calls getNetworkOperator

getDeviceId

getLine1Number

3. FEATURE MINING FROM ANDROID

FILES COLLECTION
The Feature Mining phase is crucial for our dataset generation

process The Android file collection [2] contains a rich variety

of malware files consisting of different malware families. The

Drebin dataset [2] contains malware files from 179 different

malware families and PRAGuard contains malware files from

50 different Malware families [2]. The Androzoo dataset also

contains malware files from many families. We have collected

various malware files from the world's most widely used

malware datasets and ensured that our malware files collection

contains a huge variety of different malware from different

malware families. Some of the malware families covered are

Contagio, Anserver Bot, BaseBridge, Bean Bot, Coin Pirate,

Dogwars, Droid Coupon, Droid Dream, DroidKungFu1,

DroidKungFu2, DroidKungFu3, DroidKungFu4, FakeNetFlix,

FakePlayer, GamblerSMS, Geinimi, GGTracker, GoldDream,

HippoSMS, JiFake, LoveTrap, NickyBot, NickySpy,

Plankton, SMSReplicator, SndApps, Zitmo, OpFake, etc.

3.1 Feature Mining Script
For automating the process of Feature Mining we have

developed a Feature Mining Script in Python for extracting

the features from APK files. The script will examine the

Android Manifest.xml and all the Java Source code files for

feature extraction. It will extract all the available features from

a decompiled APK file. Figure 3 describes the Feature Mining

Script Flow. It is divided into different steps:

1. The process will start by looking for a Decompiled APK

file in the Repository.

2. If the decompiled file is found then the Script will

process the file.

3. The process will end if the Decompiled file is not found.

4. Once the decompiled file starts processing the script will

find the Android Manifest.xml file.

5. If the Android Manifest.xml file exists the script will

extract Permissions and Intents from it.

6. If the Android Manifest.xml file does not exist then the

script will look for a new Decompiled APK file in the

Repository.

7. After the processing of the Android Manifest.xml file,

the script will find java files.

8. If the Java file exists then the script will extract API calls

from it.

9. After extracting API calls from a single java file it will

again look for another java file and this process will

continue until all the Java files are processed.

10. After processing all the java files if another java file is

not found then the script will look for a new Decompiled

APK file in the Repository.

11. This script will process all the Decompiled APK files

from the Repository and extract features from each file.

Start

Look for a Decompiled
File in Repository

Decompiled File
Exists?

End

Process File

Android
Manifest.xml file

Exists?

Extract
Permissions
and Intents

Java file
Exists?

Extract API
Calls

YES

YES

YES

NO

NO

NO

Figure 3: Feature Mining Script Flow

3.2 Feature Mining Process
This section presents the architectural flow of the Feature

Mining Phase. Features represent the attributes of the Android

files which helps to detect and classify the malicious files and

benign files. Here features like Permissions, API calls, and

Intents are extracted for Malware Detection. Figure 4

illustrates the overall flow structure for the Feature Mining

phase. The selected features from the Static Analysis Results

will be given as an input to the Content Retrieval of Features

process. A decompiled file will be selected from the

Decompiled Files Repository and Feature Mining Script will

be executed. It will look for the Permissions, API calls, and

Intents in Java files and Android Manifest.xml file in the

Content Retrieval process. The Script file will look for all 215

features and extract the features from the files and save them

into the dataset. Let V be the vector of all the selected

features. For every ith Android file in the Android Files

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.32, August 2020 – www.ijais.org

10

Collection, we generate a binary sequence Si = {f1, f2… fj}

and

fj =

If the feature exists 1 is stored for that specific feature

otherwise 0. Also, we consider one more variable C for

classification of each Android file where C € {Malware,

Benign}. The value s indicates Malware application and b for

benign application. The vector V for each Android file is

stored in a CSV file and the final features dataset

is prepared for all malware and benign applications. The

Malware files are collected from the world’s largest datasets.

As we have a huge number of files downloaded from different

malware datasets available and due to bulk files in each

dataset containing different malware families some files may

be repeated in different datasets. So there is a possibility of

having duplicate entries in the dataset. We have also applied

the process of removing the Duplicates entries from the

dataset for obtaining more accurate results in malware

detection. Using this Feature Mining Phase we have generated

a final dataset of around a total of 16300 files.

Decompiled
Files

Content
Retrieval of

Features

Feature
Mining

(Run, File)
Static Analysis

Results

(Input, Feature Selection)

(Execute, File)

Figure 4: Architectural Flow of Feature Mining Phase

4. CONCLUSION
The practice of using Machine Learning Methods for

detecting the malware requires a dataset that will train the

model and test it for providing better results. For that, a

researcher needs to create a dataset of its own. Our dataset

generation process mainly includes Android File Collection,

Decompilation, and Feature Mining phases. In the Android

File Collection phase, we have collected 15508 Malware files

and 4000 benign files and decompiled them in the

Decompilation phase. The Android File collection and

Decompilation phases are already discussed in previous

papers. Here we have discussed our Feature Mining phase and

proposed a process for automating the feature mining from

APK files. We have also proposed and implemented a Feature

Mining Script in Python. For the appropriate feature selection

from the APK files, we have also conducted the Static

Analysis process using the online malware scanners.

We have presented the solution of the feature selection

process by implementing our Static Analysis phase and

selected a total of 215 features by studying the results of the

Static Analysis[4] and analyzing different malware reports of

Sandroid [12]. By implementing our Feature Mining phase we

have generated a final dataset of around 16300 files. We have

also shown the working flow of the feature mining script The

machine learning phase will be discussed in another paper.

5. REFERENCES
[1] Prerna Agrawal, Bhushan Trivedi, “Unstructured Data

Collection from APK files for Malware

Detection”, International Journal of Computer

Applications (IJCA), Vol 176, Issue 28, June 2020, pp.

42-45, ISBN 973-93-80901-12-5, ISSN 0975 – 8887,

DOI 10.5120/ijca2020920308

[2] Prerna Agrawal, Bhushan Trivedi, "Automating the

process of browsing and downloading APK Files as a

prerequisite for the Malware Detection process ",

International Journal of Emerging Trends & Technology

in Computer Science (IJETTCS), Vol 9, Issue 2, March -

April 2020, pp. 013-017, ISSN 2278-685.

[3] Prerna Agrawal, Bhushan Trivedi, “Machine Learning

Classifiers for Android Malware Detection”, 4th

International Conference on Data Management,

Analytics and Innovation (ICDMAI) Springer AISC

Series, New Delhi, Jan 2020.

[4] Prerna Agrawal, Bhushan Trivedi, “Analysis of Android

Malware Scanning Tools”, International Journal of

Computer Sciences and Engineering, Vol.7, Issue.3,

pp.807-810, Mar 2019.

[5] Prerna Agrawal, Bhushan Trivedi, “A Survey on Android

Malware and their Detection Techniques”, Third

International Conference on Electrical, Computer and

Communication Technologies (ICECCT) IEEE, Feb

2019.

[6] “AVC UnDroid Online Scanner”, Online Link:

https://undroid.av-comparatives.org

[7] “AndroTotal: Scan Android Application”, Online Link:

http://andrototal.org.

[8] “VirusTotal: Analyse suspicious files”, Online Link:

https://www.virustotal.com

[9] “NVISO ApkScan: Scan Android Applications for

Malware”, Online Link: https://apkscan.nviso.be/

[10] “VirSCAN.org: Submit and scan your file”, Online

Link: http://www.virscan.org

[11] “Hybrid Analysis Online Scanner”, Online Link:

https://www.hybrid- analysis.com

[12] “Sandroid: Android Application Analysis System”,

Online Link: http://sanddroid.xjtu.edu.cn/#overview

[13] “Machine Learning Datasets”, Online Link:

https://figshare.com/articles/Android_malware_dataset_f

or_machine_learning_1/5854590/1

http://andrototal.org/
http://sanddroid.xjtu.edu.cn/#overview
https://figshare.com/articles/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/Android_malware_dataset_for_machine_learning_1/5854590/1

