

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.33, September 2020 – www.ijais.org

15

A Method and Apparatus to Design Optimal Scenario

based Test Model for System Software

Susanta Dutta
Sr. Software Engineer

Hewlett Packard Enterprise
Bangalore, Karnataka,

India-560048

Sathesh Babu Rangaraj
Sr. Software Engineer

Hewlett Packard Enterprise
Bangalore, Karnataka,

India-560048

Mahantesh Chiniwar
Sr. Software Engineer

Hewlett Packard Enterprise
Bangalore, Karnataka,

India-560048

ABSTRACT
System software is a type of computer program that is

designed to run on a computer hardware, such as server,

storage or network devices. Some of the examples of system

software are operating system, firmware, device drivers,

management software etc. To ensure high level of quality of

these system software, only functional and non-functional

testing (reliability, compatibility, performance and scalability)

may not be sufficient.

To uncover errors in the system software that can only occur

in certain conditions and situation, a scenario based test model

should be derived based on underlying hardware

configurations, state of the hardware, user actions being

performed on it, etc.

The present solution is a method for designing optimal test

model considering multi-dimensional aspects. As an example,

three dimensions are considered to describe the concept in this

paper.

General Terms

This solution relates in general to software test engineering to

ensure quality of a system software, such as Operating

system, Firmware, device drivers, hardware management

software or utilities. The present solution is directed to the

designing of an optimal scenario based test model for the

system software.

Keywords
Software Engineering, System Software, Defects, Quality,

Testing, Scenario based testing, System test. Test cases

1. INTRODUCTION
Scenario based testing simulates hypothetical stories

involving multiple complex test steps. This testing can be

included along with functional and non-functional testing. To

ensure quality of system software, it’s important to develop a

test model to derive those scenarios and execute them to

uncover defects that are observed when different states of the

product intersects and conflicts with user actions on a specific

hardware configuration.

This technique solves the problem of determining a systematic

approach to design optimal test model for a system software:

The test model for a system software consists of followings:

a) Configuration of the underlying hardware. This can

be different model, add-on hardware component or

any specific hardware configuration.

b) State of the hardware. It can be either running some

processes or jobs, or got into a partial failure or

degraded state. The state of the hardware can be one

or more in combination.

c) User action on the hardware using the software.

This can be due to usages of the product. It can be

either manual or automatic action. There can be one

or more user actions in sequence or in parallel.

2. BACKGROUND
While analyzing some of the customer found issues for a

storage management software, found that all the issues were

not caught during regular functional, reliability, compatibility,

performance and scalability testing. Majority of the issues

occurred only in certain conditions and situations when

storage system is in particular state and user performs an

action on it.

Figure-1: A Case Study Data

A case study, shown in Figure-1, was performed on customer

found issues (CFIs) on a selected module, the interesting

pattern shows 48% of the issues were due to usages of the

system software in some specific scenarios.

Some example of real customer scenarios are:

 Formatting a storage volume hangs when underlying

storage logical disk is initializing. Customer had to wait

for hours till initialization is completed.

 Graceful rebooting of a NAS storage system gets stuck

when one of the network link is in failed state. As a

result NAS services are not available for client access

file shares.

Scenario

Based

48%

Functional

20%

Non-

Functional

32%
Scenario Based

Functional

Non-Functional

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.33, September 2020 – www.ijais.org

16

 Running defrag on a degraded thin provisioned volume

causes memory leak. Customer system used to crash

intermittently.

The pattern among above scenarios is each scenario has

elements of user action, specific state and configuration

These conditions and situations are known only after

customers reported, but challenge is to determine such

conditions and situations during test design phase with right

priority.

A method can be derived to design an optimal test model from

all possible states and user actions on a system software [1]

[2] [3]. This technique solves the problem of determining a

test model for a system software with a systematic approach.

3. DETAILED DESCRIPTION OF THE

SOLUTION
The following detailed description is directed to concept for

designing optimal test model for effective testing of a system

software.

This method provides a systematic approach to derive all test

cases from various configuration, models, versions etc.,

different state and user actions on it.

Figure-1 is a case study data that shows percentage of

customer found bugs – 48% bugs were encountered due to

some specific scenarios, others are functional or non-

functional issues.

Figure-2 shows aspects of an illustrative operating

environment along with usages of the hardware product,

which creates scenarios for a product. XZ-plane represents the

operating environment that consists of various configurations

and different states [4] of the hardware product. In the

approach of designing scenario based test cases, creation of

operating environment is an important aspect. This can also be

referred as test environment.

An action is performed on a product as per its usage of

features and functionalities. Y-Axis represents user actions on

it, one of the important aspect of scenarios, according to the

embodiments presented herein.

Now, considering operating environment and user actions,

XYZ – Space, is an illustration for the scenarios of a system

software considering all three aspects of a hardware product.

Figure-2: Scenarios for a product

3.1 Preparation Phase
Figure-3 shows template table illustrating list of possible

hardware configurations, states and user actions along with

weight value.

Figure-3: List of possible hardware configurations, states

and user actions along with weight value

As a first step of preparation phase, identify and list all

possible states that product can get in. This is shown in block

101. The state of the product can be either running some

processes or jobs, or got into a partial failure or degraded

state. States are denoted in the block 101 as S1, S2, S3 and so

on. Some of the example of states for computer hardware or

software can be, link down, remote system is unreachable, a

hardware component failed. Each state can have a weightage

against other states, considering probability of occurrence,

User Actions:

User actions can be due to usages of the

product. It can be either manual or

automatic action.

Configurations:

Configuration can be different model or version of a product,

large or medium configuration, along with any specific

configuration option that is turned on or off

States:

State can be running any process or

job, a partial failure or degraded state

of physical or logical object.

Y

X

Z

List of all possible states of
the hardware product

[S
1
 SW

1
]

[S
2
 SW

2
]

[S
3
 SW

3
]

[... …]

List of all configurations and models of the
hardware product
[C

1
 CW

1
]

[C
2
 CW

2
]

[C
3
 CW

3
]

[... …]

List of all possible user
actions on the product

[A
1
 AW

1
]

[A
2
 AW

2
]

[A
3
 AW

3
]

[... …]

102

101

103

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.33, September 2020 – www.ijais.org

17

impact and criticality of it. A numeric value in the scale of 1

to 10 with 10 being the most critical and commonly observed

state, can be assigned as a weightage to each state. State

weighted are denoted in the block 101 as SW1, SW2, SW3

and so on.

Similar to states, identify and list all possible user actions for

the given product. The actions are generally due to usages of

the product. This is shown in block 102. For example of

computer hardware can be rebooting, installing software,

refreshing software graphical user interface etc. Based on

criticality, assign weightage value to each of them. Those are

denoted in the block 102 as AW1, AW2, AW3 and so on.

Product engineer, technician or subject matter expert (SME)

with working experience with the product is the right person

to list all of the above.

Last step in preparation phase is to list all configurations,

models of the hardware that are available for qualification. In

the block 103, configurations are denoted in the block 103 as

C1, C2, C3 and so on and configuration weightages are

denoted as CW1, CW2, CW3 and so on.

As depicted in Figure-4, there can be some combination of

any two or three type of parameters which are unsupported or

invalid. For example, when a server link is down, command

cannot be sent to it or a specific configuration may not

support some user action. These combination can be called

out in a separate table for exclusion from final test set.

For a given product, a library file or database tables with all

these parameters can be maintained for future test design.

Figure-4: Exclude Table

3.2 Test Case Design Phase
Figure-5 is a logical flow diagram illustrating the method for

designing optimal test model [5] [6], according to

embodiments presented herein

Logic in flow diagram depicts the selection of each

configuration, state of the hardware product along with the

actions. Block 201 is the outer most loop for each

configurations that was listed in listed in 103 during

preparation phase. Other two inner loops, block 202 and 203,

are for states of hardware (block 101) and list of actions

(block 102). While executing all three loops in the flow

diagram, there are two other important considerations need to

be made (block 204):

a) Exclude the set that matches with combinations that

are listed in exclude table during preparation phase.

b) Multiply respective weight values together to

calculate resultant weightage for each set [6]:

S

As last step of the test case design, sort all final sets based on

resultant weightage (block 205). This is to determine sort the

sets based on their priority.

Each set can be converted to test case.

Here is an example of data set:

Configurations and their weightage:

C1 3

C3 4

Hardware states and their weightage

S1 3

S2 4

S3 2

User Actions and their weightage

A1 3

A2 4

A3 2

Exclude sets:

A2 C1

S2 A3

C2 S3

C1 A1 S1

Logic described in flow diagram creates resultant test sets:

64: C3 -> S2 -> A2

48: C3 -> S2 -> A1

48: C3 -> S1 -> A2

36: C3 -> S1 -> A1

36: C1 -> S2 -> A1

32: C3 -> S3 -> A2

24: C3 -> S3 -> A1

24: C3 -> S1 -> A3

18: C1 -> S3 -> A1

16: C3 -> S3 -> A3

Any test case consist of three fundamental components – Test

Environment, Test Steps and Verification steps. From the data

generated in block 205, create test cases having at least three

parameters in each:

1) Test Environment (Product Configuration with one

or more States)

2) Test Steps (User Actions)

3) Verification Steps with expected results

List of unsupported or invalid sets
[S

x
 A

x
 C

x
]

[S
y
 A

y
 C

y
]

[S
z
 A

z
 C

z
]

[... … …]

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.33, September 2020 – www.ijais.org

18

Start

Configuration

[C1, C2, C3,]

State

[S1, S2, S3,]

Action

[A1, A2, A3,]

Process each configuration (Ci),

State (Sj), and Action (Ak)

Sort all in descending order

based on calculated weightage

End

Create set from each

configuration (Ci), State (Sj), and

Action (Ak)

 Discard set if matches

with any set or subset in

exclude list

Derive resultant weightage for

the set

 (CWi * SW j * AWk)

W
h
e
n

 a
ll c

o
n

fig
u

ra
tio

n
 e

le
m

e
n
ts a

re
 u

se
d

For each configuration

For each State

For each Action

201

202

203

204

205

204

Figure-5: A logical flow diagram illustrating the method for designing optimal test model

4. APPLYING THE TECHNIQUE
This method has been applied in several projects and observed

positive results. For the preparation phase and described in

Figure-3, one of the storage management software projects

data is presented here:

Table 1. Example data for configuration

Configurations Weightages

RAID_5_volume 4

RAID_1_volume 2

Volume_on_SSD 3

Table 2. Example data for states

State Weightages

Volume_degraded 2

Disk_failed 3

Network_link_down 2

RAID_rebuild 3

Table 3. Example data for user actions

User action Weightages

Snapshot_creation 4

Adding_disk 2

Firmware_upgrade 1

Graceful_reboot 1

Defrag 3

The exclude data set identified and presented in the Table 4:

Table 4. Example data for user actions

Configurations State User Action

 RAID_rebuild Adding_disk

When applied the algorithm described in Figure 5, following

48 new test scenarios were generated. Those are listed based

on their resultant weightage in descending order:

Table 5. Derived scenarios along with resultant weightage

Scenarios

48 RAID_5_volume : Disk_failed : Snapshot_creation

48 RAID_5_volume : RAID_Rebuild : Snapshot_creation

36 RAID_5_volume : Disk_failed : Defrag

36 Volume_on_SSD : RAID_Rebuild : Snapshot_creation

36 Volume_on_SSD : Disk_failed : Snapshot_creation

32

 RAID_5_volume : Network_link_down :

Snapshot_creation

32

 RAID_5_volume : Volume_degraded :

Snapshot_creation

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.33, September 2020 – www.ijais.org

19

27 Volume_on_SSD : Disk_failed : Defrag

24 RAID_5_volume : Network_link_down : Defrag

24

 Volume_on_SSD : Volume_degraded :

Snapshot_creation

24 RAID_1_volume : Disk_failed : Snapshot_creation

- - - - - - - - - - - -

 [Rows are truncated for better view]

- - - - - - - - - - - -

8

 RAID_5_volume : Volume_degraded :

Firmware_upgrade

8

 RAID_5_volume : Network_link_down :

Graceful_reboot

6

 Volume_on_SSD : Network_link_down :

Firmware_upgrade

6

 Volume_on_SSD : Network_link_down :

Graceful_reboot

6

 Volume_on_SSD : Volume_degraded :

Graceful_reboot

6

 Volume_on_SSD : Volume_degraded :

Firmware_upgrade

6 RAID_1_volume : Disk_failed : Firmware_upgrade

6 RAID_1_volume : Disk_failed : Graceful_reboot

4

 RAID_1_volume : Network_link_down :

Graceful_reboot

4

 RAID_1_volume : Network_link_down :

Firmware_upgrade

4 RAID_1_volume : Volume_degraded : Graceful_reboot

4

 RAID_1_volume : Volume_degraded :

Firmware_upgrade

Top 30 out of 48 test scenarios selected for test execution.

There were total additional 11 critical bugs uncovered in the

software from this method of test scenario:

Figure-6: Test result after applying the technique

5. CLAIMS
A method for designing optimal test model for system

software from multi-dimensional aspects, of a hardware

product configuration, state of the product and user action on

the product, said method comprising the steps of:

1) Identify and list all possible states that a hardware

product can get in along with their weightage

2) Identify and list all possible user actions as part of

product usages along with their weightage

3) List all models and configurations of the product

along with their weightage

4) A unique logic to generate valid set of states and

user actions for given configuration along with

resultant weightage set.

5) An automatic test model design based on logic

described in this paper.

6. CONCLUSION
The above described technique guides to design optimal test

model for system software. Though this paper explained the

method only using three dimensions, for a complex product,

scenario based test cases can be designed with even more

number of dimensions.

To improve quality of system software, these test cases can be

executed to uncover errors in the system software that can

occur only in certain conditions and situations.

7. ACKNOWLEDGMENT
We would like to express our sincere gratitude to Mr. Suhas

Shivanna, Distinguished Technologist, Hewlett Packard

Enterprise, for his constant support, guidance and motivation.

It would never have been possible for us to take this analysis

and research to completion without his incredible support and

encouragement.

8. REFERENCES
[1] Thillaikarasi Muthusamy, and Seetharaman.K. 2014 A

New Effective Test Case Prioritization for Regression

Testing based on Prioritization Algorithm

[2] R. Krishnamoorthi and S. A. Mary.2009.Factor Oriented

Requirement Coverage Based System Test Case

Prioritization of New and Regression Test Cases.

Information and Software Technology. Vol. 51.No. 4.

pp. 799-808

[3] S. Raju and G.V. Uma, 2012. An Efficient Method to

Achieve Effective Test Case Prioritization in Regression

Testing using Prioritization Factors. Asian Journal of

Information Technology, 11: 169-180.

[4] B. Korel, L. H. Tahat and B. Vaysburg, "Model based

regression test reduction using dependence

analysis," International Conference on Software

Maintenance, 2002. Proceedings., Montreal, Quebec,

Canada, 2002, pp. 214-223, doi:

10.1109/ICSM.2002.1167768

[5] Phadke, Madhav S. "Planning Efficient Software Tests".

Phadke Associates, Inc. Numerous articles on utilizing

Orthogonal Arrays for Software and System Testing.

[6] Dustin, Elfriede "Orthogonally Speaking".

Non-

Functional

, 14, 21%

Usability,

9, 14%

Scenario

Based, 11,

16%

[CATEG

ORY

NAME],

[VALUE],

[PERCEN

TAGE]

https://paportal.phadkeassociates.net/learning.aspx
http://www.stickyminds.com/stickyfile.asp?i=3638556&j=94197&ext=.pdf

