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ABSTRACT
Sensors are ubiquitous elements, whether through smart phones
and other personal devices, or via wireless sensor networks, body
area networks or IoT in general. However, due to noise, inter-
mittent operation or message loss, sensor time series often arrive
with outliers at processing centers. In this work, the problem of
detecting isolated outliers in sensor time series is addressed us-
ing Robust Moving Least Square prediction (RMLS). The per-
formance of RMLS is compared against that of the Sequentially
Discounting Autoregressive (SDAR), which is a well-established
state of the art method. The results show that RMLS has perfor-
mance compatible with SDAR in all tests, with the advantage that
RMLS is less sensitive to outliers present in the predictors window.
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1. INTRODUCTION
A Sensor Time Series (STS) is a series of data numerical points
indexed in time order. Often, STS is the sequence of samples for
a continuous variable, for example, temperature, taken at succes-
sive equally spaced points in time. In other applications, it can
represent stock prices, sales volume, stock volume in a company
or even the sequence of the numbers of the evolution of an epi-
demic. Thus it is a sequence of discrete-time ordered date which
can be univariate or vector.
The acquired data is normally not directly usable, as they suffer
from problems such as noise, data loss and outliers. In addition
to the noise inherent in any measurement, phenomena in the lo-
cal context may temporarily aggravate the noise. Missing data
usually occurs due to packet loss and node failure, and outliers
can originate from transmission errors or intense interferences in
physical quantity being measured [22].
Extracting useful knowledge from raw sensor data is not a triv-
ial task. The context of the sensor data makes the design of an
appropriate outlier detection technique more challenging. Given
this scenario, even though many techniques for detecting outliers
have been developed in the past and several strategies have been
applied in sensor techniques to increase reliability, detect out-
liers and isolate defective readings, there is still a vast field of
research to mitigate the effects of these outleirs in the sensors’
time series [20, 15].
Two Sensor Time Series (STS) processing modes are found. In
offline mode, all or part of the STS is received and stored and
must be processed without processing or storage time restric-
tions. In this mode, processing at one point in the series can ben-
efit from knowledge of past and future values at that point. This

mode is typical of applications such as financial series [23], retail
sales series [16] and some climate monitoring applications [25].
In data stream mode, it is generally desired to detect events as
they occur, with no time between samples for intensive process-
ing, such as the construction of sophisticated models. This mode
is typical of applications for continuous environmental monitor-
ing [6, 12], health care monitoring [8] and industrial [11, 19]
and IoT [3, 27, 5] monitoring in general. In this context, out-
liers must be detected (novelty, anomaly) without, however, the
outliers present in the STS bias the detection of the following
outliers.
Depending on the problem at hand, there are two approaches
to tackling outliers in sensor time series and in data in general
[7, 4]: detecting and treating outliers, or using robust processing
methods for outliers. Robust methods are useful when, for ex-
ample, through domain knowledge, outliers are not a source of
information but only undesirable interference.
However, in many applications, such as those looking for novelty
or anomaly, outlier detection is necessary and processing of the
outlier is imposed. In this situation, robust methods may not be
adequate as they can hide new information coming.
An outlier detector can fail in two ways: fail to detect an outlier
(false negative) or classify a normal sample as outlier (false pos-
itive). In a detector based on a sliding window, when a wrongly
classified sample enters the window, it biases the detector and
may lead to new detection errors. In this scenario, a detection
method that is robust to outliers within the data window is wel-
come. This is because, in the case of a false positive, if any treat-
ment for outliers is being used, it will replace that real sample
with another value when it should not be done. And in the case
of a false negative, no action is taken as the outlier is unknown
and the outlier will be part of the window and bias the procedure.
Autoregressive (AR) [13] or sliding window (MA) [24] predic-
tion techniques are often used to detect outliers in this context.
SDAR (Sequentially Discounting Autoregressive) [26] predic-
tion is a well-established technique in the class of autoregressive
models and MLS (Moving Least Square) [28] prediction uses a
sliding window.
The research questions faced in this paper are to evaluate the ef-
fect of past undetected or untreated outliers on the accuracy of
these algorithms to detect new isolated outliers, and to compare
the performances against that of robust moving least squares lin-
ear prediction. The authors do not know of any other work with a
specific focus on this problem. Prediction based on robust regres-
sion over a data sliding window has other applications in ecology
cite and economics cite . In this work it is associated with an
error threshold to detect outliers.
In what follows, this article is organized like this. Section 2
presents the theoretical foundations of the investigated methods
and Section 3 analyzes some works directly related to this. In
Section 4 the data used, the experiments and the results are de-
scribed and analyzed. Section 4 concludes this work.
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2. METHODS
Time series outlier detection methods based on prediction build
generative models of the time series using past data and analyze
the error between the value predicted by the model and the data
arriving to classify it as outlier or not outlier. This section reviews
the fundamentals of the techniques used in this work.

2.1 Robust OLS Regression
A multiple linear regression model seeks to approximate the rela-
tionship between a dependent or output variable y, and a number
of independent or input variables {xi} by a linear function. In
the experimental context, when n observations are available, this
relationship can be represented, in matrix notation, by Equation
1:

y = Xβ + ε, (1)

where y is an n×1 vector of observed response values, X is the
n × p matrix of the predictor variables, β is the p × 1, and ε is
the n× 1 vector of random error terms.
The purpose of the model is to find the estimates of unknown pa-
rameters vector β and it describes what is called the regression
surface [18]. In practice it occurs that due to measurement inac-
curacies Equation 1 almost never has an exact solution and thus
OLS (Ordinary Least Squares) is used to find the best estimate of
β’s with the least squares criterion which minimizes the sum of
squared distances of all of the points from the actual observation
to the regression surface.
The solution of Equation 1 by the OLS method is well known
and is given by

β̂ = (X′X)−1X′y = X+y, (2)

where β̂ is the estimate of β for this data set, and X+ is called
the MoorePenrose inverse of the data matrix X.
A feature of the OLS method is that it gives equal importance
(weight) to all the examples in the data set. One weighted least
squares (WLS) method can be obtained from OLS by taking a
diagonal matrix of W weights of dimension n×nwith the diag-
onal elements considering the importance of each corresponding
example. In this case, Equation 1 becomes

y = WXβ + ε, (3)

and its weighted least squares (WLS) solution is given by

β̂ = (X′WX)−1X′Wy. (4)

One way for a outlier robust regression method would be to use
WLS Equation 4 by assigning lower weights to outlier data. The
difficulty is that it is not known in advance which data are out-
liers. This is an appropriate scenario for applying iterative meth-
ods giving rise to the iteratively re-weighted least squares (IRLS)
method.
In the general method of robust regression M-estimator, intro-
duced by Huber [18], rather than minimize the sum of squared
errors as the objective, the M-estimate minimizes a function of
the errors. Thus, the diagonal matrix W is written as

W = diag(f(
y −Xβ̂

σ
)), (5)

where the objective is the least absolute deviation and σ is a
(scale) width parameter of the function f() that makes it reduce
the weight of the most distant examples of the regression surface
of the current iteration. The IRLS method is an iterative solution
consisting of the following steps [18]:

(1) Initialize β0 using the OLS method,
(2) At the each iteration t, calculate residuals and the weight

matrix by Equation 5,

(3) Solve for new weighted least squares estimates with W cal-
culated in step 2.

Repeat Step2 and Step3 until the estimated coefficient converges
by some convergence criterion. Various functions are published
and tested for f() and the Gaussian function was used. To com-
plete the specification, the estimate of scale σ may be updated
after initial estimate based on the variance of the residuals.
Figure 1 illustrates the effect of the IRLS algorithm when com-
pared to OLS in the presence of outliers in the data window. It
shows a 20 point STS and the application of OLS and IRLS to
estimate the expected value of the next STS measurement. A data
window with a size of 3 was used. The two models were built in
two moments: one around time 4, free from outliers, and another
around time 12, with the presence of outliers.
In the first application, the models, and consequently the predic-
tions, almost coincide. With the presence of outliers, the models
differ significantly. Note that in the figure a threshold range was
included around the prediction outside which a sample will be
classified as outlier. Clearly, the OLS model would fail to detect
the next outlier while the IRLS model would be effective in this
example built for demonstration.
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Fig. 1. Effect of an outlier in the design data window on the accuracy
of OLS and IRLS outlier detection.

2.2 Sequentially Discounting AutoRegressive
(SDAR)

SDAR [21] uses density estimation and the fact that a sum of
Gaussian random variables is also a Gaussian random variable.
To estimate the value density of a sample xt arriving at time t,
let εt be a white Gaussian noise with zero mean and variance
σ2. SDAR assumes that the monovariate time series {xt, t =
1, 2, 3, ...} was generated by the model

xt =

p∑
i=1

aixt−i + εt, (6)

where xt−i is the value of the time series at time t − i, ai, i =
1...p are the model coefficients and p is the model order. In
these conditions, P (xt|xt−1, ..., xt−p, θ) has normal distribution
N(w, σ2) with probability density given by [26]:

P (xt|xt−1, ..., xt−p, θ) =
1

σ
√

2π
ε−(xt−w)2/2σ2

, (7)

where θ = (a1, ..., ap, σ
2) is the vector of model parameters and

w =
∑p
i=1 aixt−i.
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Normal Yule-Walker equations and maximum likelihood es-
timation are two procedures by which the model parameters
can be estimated. In any case, the parameters are obtained by
minimizing the sum of the discounted squared errors given by∑n
i=p+1(1− r)t−i(xi−AT x̃i)2, where r ∈ (0, 1) is a discount

factor that reduces the weight of the samples more distant in time
in relation to the current time t, xi is the true value read from the
series, x̃t = (xt−1, ..., xt−p)

T and A = (a1, ..., ap)
T .

Using the normal equations the algorithm to update the estimates
of the mean and variance of the xt probability density is given in
Algorithm 1 [26].

Algorithm 1: Pseudocode for the SDAR algorithm.
Data: A Sensor Time Series (xt, t = 1, 2, 3, ..., T ), r ∈ (0, 1)
Result: A vector score() of the xt samples scores.
initialization µ̂0, Cj , Σ̂, ω̂j(j = 1, ..., k);
for t ∈ (1, 2, 3, ..., T ) do

read xt;
µ̂ = (1− r)µ̂+ rxt;
Cj = (1− r)Cj + r(xt − µ̂)(xt−j − µ̂)T ;
solve for ω: Cj =

∑k
i=1 ωiCj−i(j = 1, ..., k);

x̂t = ω̂(xt−1t−k − µ̂) + µ̂;
Σ̂ = (1− r)Σ̂ + r(xt − x̂t)(xt − x̂t)T ;
score(t) = −log(pt−1(xt));

end

The score(xt) value assesses the change in the probability den-
sity function when going from pt−1 to pt. Therefore, the higher
the score(xt), the greater the possibility that xt is an outlier
[26].

3. RELATED WORKS
Research and publication on outlier detection and treatment in
Sensor Time Series is extensive. To contextualize this paper, this
section reviews some works directly related to this research [10],
[1], [29], [14].
The authors in [10] present the Temporal Outlier Discovery
(TOD) framework for detecting temporal outliers in vehicle traf-
fic data. What distinguishes the approach is that it does not look
at the behavior of individual objects, but instead seeks to detect
disparate behavior in road segment traffic data. Outlier scores
are calculated to detect drastic changes in trends in road segment
traffic in relation to its history and that of its neighbors. However,
the authors say nothing about how data with outliers is incorpo-
rated into the formation of traffic history and its effects.
A two-stage probabilistic method for detecting anomalies in nat-
ural gas time series data is presented in the work [1]. In the
first phase, the probability of a data point being anomalous is
determined, using an OLS linear regression model and a geo-
metric probability distribution of the residuals. The second step
is to train a Bayesian maximum likelihood classifier based on
the types of anomalies identified in the first phase. The method’s
contribution is its ability to incorporate domain knowledge in
the techniques developed in the first phase for the detection of
anomalies via Machine Learning techniques in the operation
phase. Missing data and outliers are assumed to be absent from
the design data.
In [29] a method is proposed to detect and repair data quality
problems in STS generated from seafloor observatories. The pro-
posed method consists of three parts: a general pre-test to pre-
process data and provide a route for further processing, data out-
lier detection methods to label suspect data points, and a data
interpolation method to fill in missing data and suspects. An in-
tegrated autoregressive moving average model (ARIMA) within

a sliding window is used to compute the prediction interval, so
that the parameters are readjusted each time the window moves
a step forward. Processing is offline and the design data in each
sliding window is assumed to be free of outliers.
The authors in [14] study the detection and elimination of out-
liers in self-weighing time series data obtained from connected
weight scales. For these, three techniques are analyzed: (1)
a method based on autoregressive integrated moving average
(ARIMA) time series modelling, (2) another based on median
absolute deviation (MAD) scale estimate, and (3) a method based
on Rosner statistics [17]. Are applied these methods to both a
data set with real outliers and a clean data set corrupted with
simulated outliers. The results suggest that the simple MAD al-
gorithm and ARIMA performed well with both test sets while
the Rosner statistics was significantly less effective. In addition,
the ARIMA approach appeared to be significantly less sensitive
to long periods of missing data than MAD and Rosner statistics.
The work assumes that the data are approximately normal and
the outliers are not taken into account in the design of the mod-
els.
The reviewed papers are representative of four applications with
practical relevance. Note that they do not consider a configura-
tion in which outliers are present in the design data of the models
updated online.

4. METRICS AND RESULTS
Two noise STS were used in the experiments: a synthetic STS
and a natural STS. A number of random amplitude and polar-
ity outliers have been inserted in random positions. In a speci-
fied number of these positions, occurrences of two outliers were
created separated only by a correct sensor reading to stress the
methods. It has been provided for the four polarity combinations
to occur.
Preprocessing was carried out to guarantee time series without
seasonality and trend when applying SDAR. The performance
of the OLS, IRLS and SDAR methods were compared using the
False Negative (FN) and False Positive (FP) metrics. False Pos-
itive accumulates the number of regular measurements that the
method classified as outliers and False Negative accumulates the
number of outliers that were not detected by the algorithm.

4.1 Result for Synthetic Time Series
For this test an STS of 200 points was generated with the same
recursive equation used in [26] given by xt = 0.6xt−1 −
0.5xt−2 + nt where nt is a white Gaussian additive noise
(AWGN) with zero mean and unit variance. The graph of this
STS is shown in Figure 2. In this STS, 20 isolated outlier points
were inserted, corresponding to 10 % of the series. It was taken
care that the STS contains 8 occurrences of outliers separated by
just a correct measurement.
The outputs of the executions of the three methods were in-
spected to generate the results shown in Table 1. For each de-
tection method, total FN and FP (T in Table 1) are shown, and
of these, in how many cases there was an outlier within the slid-
ing window of the modeling data for the OLS and IRLS cases.
Column w for SDAR aims to verify the behavior of SDAR in
situations where OLS and IRLS are more sensitive.
Table 1 shows that the OLS model can only be applied when it is
guaranteed that the STS is free from an outlier. IRLS and SDAR
performed well with SDAR slightly better in FN and with equal
performance in FP. It was observed that some FPs generated by
SDAR are not the same as those that appear for IRLS. For SDAR,
r = 0.02 was used and, after tests for OLS and IRLS, a size 3
sliding window was used with the parameters given in Section 2.
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Fig. 2. A synthetic STS with 200 points of which 20 points (10%) are
isolated outliers. In these, there are 8 occurrences of outliers that remain
in the modeling window used to detect the next outlier.UP: original se-
ries, DOWN: difference series with outliers.

Table 1. Outlier detection performances obtained
using the SDAR, OLS and IRLS algorithms in the

synthetic STS of Figure 2 (FN stands for false
negative, FP stands for false positive, T stands for
FN and FP totals, and w stands for the FP and FN
numbers when an outlier is present in the sliding

window).
Method OLS SDAR IRLS
Metrics T w T w T w

FP 21 03 09 07 10 07
FN 11 04 02 01 03 01

4.2 Result for Natural Time Series
For the experiment with natural STS, a time series of sensor from
the Intel-Lab-Data dataset [9] was taken. This dataset is derived
from the Intel-Lab-Data dataset [2] with some preprocessing. It
contains 14400 temperature measurements from 52 sensors from
the original data corresponding to five days of measurement with
an interval of 30 s between measurements. For this test, sensor 1
was chosen. In the natural STS of sensor 1, 144 isolated outlier
points were inserted, corresponding to 10% of the series. It was
provided to guarantee 16 occurrences in which two ouliers are
separated by a correct measurement with different polarities. The
resulting STS is shown in Figure 3.
A detailed inspection of the results generated Table 2 which
summarizes the performance of the algorithms for this STS. For

Fig. 3. The natural STS-20 with 14400 points of which 144 points (1%)
are isolated outliers. To the original 24 outliers, 120 more challenging ar-
tificial outliers were added. In these, there are 16 occurrences of outliers
that remain in the modeling window used to detect the next outlier. UP:
original series, DOWN: difference series with outliers.

SDAR, r = 0.02 was used and for OLS and IRLS, a sliding win-
dow of size 3 was used with the parameters given in Section 2.
Other sizes of sliding window were tested and size 3 performed
well. The Table shows IRLS and SDAR again with similar per-
formances with IRLS slightly better in FP and slightly worse in
FN. As in the previous case, it was observed that some FP and
FN are not the same for SDAR and IRLS. The table also con-
firms the previous understanding that the OLS model can only
be applied when the STS is free of outlier.

Table 2. Outlier detection performances obtained
using the SDAR, OLS and IRLS algorithms in the

natural STS of Figure 3 (FN stands for false
negative, FP stands for false positive, T stands for
FN and FP totals, and w stands for the FP and FN
numbers when an outlier is present in the sliding

window).
Method OLS SDAR IRLS
Metrics T w T w T w

FP 37 06 17 04 18 05
FN 41 07 11 03 13 02
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5. CONCLUSION
The work investigated the performance of sliding window-based
strategies using the OLS and IRLS algorithms against that of
SDAR in detecting isolated outliers in Sensor Time Series in the
specific context in which the detected outliers are not treated.
The motivation is that in some data stream applications there will
be no time or interest in treating outliers although it is important
to identify them. Specifically, the effect of outliers not removed
was investigated when they enter the data window used to update
the prediction models.
The results in Tables 1 and 2, for synthetic and natural STS, re-
spectively, show that sliding window with OLS cannot be used
in this scenario. They also show that SDAR and sliding window
with IRLS have comparable performance although in some sit-
uations the IRLS does better. It should be noted that the algo-
rithms have the same number of adjustable parameters and that
the SDAR model requires a time series without trend and season-
ality while the sliding window can be adjusted locally in some
contexts.
This study was not exhaustive in analyzing the entire parameter
space of the compared algorithms. Thus, in future work, it is
planned to survey the configuration space to identify the regions
with the best applicability for each algorithm.
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[9] Yann-Aël Le Borgne, Jean-Michel Dricot, and Gianluca
Bontempi. Principal component aggregation for energy ef-
ficient information extraction in wireless sensor networks.
Knowledge Discovery from Sensor Data, 2007.

[10] Xiaolei Li, Zhenhui Li, Jiawei Han, and Jae-Gil Lee. Tem-
poral outlier detection in vehicle traffic data. In 2009 IEEE
25th International Conference on Data Engineering, pages
1319–1322. IEEE, 2009.

[11] Alberto Luceño. Detecting possibly non-consecutive out-
liers in industrial time series. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology), 60(2):295–
310, 1998.

[12] Jose E Bessa Maia, Angelo Brayner, and Fernando Ro-
drigues. A framework for processing complex queries in
wireless sensor networks. ACM SIGAPP Applied Comput-
ing Review, 13(2):30–41, 2013.

[13] Allan D McQuarrie and Chih-Ling Tsai. Outlier detections
in autoregressive models. Journal of Computational and
Graphical Statistics, 12(2):450–471, 2003.

[14] Saeed Mehrang, Elina Helander, Misha Pavel, Angela
Chieh, and Ilkka Korhonen. Outlier detection in weight
time series of connected scales. In 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM),
pages 1489–1496. IEEE, 2015.
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