

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.34, October 2020– www.ijais.org

1

Automated Use Case Diagram Generation with Non-

functional Requirements using Neural Network

Israa Abdulruof Othman Ahmed
Elnasr Technical College

Information Technology Program
Khartoum, Sudan

Mubarak Elamin Elmubarak Daleel
Alzaeim Alazhari University

College Of Computer Science Information
Technology- Khartoum, Sudan

ABSTRACT
The Unified Modeling Language (UML) is an excellent and

well known powerful recognized leading diagrammatic

modeling language. Recently, there have many efforts

addressing automating these models, such as the Use Cases

model where natural languages are used and giving the system

a set of rules to be able to extract the actors and use cases

from textual requirements. These rules confirm that all user

requirements are included there in .In this paper a model has

been developed using natural languages in addition to neural

networks where the network is trained in the way of extracting

Functional and nonfunctional requirements, which helps in

producing more effective models that minimizing the time and

effort of both the user and the analyst.

Keywords
Neural Network – UML - Machine learning - Use Cases

Model - Nonfunctional Requirements.

1. INTRODUCTION
UML is used in scientific research problems and to design

model [1, 2]. UML is broadly accepted as modeling language

by academia and industry people to model a software system

[3]. Use Case modelling provides a graphical representation

of the software system's requirements. It is a useful tool for

requirements elicitation. The key elements in a use case model

are actors (external entities), and the use cases themselves. A

use case is a unit of service or functionality (a requirement), in

the system. A use case is not a program or process, or function

in outline.

Use case models are relatively easy to discuss the correctness

of a use case model with a non-technical person (such as a

customer), because they are simple both in concept and

appearance.

Use case modeling has effectively become a practicable

analysis technique with the publication of Ivar Jacobson's

(1991) book “Object-oriented software engineering: a use

case driven approach”. Jacobson has continued to enhance

this approach to system analysis up to date, and it has now

been formalized as part of the UML, although, use case

modeling is not very different in its strategy and purpose

from earlier techniques such as structured viewpoint analysis

[4].

Machine learning (ML) is ideal for exploiting the hidden

opportunities in big data. Machine learning is a type of

artificial intelligence (AI) that allows software applications to

become more accurate in predicting outcomes without being

explicitly programmed.

The basics of machine learning is to build algorithms that can

use statistical analysis and take input data to predict an output

value within an acceptable range. Machine Learning extracts

value from

Disparate and big data sources with far less reliance on human

direction.

It runs at machine scale and data driven and it is well suited to

the complexity of dealing with disparate data sources and the

huge amounts of data and variety of variables involved.

Furthermore, unlike traditional analysis, machine learning

thrives on growing datasets. The more data are fed into a

machine learning system, the more it can apply and learn the

results to insights. [5]

2. OBJECTIVE
To develop a framework that helps ensure the

comprehensiveness of the user requirements generated by the

automatic use cases model, which leads to the production of

more efficient software systems.

3. RELATED WORKS
There are many existing NLP based automated tools to

support requirement analysis phase of software development.

Following is a brief survey of such tools:

In the researchers conducted at the Del institute of technology

(DIT) and Heriot-Watt University (HWU) [6], complex

sentences were split into independent sentences of standard

SVO structure using NL rules (for example conjunctions are

used as identifiers). In case of the tool created by DIT, first

word of each sentence other than a pronoun is considered as

an actor and the rest as use case. It works with only simple

and active sentences. In the latter case, nouns are considered

as classes and noun-noun forms are considered as class

property. Passive sentences are converted to active using the

verb tense.

Also LESSA [7] produces small diagrams for each sentence

and uses similar approach. These diagrams are combined to

form the final use case diagram.

CM-BUILDER [7], NL-OOPS [8] and R-Tool [9] are

typically NLP based Computer Aided Software Engineering

(CASE) tools. They try to produce a rough cut class diagrams

from the user requirement document (URD), which has to be

further corrected by the analyst to produce actual class

diagrams. R Tool generates a frequency distribution and

extracts all the nouns in the document and then the most

frequent nouns become actors. Verbs associated with them

become use cases and the rest become attributes and so on. In

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.34, October 2020– www.ijais.org

2

our paper the attributes are connected with noun to form non-

functional requirements.

NL-OOPS and CM-BUILDER

These try to create hierarchical trees of words in each

sentence after extraction of word features. They apply

grammatical constraints to figure out the relationships. Part of

speech (POS) tags help identify the words as events, objects,

entities, etc., then these words are ontologically analyzed to

figure out the instances and relationships.

The most common method used to extract word features is by

applying certain NL rules. It is evident that splitting

compound sentences avoids loss of information as well as

ambiguity.

4. PROPOSD METHOD
The figure below outlines the steps of the model

After the classifiers are trained, they create a multinomial NB

distribution of the training data. Classification process takes

place in two parts. In the first part, group (a) of the

preprocessed sentences are sent to the actor classifier one by

one to classify these set of nouns into one of the predefined

subject classes. In the second part, from table 1 ignoring

probable subjects, probable objects from group (b) are sent to

use case classifier to predict an object for each row.

Classification results are collected in Verb + Object

combinations for each row and Verbs are retained as they are.

These combinations form the use cases.

Fig 1: Process Flow of the Proposed Approach

These process steps can be summarized as follows.

4.1 Input User Requirement
In this phase, the sentence is entered by the user. It is entered

in the English language, taking into account the grammar and

correctness of the entry.

4.2 Pre- processing
Following are the individual tasks performed by the

preprocessor.

4.2.1 Tokenizing
 User requirement is split into a multidimensional list such

that each word in the sentence, forms a column and each

sentence forms a row.

4.2.2 POS tagging
 Sentences are syntactically analyzed by the algorithm to

identify the POS of each word. Then it is bundled with the

word into a tuple.

4.2.3 Extraction of nouns and verbs
 Algorithm filters out only the verbs and nouns in each

sentence maintaining the same order. However unlike group

(b), for group (a) of preprocessing only nouns are extracted.

4.2.4 Splitting
Splitting sentence into parts with individual use cases.

4.3 Classifier
Super vector Machine classifiers models a probabilistic

classifier based on the features of word present in several

classes. Then a text is classified based on its posterior

probability belonging to several classes depending on the

presence of words [10].

4.4 Nonfunctional requirement classifier
In this stage the same algorithm is used in stage 3 with a slight

difference that each name will be associated with the adjective

in the same row and this will form the non-functional

requirement

4.5 Post processing
 Adding actors to the diagram

 Adding use cases to the diagram

 Adding nonfunctional requirement to the diagram

 Mapping the relationship

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.34, October 2020– www.ijais.org

3

Table [1].Case Study

Phase Task

Input

Read Patient will have to log in to the software to

Provide personal information. Secretary can view

Personal information and also resolve complaints.

Secretary can also restrict number of users.

Software should be available every day.

Pre -processing Group (a) Group (b)

Tokenizing ….. …..

Pos ….. …..

Extract feathers ….. …..

Split sentences ….. …..

Remove ….. …..

[' Patient '] ['software']

[' personal

information ']

[secretary ']

[' personal

information ']

['complaints']

[' secretary ']

['number']

['users']

[‘Patient’] log in

[‘software’]

[--]provide [‘personal

information’]

[‘secretary ‘]view

[‘personal

information ‘][--]

restrict

[‘Number of users.’]

[--] resolve [‘complaints’]

classifier Actor classifier User classifier

 [‘Patient’]

[‘secretary ‘]

[‘secretary ‘]

login['software']

provide[' persona

l information ']

view[' personal

information ']

resolve['complaints']

restrict['number', 'users']

Nonfunctional requirement

classifier

Software [should’]

available

Noun classifier adjective classifier

software available

Post processing Add actor

Add use case Software should be available every day

Map relationship

Add Nonfunctional

requirement

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.34, October 2020– www.ijais.org

4

5. RESULTS AND EVALUATION
A confusion matrix states the accuracy of the solution to a

classification problem. Given m classes, a confusion matrix is

an m x m matrix where entry ci,j represents the tuples from D

that were assigned to class Cj but where the correct class is

Ci. Definitely, the best solutions will have only zero values

outside the diagonal [11]. The confusion matrix is a useful

tool for analyzing how well the classifier can recognize tuples

of different classes. Given m classes, a confusion matrix is a

table of at least size m by m [12].

Table 1 shows a confusion matrix for height classification. In

confusion matrix, the columns represent the predicted

classifications, and the rows represent the actual (true)

classifications [13].

In a multiclass classification, a confusion matrix is necessary

to be observed and changed into table of confusion as shown

in Table 2.

Table [2]. Table of Confusion

TRUE POSITIVE

(TP)

FALSE NEGATIVE

(FN)

FALSE POSITIVE

(FP)

TRUE NEGATIVE

(TN)

Precision= TP/TP+FP

Recall (TP Rate) = TP/TP+FN

F-Measure= 2*(Precision* Recall/ Precision+ Recall)

Success Rate = TP+TN/ P+N

Where: P = TP + FN and N = FP + TN

In this research, a system of ―Confusion Matrix for

Accuracy‖ is made by researchers based on the formulas of

(1), (2), (3), and (4). The system is built using Winpython-

3.5.2. The purpose is to observe the confusion matrix,

investigate the table of confusion, and measure the accuracy

of the framework in precision, recall, F-measure, and success

rate.

For the final evaluation, three different user requirements

documents from the same domain were used. None of these

documents were used to train the classifiers nor to test during

the development phase. Out of these documents, the first had

5 sentences; other had 10 and 15 sentences respectively with

an average sentence length of 10 words.

6. RECOMMENDATIONS
1. The functionality of the conducted research is

domain specification, so we expect it to be enhanced

by future researchers.

2. The developed framework is about use case diagram

and the work needed to be expanded in order to

include the other UML models.

7. CONCLUSION AND FUTURE

WORKS
In conclusion, this paper proposed a model using natural

languages in addition to neural networks to generate the use

case diagram automatically, but there are still some efforts

that can be made in order to generate the rest of UML models

like: sequence diagram, component diagram …etc.

In this model the network is trained in the way of extracting

Functional and nonfunctional requirements, a confusion

matrix have been used for evaluation, the proposed algorithm

performs with recall of 90%, an accuracy of 87%, and

precision of 80%.

8. REFERENCES
[1] Kovacevic. S. UML and User Interface Design,

inUML'98. France -Mulhouse, 1998.

[2] Ansari, G.A. “A Modeling and Detection of Dead Lock

in Early Stage of System Using UML”, International

Journal of Computer Applications (IJCA). pp. 16-20,

Vol. 39 No. 9/ February 2012.

[3] M. Flower, UML distilled (3d Edition), Addison wesly,

2003.

[4] MSc-IT Study Material

January Edition 2011

Computer Science Department. University of Cape Town

[5] Guido, S, Muller, A. (October 2016). Introduction to

Machine Learning with Python: A Guide for Data

Scientists.USA: O’Reilly Media.

[6] A Hutagaol, D Simarmata, J Manihuruk E M Sibarani,

"Actor and Use Case Extraction from Text-Based

Requirement Specification".

[7] S Aithal, P Desai S Vinay, "An Approach towards

Automation of Requirements Analysis," in Proceedings

of the International MultiConference of Engineers and

Computer Scientists 2009 Vol I IMECS 2009, Hong

Kong, 2009.

[8] R Garigliano L Mich, "NL-OOPS: A Requirements

Analysis tool based on Natural Language Processing," in

Conference on Data Mining, 2002, Vol. 3.

[9] R Gaizauskas H M Harmain, "CM –Builder: An

Automated NLP-based CASE Tool," in the Fifteenth

IEEE International Conference on Automated Software

Engineering, 2000.

[10] D Jurafsky. (2016, December) Naive Bayes, From

Languages to Information, Stanford University. [Online].

[11] Huliman, Analisis Akurasi Algoritma Pohon Keputusan

dan k-Nearest Neighbor (k-NN),Tesis, Universitas

Sumatera Utara, 2013

[12] Amazon SageMaker-Developer

Guidehttps://docs.aws.amazon.com/sagemaker/latest/dg/

how-pca-works.html .10/11/2018 -3:50 PM.

[13] M.H. Dunham, DATA MINING Introductory and

Advanced Topics, USA: Prentice Hall, 2003.

