

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

30

A Translation Technique for Parallelizing Sequential

Code using a Single Level Model

Hisham M. Alosaimi
Department of Computer Science,

Faculty of Computing and
Information Technology, King
Abdulaziz University, Jeddah,

Saudi Arabia

Abdullah M. Algarni
Department of Computer Science,

Faculty of Computing and
Information Technology, King
Abdulaziz University, Jeddah,

Saudi Arabia

Fathy E. Eassa
Department of Computer Science,

Faculty of Computing and
Information Technology, King
Abdulaziz University, Jeddah,

Saudi Arabia

ABSTRACT

Running the code sequentially can be slower, and then the

execution time will increase in case of the code has

compute-intensive parts. Unfortunately, the sequential code

does not employ the device's resources in ideal shape, because

it executes one instruction at a time, which means it can

perform only a single thread. To overcome the massive time

taking issue while large executions, using a paralleling

computing approach is a vital solution. A parallel computing

code reduces the execution time by executing multiple tasks at

the same time. Most researchers and programmers face some

difficulties to run their sequential code as parallel due to a

lack of knowledge about parallel programming models and

the dependency analysis on their codes. Therefore, auto

parallelization tools can be helpful to solve this issue. In this

study, we have introduced a novel automatic serial to parallel

code translation technique that takes serial code written in

C++ as an input and generates its parallel code automatically.

To validate the objectives of the current study, we compare

the results of our proposed method with existing methods.

Consequently, the proposed AP4OpenACC tool outperformed

the other existing method mentioned in comparative analysis.

General Terms

Parallel Computing, High Processing Computing

Keywords

OpenACC, GPU, ANTLR, Automatic Translation

1. INTRODUCTION
In the recent past, scientific and business intensive tasks

performed on traditional desktop computer or workstation

generally consists of a single processing unit (Central

Processing Unit) that perform a single task at a time [1]. This

creates a bottleneck in fast processing of task as it doesn’t

clock faster, causes more waste of Central Processing Unit

(CPU) cores, very little work gets done, and overall

computation become very slow and systematic [2]. However,

the performance of a single computer can be depending on the

clock speed, memory latency, floating-point unit, the

bandwidth of the memory, and Input/Output (IO) to computer

storage. Scientific modeling and simulation drive the

necessity for excessive computing power. Single-core

processors cannot be made to have enough resources for the

simulation needed. Producing processors with a faster clock

speed is an arduous task due to cost and power limitations.

Also, putting huge memory on a single core processor is

expensive. This promotes a drastic need for parallel

computing that break-down the work between numerous

connected systems and have enough

computation power to process the extensive task

simultaneously.

Parallel Computing and High Processing Computing (HPC)

are intimately related. In parallel computing, a huge problem

is divided into smaller chunks that could interpret

simultaneously to improve the overall performance of HPC

systems. The essential idea behind the HPC can be explained

in a brief example that is a single-core computer takes 100

hours to finish a task whereas it could finish in 1 hour by

using 100 computers at the same time. In short, employing all

the resources together at the same time as one device is more

beneficial in terms of performance than a single computer.

High Performance Computing (HPC) leveraging distributed

computing resources to solve complex problems large dataset

usually terabyte to petabytes to zettabytes of data results in

minutes to hours instead of days or week. Many scientists and

researchers process tons of raw data to make a prediction or

create simulations, giving a proficient advantage to enterprises

by helping them to be more efficient and quickly discover

new insights that drive revenue. HPC provides excellent

simulation environments, and it helps applications under

development to transact with marketing delivery challenges

by providing the ability to accelerate or dispose of prototyping

and testing phases. And also, for the decision-making,

enhancing the quality, and predicting the overall performance

and failure rate of the product [3]. For example, the everyday

financial industry faces new regulations, security risks, and

electronic payments. These organizations use HPC to

complete financial transactions within a second, react quickly

to market movements, and use the algorithm to detect credit

card fraud.

High Processing Computing (HPC) systems utilize

supercomputers and parallel computing methods to perform

intensive tasks as the HPC system embodies a group of CPUs

where each processor contains multicores besides its local

memory to execute a variety of complex tasks and software

applications. Supercomputers are a powerful machine that

uses thousands of processors to tackle massive problems. For

scientific and technical programs use Floating Points

Operations per Second (Flops) [4],[5]. Recent supercomputers

measured in Petaflops i.e., kilo 103, Mega 106, Giga 109,

Tera 1012, Peta 1015. In parallel computing, higher

performance requires more processing cores.

Compilation of the sequential code is one of the important

topics for programmers and in the computer field in general.

Besides computers are using CPU to do the computation job.

Sequential code is the code that is executed using a single

thread in the CPU with a particular procedure, so only execute

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

31

one instruction at a time. However, some of the sequential

code contained lots of computations, and it needs huge

computing power, so the code becomes more and more

complex, for that reason CPUs were taking much time to

compile the code in a single thread. Compiling sequential

code with lots of computation will increase the execution

time. As a result, companies, and researchers started to think

about speeding up the compilation of the code and reduce the

execution time. One of these techniques is called

parallelization of the code. Although, the main concern to run

code computationally is efficiency. Many different forms of

parallel hardware are a multi-core processor, symmetric

multiprocessor, graphic processing unit, field-programming

gate array, and computer cluster.

Parallelization is the procedure of converting serial or legacy

code to parallel [5]. Moreover, one way for doing that is using

multi-core processors, and another way is using

Heterogeneous System Architecture (HSA). HSA is a

computer that combines CPU and Graphics Processing Unit

(GPU) on the same device. Many parallel programming

models were developed to deal with HAS such as Compute

Unified Device Architecture (CUDA), and Open Accelerators

(OpenACC). Essentially, the main benefit of them is targeting

GPU if the possibility is found to accelerate the code [6]. GPU

is a basic unit for parallel processing to accomplish high

performance computing.

It may be a big burden for some scientists and programmers to

learn in-depth about programming languages, and about

parallel programming models. Also, they need a piece of prior

knowledge about dependency between the regions in the code.

Correspondingly, for bypassing this issue many types of

research have proposed auto parallelizer tools and compilers

that can automatically parallelize the code without any

interference from the programmer.

C++ is an object-oriented programming language that is

popular among scholars, and it is used in a variety of different

applications [7], but few automatic tools convert serial C++ to

parallel code [8]. Indeed, most of the existing tools are

targeting multi-core CPU architecture. In this paper, we will

create a translation technique for translating serial C++ code

to parallel code to improve the performance and reduce the

execution time by making some code analysis to locate which

part can be parallelized through the directives of OpenACC.

Moving towards the goals of attaining massive performance,

the main objective of the current study is to deal with the

essential issues of running the code sequentially that can be

slow the task execution time and processing speed. Hence, the

execution time will escalate if the intensive part of the

computer code is processed by multiple cores simultaneously

supporting multithreading. Tragically, the sequential code has

been unable to utilize the systems resources ultimately since

line by line execution of the instruction at once. This means it

can perform only a single thread. To overcome the ineptness

in the execution of sequential code, the parallelization

technique could be considered a promising solution.

Accordingly, Code parallelization can minimize performance

time by executing numerous instructions concurrently. Many

computer programmers and researchers may deal with some

complications to execute their sequential code due to the

absence of an understanding regarding parallel programming

models and the dependency analysis on their codes. Hence,

parallelization tools can be helpful to solve this difficulty.

In this paper, we proposed a translation technique that reduces

the execution time of the system whereas accomplishing

enormous performance efficiently. The proposed translation

technique helps to achieve auto parallelism by taking the input

of serial code written in C++ and produces its parallel code

automatically. It enhances the performance and reduces the

execution time of the system by making a few code analysis

to fix the portions which can be parallelized within the section

of OpenACC directives as OpenACC implementation require

minor effort and more importantly no modification of our

existing CPU implementation. Hence, we get the measure of

two fundamental HPC performance metrics including

execution time and speed up to test the behavior of our

proposed solution. Consequentially, it outperformed serial

code and well-known auto parallel tool Cetus on larger dataset

computations.

The rest of the paper is structured as follows. In section 2, we

have discussed the background and the previous literature

regarding our work. In section 3, the methodology has been

described in detail with the architecture, and the algorithm of

our proposed translation technique. In section 4, we have

discussed the achieved experimental results in detail along

with the experimental platform and the measuring factors

considered for evaluating the proposed technique. We showed

the discussion in section 5. Finally, the conclusion follows in

section 6.

2. LITERATURE REVIEW
We divided this section into two parts. In the background part,

we will be mentioning the history of a single processor and

parallel computing. Further, we will see the distinction

between CPU and GPU. As well as seeing the significant

phases that automatic tools should put into consideration.

Finally, parallel programming models will be discussed. In the

related work part, we are looking at some auto parallel tools

and their defects.

2.1 Background
In the 20th century, researchers from IBM build some of the

first commercial parallel computing [9]. In 1967, Gene

Amdahl says, for over a decade, the organization of a single

computer has reached its limit and that truly significant

advances can be made only by the interconnection of a

multiplicity of the computer. At this time, parallel computing

was confirmed to niche communities and used in high

performance computing [10].

At the beginning of the 21st century, processor frequency hit

the power wall. Processor vendors decided to provide multiple

CPU cores on the same processor chips, each capable of

executing separate instructions steams [11]. The common

theme behind parallel computing was to provide

computational power serial computing cannot do so. Parallel

computing was present since the early days of computing.

Actually, parallel computing is much harder than serial

programming. Separating serial computation into parallel sub

computations can be challenging or even impossible.

Guaranteeing program correctness is more difficult, because

of the new types of error. Speedup and fast computation are

the only reason why we bother paying for this complexity.

Furthermore, the parallel programs use parallel hardware to

make the computation execution faster [12].

CPU is consisting of few numbers of cores, however, GPU

has hundreds of cores [10]. Running a serial code is better to

be on CPU [6] because the clock rate in each core is very high

unlike the clock rate in GPU. Ideally, using GPU in the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

32

compute-intensive part of the code make it appropriate than in

CPU [11]. Combining CPU and GPU has remarkable benefits

on the performance and cost-effective [12], [13]. Indeed, the

GPU is used as a collaborative processor with the CPU when

needed [14]. In [15] authors were testing the performance

between CPU, GPU, and FPGA with different types of

benchmarks. Consequently, they found that in execution time

GPU has performed well and surpass other platforms.

Although the GPU hardware performance growing faster than

CPU, and that because of the semiconductor's ability and

manufacturing technology [16].

To build an automatic tool, some phrases should be put into

consideration. First, receive the source code file as an input,

then identify the regions that can be parallelized followed by

checking for the dependency in those regions. Finally, adding

the parallel constructs to have the source code plus the parallel

programming model [5], [8], [17].

Identifying the places in the code that can be parallelized is

not an easy task. However, it is considered extremely essential

for writing parallel code [18]. Parsing the input file is one of

the techniques used to achieve the goal that identifying the

potential regions that could be parallelized in the code [19].

The most important regions in any code that need to be run in

parallel are loops because it takes much time in execution [5].

Dependency analysis is one of the important steps in any

automatic parallelization tool. An independent segment of the

code can be parallelized easily. In contrast, having a

dependent section in the code is better to be executed in the

CPU. Fortunately, this segment can be parallelized if there is a

way to remove the dependency without affecting the program

movement [5], [8]. Dependency between the statements inside

loops can be categorized into two types, loop independent

dependency which is divided into four types [5], [17], [20],

and loop-carried dependency [5]. Understanding the type of

dependency between the statements makes the parallelization

process easier.

In 1992, OpenGL launched that was designed for

fixed-function SGI hardware beyond consumer graphic

hardware capabilities [13]. There are roughly five different

generations of Graphic Library (GL) i.e., OpenGL 1.x (fixed

function), OpenGL 2.x (early programmable), OpenGL

3.x/4.x (modern programmable, core profile and deprecation),

OpenGL ES 1.x (mobile fixed function) and OpenGL ES 2.x

(mobile programmable).

MPI is a de facto dating back in 1994, and it is introduced to

write code that executes in parallel. It has language binding

for FORTRAN, C, and C++ in the beginning [16]. Later on,

C++ programming language binding was removed in MPI

v3.0. MPI is one of many ways of coding program parallel,

enable computer nodes to efficiently pass massage to one

another [15]. MPI is a library of functions or subroutines

calls. Memory in MPI is assumed to be distributed and not

shared [21]. This means we cannot access data in a UE

without the UE sending it as a message back. Here, UE is MPI

processes.

OpenMP is an open-source API for writing multithreading

applications, focusing on shared memory parallelism [17]. For

the first time, OpenMP ARB releases OpenMP for the Fortran

language in 1997. In the next year, it gave OpenMP for

C/C++. OpenMP programming API contains a set of compiler

directives e.g., #pragma omp parallel, runtime library routine

i.e., omp_get_num_threads() and environment variable e.g.,

OMP_NUM_THREADS. OpenMP is also called a shared

memory model as it is used to create multiple threads. Each

process starts with one main thread. This thread is called a

master thread on OpenMP [22]. Collectively known as the

Fork-Join Model, we create multiple threads along with this

master thread. These extra threads other than master threads

are known as slave threads. Although, OpenMP [20] greatly

simplifies writing multi-threading (MT) programs in

FORTRAN, C, and C++ programming languages. Hence, it

has been standardized for the last 20 years of SMP practice.

The main advantage while parallel execution of the code

results in standardization and portability.

With the advancement in GPU computing technologies [23],

CUDA was introduced by NVIDIA in 2007 that enable new

GPU-based technology for parallel execution of code. CUDA

is the most popular GPU framework where programmers

created graphical software and that code is broken down into a

series of instructions that the central processing unit of the

computer could carry out. CPU is the main chip of the system

responsible for telling all the other components what to do by

giving them a set of instructions processed sequentially. As

the program gets more complex, GPU is capable of massive

parallelism consisting of smaller more efficient cores

designed for handling multiple tasks simultaneously. CUDA

[24] provides an extension with standard C code with its

programming models. CUDA provides a parallel computing

platform supporting shared memory which enables the

communication between threads and synchronization that

decide which thread executes first and sequence of further

threads so that the system performs efficiently. The CPU part

consists of CUDA libraries, CUDA runtime, and CUDA

driver running the sequential instructions from code written

by the programmer. While GPU supports multi-threading by

processing multiple core/transistors simultaneously. It

executes the intensive part of code and kernel launched by the

CPU.

OpenCL was proposed by Apple and its specification was

maintained by the Khronos OpenCL Working Group in 2014.

With OpenCL [25] we can leverage CPUs, GPUs, and other

processors such as Cell/B.E. processors and DSPs to

accelerate parallel computing. Write accelerated portable code

across different devices and architecture. Moreover, OpenCL

gets dramatic speedups for computationally intensive

applications. With AMD OpenCL, we can leverage AMD's

CPUs and AMD's GPUs to accelerate parallel computation.

To minimize the number of lines of code OpenACC [26] was

introduced in 2013 that has an abstract accelerator model.

OpenACC is a specification for high-level compiler directives

for expressing parallelism for the accelerator [27]. OpenACC

can be used with FORTRAN, C, and C++ to utilize the GPU

in heterogeneous architecture systems as an accelerator of

some regions in the code like compute-intensive regions [28].

From figure 1, accelerated computing includes two different

processors in any device. First CPU that is designed to run

serial tasks very well and GPU accelerator optimized for

parallel tasks. By using OpenACC Library, we can transform

serial code to parallel automatically, and it becomes easy to

write the program with a minimum line of code that supports

parallel computation. The main concern of this technology is

performance and portability. Moreover, OpenACC supports

multiple GPU, there are API calls to select the desired GPU

for parallelism. One advantage of OpenACC is that it is unlike

CUDA, OpenACC can be portable on a different type of

co-processors not only Nvidia GPU [29]. [30] used OpenACC

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

33

with two real-world applications, and they compare

OpenACC performance to PGI accelerator and OpenCL.

Furthermore, the result of the comparison showed that

OpenACC can perform well comparing with low-level

programming APIs, and OpenACC shows that is it a

promising API.

Fig 1: OpenACC with CPU + GPU [31]

2.2 Related work
Presently, parallelization of the code is becoming a hot topic

in computer science, much of the scientific research has been

written in this field. Supercomputers are also known as High

Performance computers (HPC) and normal computer devices

that are classified as heterogeneous or homogeneous can use

parallelization techniques to run the code. Making the code

parallel is vital on supercomputers, so there is no benefit in

running your code sequentially on them. However, converting

the code to parallel is one of the proper solutions to reduce the

execution time by executing multiple series of instructions

simultaneously either on heterogeneous or homogeneous

system architecture.

Due to a lack of programming knowledge and no CS

background, some researchers, and programmers unable to

execute their sequential code as parallel [23]. To fill this gap,

several works introduce automatic tools to convert sequential

programs to parallel. [8], [17], [20], [32] are tools that

targeting multi-core CPU by using OpenMP API. In [20], the

tool takes a C serial code as an input and breaks it down to

tasks known as the coarse-grained task to convert it to parallel

by adding OpenMP directive. [32] they are targeting C code

as input source code and parallelize it using OpenMP

directive but they only targeting for loops. The author of [17]

proposed an automatic tool that receives C code and inserts

OpenMP directive to it under one primary condition that the

code should not have any type of dependency in it. [8] it

targets C++ code, and it is also targeting multi-core systems.

They claimed that locating the parallel region was by using

indicators for the beginning and the end of the potential areas

then they took those areas to intermediate file for further

analysis. The author of [33] purposed two automatic

translation that receives serial java code and converts it to

parallel to work on cloud one for Hadoop and the other for

spark, it is targeting for loops by using indicators that inserted

by the user as comments to locate the beginning and the end

of the targeted region.

3. METHODOLOGY
The proposed AP4OpenACC is aimed primarily at two

objectives; the first one is to overcome the slowness in the

sequential execution of code using the parallelization

technique as the program may have compute-intensive

components that require a lot of computation with increased

execution time. Thus, parallelization of code can enhance

performance by executing more than one instruction at a time.

The second objective is to provide a roadmap for running their

sequential code as a parallel for research and scientific

purposes. Earlier, programmers and researchers facing serious

problems due to a lack of knowledge about parallel

programming models and the dependency analysis on their

codes.

Here, we have introduced a novel translation technique for an

environment that will be adopted for auto parallelization of

sequential code to parallel code. The environment has four

main components: parser, identify parallel regions,

dependency analyzer, and a code generator [34]. This

translation technique encompasses for translating sequential

code into parallel code executed in single-level programming

models such as OpenACC. It takes serial code as input and

generates its parallel code automatically. The proposed

translation technique enhances the performance and reduces

the execution time by making some code analysis to locate the

segments that can be parallelized throughout the OpenACC

directives [35], [36].

Based on research objectives, we have provided a roadmap

toward building an auto-translation from serial code to

parallel code as shown in figure 2, which starts with serial

code as an input written in C++ that must be reviewed by the

developer to ensure the syntax. Followed by parsing the

source code using Another Tool for Language Recognition

(ANTLR) to generate the parse tree that will help in the next

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

34

step which is identifying the potential regions that could be

parallelized. The following step is taking the statements inside

each parallel region to check the dependency. After this, the

code generator will be called to regenerate the parallel

computing code after receiving the proper flags from the

dependency analyzer. This will save the code to a directive

file. If the checking of dependency in a certain region showed

that there is no dependency, then OpenACC pragmas will be

added. Otherwise, a comment will be inserted above the

region to notify the developer there is a dependency. This

translation technique for parallelizing sequential code using a

single level programming model solves the problem statement

of the current study and achieves the research objectives by

introducing the auto parallelization technique taking the

massive performance and reduced execution time into

consideration.

Fig 2: Architecture of Translation Technique

Leading to parallel computing, the most important step is to

investigate either the input code is parallelizable or not, and

scientifically this mechanism is called dependency analysis. In

the current study, we performed the dependency analysis of

input serial code by each statement inside loops before

parallel code conversion. Figure 3 represents the flow of

dependency analysis. According to figure 3, a layman user

inputs a serial code written in C++ for conversion in

parallelizable code. The whole parallel regions are scanned in

sequence one by one each statement/scenario. According to

the figure, S1 is considered as statement/scenario 1, whereas

S2 is another statement. Each time, the dependency analyzer

takes one statement/scenario and compares it with all existing

statements from serial input code. It declares as TD (True

dependent) once find any dependency in the code, otherwise

forward to the next component “Code generator” to convert

the no dependency approved code into parallel code.

Fig 3:Flow Graph of Dependency Analysis

The fundamental steps for automatic conversion of serial code

to parallel code flow have been described with each

component and step very clearly in detail. The serial code

written by the developer includes C++ programming language

[37] [38] and OpenACC [39] as a single level programming

model. The main components of the proposed technique

include:

 Parser: This is the first step where the input will be

scanned and read using ANTLR. Initially, the serial code

written in C++ must be reviewed by the developer to

guarantee that the syntax is correct. Antlr is a spectacular

tool that receives the grammar file for the targeted

language in our case C++ and the same grammar file can

have both lexer and parser rules written together in the

same file or it can be separated into different two files.

Compiling the grammar file using ANTLR will generate

different classes that will be used in our first step and the

coming steps. After receiving the serial C++ code from

the user, let us assume the name of the source code is

code.cpp. We will read and scan the source file at the run

time using CharStream provided by ANTLR runtime API

[40]. During the scanning of the file, ANLTR does a

lexical analysis to recognize the tokens that will be fed to

the parser to build the parse tree of the received input

file. This process is dynamic, and it depends on the

received source file and the parse tree will be changing in

every code that the tool received.

 Identify regions: Two of the well-known classes that

ANTLR generates are BaseListener and BaseVisitor,

both have the same functionality, however, in this study,

we used BaseVisitor since it is few lines of code and it

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

35

returns values from methods when it is needed [41].

ANTLR will generate a method for each parser rule

written in the grammar file. The developer can override

these methods regarding the need and these methods will

be recalled when a region matches the rule during the

walking through the parse tree. The regions we are

targeting loops i.e., for, while, and do while by

overriding the methods of them. Also saving the local

and global variables by using the methods. After

identifying the parallel regions in the source code, we

consider the whole loop block, and we took the

statements inside each loop block to be processed in the

next step.

 Dependency analyzer: In this step, we received the

statements that we took after walking through the parse

tree in the previous step. In this phase, we have two ways

to check for dependency. First, we check the statements

inside the loop one by one, once we find any statement

has a dependency in it, we terminate, and our test will

give a flag to the next phase. Second, if the first check

does not return dependency then, in this check we check

the dependency between the statements if there is a

dependency, we return a flag to the next phase.

Otherwise, we return a flag depending on the case of the

dependency.

 Code generator: The dependency analyzer will produce

a series of flags for each identified block in the source

code. These flags will determine what will be written

above and inside each region that identified whether is a

comment when there is a dependency in the code, or the

parallel pragma when there is no dependency. Finally,

the header of OpenACC will be added at the beginning

of the source code. After all the previous steps are

finished then we will save the source file in the same

directory and will be like this form Acc_filename.cpp,

and the result file will be ready to run on a parallel

environment.

A quick overview of how C++ and OpenACC in translation

technique take part to auto paralyzed [42] the serial code

using a single-level programming model. A detailed algorithm

for serial code to auto parallelization has been proposed in the

tool algorithm.

Algorithm: Serial C++ Source Code to auto parallel code.

1. Scan the source code.

2. Lexing and parsing the source code using ANTLR.

3. Using the parse tree generated by ANTLR to locate

the parallel regions.

4. Take the statements inside parallel regions.

5. Implement dependency analysis on statements.

6. Determine whether the statements are parallelizable

or not.

7. If the statements are parallelizable, insert the

OpenACC directive.

8. Insert comment if statements are not parallelizable.

9. Call the code generator to regenerate the source

code with the insertion.

10. Save the output file in the file directive.

As mentioned previously, the proposed technique can scan

any serial C++ code and convert it to parallel code by using

OpenACC directives. For supporting the parallelism [43] [44],

the OpenACC parallel programming model has a parallel loop

and kernels pragmas. The parallel loop goal is to inform the

compiler which loop is parallelizable, however, kernels use

the ability of the compiler to analyze the dependency in the

targeted region [45]. The rest of the workflow of this

proposed algorithm is elaborated as follows:

 (Line 1): Start with scanning of C++ source code using

runtime ANTLR CharStream to read the file as a stream

of character to be fed to the next step.

 (Line 2): ANTLR will start lexing and parsing the

characters received from scanning the source file and it

will build the parse tree according to the rules in the

grammar file.

 (Line 3): Overriding loops methods that generated by

ANTLR, so when we start reading any C++ code it will

find a variable used in the code and it will find loop

regions and prepare it for the next step.

 (Line 4): Using the same methods to take the statements

inside the loop region to analyze them and check the

dependency.

 (Line 5-8): Performing dependency analysis on

statements one by one to see ff there is a dependency in

the same statement we will terminate and send a flag to

the next step to write a comment above the loop region.

Otherwise, we move on to the next check which is

checking the dependency between the statements and if

there is a dependency flag will be sent to the next step

and write a comment above the loop region. However, if

there is no dependency, we will check if there is a non-

deterministic case to send the flag to write the atomic to

make the order of the result correct.

 (Line 9-10): The main functionality of the code generator

is to take the flags for the dependency analyzer and write

above each loop region and save the source code in the

directive file. The output file will be under the name

Acc_filename.cpp.

The following example demonstrates the C++ source code

with different OpenACC directives to calculate and print the

result of pi with precision up to 20 decimal points.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

36

#include <openacc.h>
#include <iostream>
#include <iomanip>
#include <cstdlib>
int main(int argc, char *argv[])
{
 int nsteps = 100;
 double pi, step, sum = 0.0, x;
 step = (1.0) / nsteps;
#pragma acc parallel loop
 for (int i = 0; i < nsteps; ++i)
{
 x = (i + 0.5) * step;
#pragma acc atomic update
 sum = sum + 1.0 / (1.0 + x * x);
}
 pi = 4.0 * step * sum;
 std::cout<< std::fixed;
 std::cout<<"pi is:"<<std::setprecision(20)<<pi<<"\n";
}

4. IMPLEMENTATION AND RESULTS
This section first explains the selected experimental platform

and a comprehensive description of the computation metrics

measured for evaluating the proposed translation technique.

The primary different measures taken for the computation test

involve performance metrics that include execution time and

speedup of the system. A detailed description of all selected

measuring attributes is explained in the following section.

Continuing investigation of the single-level programming

model, we check the computation between the sequential form

of the code, Cetus which uses OpenMP, and the code after the

translation with AP4OpenACC. Observing the time taken by

the computer to execute the code and print out the result.

4.1 Experimental Platform and Measuring

Factors
To evaluate the proposed translation technique, we performed

all the experiments on a personal computer. Comes with an

Intel Core i7 4720HQ CPU that has 4 cores and 8 threads with

a speed of 2.60GHz with turbo speed up to 3.60GHz. It is also

shipped with GM107 GPU NVIDIA GeForce GTX 960M

generation, and the architecture of the GPU is Maxwell, and it

consists of 640 Cuda cores and 4GB GDDR5 memory. The

GPU has a single-precision power up to 1388.8 GFLOPS

which means it is competent of completing a billion floating-

point operations per second. We compile the serial C++ code,

OpenMP code that resulted from Cetus, and the code that

resulted from AP4OpenACC by using the NVIDIA HPC SDK

compiler [46].

In the experiment, we have measured different performance

attributes including execution time (Secs) and the speedup

(Serial/Parallel) of the system. To evaluate these performance

attributes, we selected a benchmark application that calculates

the sum of a double number entered by the user and then

calculates the result. During the experiments, we entered

multiple different random numbers to see the behavior and the

result of the performance attribute by increasing the number

every time. In our experiment, we compare between serial,

Cetus and OpenACC codes. Since Cetus does not support

translating C++ code, we write the equivalent C code to be

translated by Cetus. Depending on the sum implementation in

our suggested technique, we measure the performance of the

application using two main metrics including time execution,

and speedup.

Concerning time execution, we determine different random

numbers starting from 6 numbers and ending to 12 numbers.

We used diverse numbers to investigate the behavior of the

proposed model and calculate execution time when running

the code on a multi-core CPU and running it on GPU.

Actually, we can compute the execution time of parallel

computation by time execution performance metric which is

considered to be a very straightforward evaluation

mechanism. Besides, we evaluated the performance metric as

speedup where the sum of the number computes using a single

number of CPU core to determine how much time does the

code takes sequentially. Theoretically, one way of measuring

the speedup of the program is by employing the following

equation [47].

4.2 Results
In experiment 1, we choose three random numbers for our

measurements by generating 6,7, and 8 random numbers.

First, we use a single CPU core and write down the result of

the serial computation. Then, we convert C code to parallel

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

37

using Cetus. Serial and parallel code provided by Cutes was

giving better results than AP4OpenACC because they do not

have to do any type of data transfer unlike OpenACC [30]. As

a result, most of the time taken by AP4OpenACC was only

because of the data transfer between CPU and GPU. The

actual values of experiments with execution time showed in

table 1.

Table 1. Random numbers with execution time for

experiments

Number Serial Cetus
AP4OpenACC

778974 0.0091 0.0030 0.26958

1918035 0.0219 0.0073 0.2638

43487668 0.4927 0.1639 0.2637

959733842 10.8817 3.6220 0.3484

6797675395 79.7817 25.6301 0.85993

6797675395 982.5109 315.5568 7.4159

208425664461 2446.2123 786.5757 18.1008

We also have presented the graphical representation of this

experiential data for both experiments. Figure 4 demonstrated

the execution time in experiment 1. It is noticeable that

AP4OpenACC not increasing the time that much during the

experiment, and it is almost executed at the same time.

However, serial and OpenMP codes showed a clear increase

throughout the experiment.

Fig 4: Performance (Execution time) for three random

numbers

Using the speedup equation, our first experiment gives no

touchable increase in the speedup. Figure 5 demonstrated the

calculated speedup in all three numbers. The first two

numbers do not show any tangible speedup. However, in the

third number, it can be very clear that AP4OpenACC showed

a tremendous increase in the speedup, unlike Cetus which

showed almost the same speedup without a noticeable

increase.

Fig 5: Performance (Speed up) between Cetus and

AP4OpenACC

Further, to investigate the behavior of the proposed translation

technique, we increase the number in the second experiment

i.e., we increase from 6 digits to 9 digits ending up to 12

digits. Eventually, as shown in figure 6, we observed that with

the increase in the number of digits, our AP4OpenACC

translation tool outperformed other executions with a

humongous difference in time execution.

Fig 6: Performance (Execution time) for four big random

numbers

By using the speedup equation, we have seen a tremendous

increase in the speedup of our proposed AP4OpenACC

technique in contrast to Cetus as depicted in figure 7.

Eventually, when implementing our proposed technique, it is

declared that it can give outstanding performance, especially

when increasing the number of digits. As a result, it is

observed that our proposed model speedily computes its

computation and outperformed all the implementation.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

38

Fig 7: Performance (Speed up) between Cetus and

AP4OpenACC

5. DISCUSSION
Currently, parallel computing becomes a dominant means for

the interpretation of huge and intensive computation

problems. Consequentially, auto-detect of parallelism in

applications is an important powerful tool for the development

of parallel software by aiding programmers to use FORTRAN

or C programming languages that are used in numerical

applications. Parallelizing data across multiple nodes at the

same time will improve the performance of the HPC systems.

Utilizing fewer resources while communicating among

different processes will consume less power and enhance

performance while a parallel programming model enables a

larger task to run on multiple processors at the same time. The

first objective of the current study was to enhance system

performance by increasing the execution time of the

sequential code translated to parallel. Achieving such a level

of performance by the end of the decade will require

applications to exploit the billion-way parallelism provided by

future HPC systems. The second objective of this research

was to enhance the auto-translation of the serial code to

parallel by using a parallelization technique once the

dependency in code is achieved and detected successfully.

The proposed translation tool outperformed as compared with

CETUS. According to the main objectives of the current

study, first, we have to detect the parallel computing regions

in the sequential code. Once it is done, dependency analysis is

performed on each region. Then we auto-translate the serial

code to parallel. This challenging task has been successfully

achieved by our proposed solution. For implementations, we

quantified different performance metrics which is execution

time and speedup. Underperformance, we use the sum

application and run it on different random numbers. For small

numbers, AP4OpenACC showed slow computation compared

to serial and OpenMP, since the overhead of data transfer was

taking lots of the execution time. However, after increasing

the number from 6 to 9, AP4OpenACC outperformed other

implementations with unmatched results.

6. CONCLUSION AND FUTURE WORK
The emergence of high performance computing requires

significant usage of supercomputers to address complex

scientific programs and solving complicated computational

tasks quickly. Although the sequential execution of code is

slower and requires more time for program execution

compilation. Most of the researchers are facing issues in

working parallel computing systems. Leading to objective,

parallelization tools could be a vital solution to address the

said issue. In order to attain the said objectives, we proposed a

new translation technique that translates any serial C++ code

into parallel using OpenACC programming models. The code

translation procedure is performed after checking the

dependency in the input serial code. Thus, no dependency

leads towards the parallel zone where the proposed translation

tool converts the sequential program to compute for the

parallel computing system. AP4OpenACC supports a single

parallelization model which is OpenACC for homogeneous

systems that utilize GPU devices for providing massive

parallelism. In order to evaluate the proposed translation

technique, we implement sum application and results have

been compared with the famous auto-translation tool Cetus.

Based on experimental consequences, it has been observed

that the AP4OpenACC outperformed the existing studies,

particularly with huge numbers.

From a future perspective, the researcher can consider our tool

for translating sequential code into parallel for any given

parallel programming mode such as OpenMP, CUDA,

OpenCL, OpenGL, or large cluster systems to achieve

massive parallelism.

7. REFERENCES
[1] S. Perarnau, R. Gupta, and P. Beckman, “Argo: An

Exascale Operating System and Runtime,” p. 2.

[2] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale

Computing Technology Challenges,” in High

Performance Computing for Computational Science –

VECPAR 2010, Jun. 2010, pp. 1–25, doi: 10.1007/978-

3-642-19328-6_1.

[3] “Petascale adaptive computational fluid dynamics -

ProQuest.”

http://kau.proxy.deepknowledge.io/MuseSessionID=0o1

0p48z4/MuseProtocol=https/MuseHost=search.proquest.

com/MusePath/docview/304985752/20FC96D8B18547A

7PQ/1?accountid=43793 (accessed Nov. 20, 2020).

[4] J. J. Dongarra and D. W. Walker, “The quest for

petascale computing,” Comput. Sci. Eng., vol. 3, no. 3,

pp. 32–39, May 2001, doi: 10.1109/5992.919263.

[5] S. Prema, R. Jehadeesan, B. K. Panigrahi, and S. A. V.

Satya Murty, “Dependency analysis and loop

transformation characteristics of auto-parallelizers,” in

2015 National Conference on Parallel Computing

Technologies (PARCOMPTECH), Bengaluru, India,

Feb. 2015, pp. 1–6, doi:

10.1109/PARCOMPTECH.2015.7084524.

[6] A. Tabuchi, M. Nakao, and M. Sato, “A Source-to-

Source OpenACC Compiler for CUDA,” in Euro-Par

2013: Parallel Processing Workshops, Aug. 2013, pp.

178–187, doi: 10.1007/978-3-642-54420-0_18.

[7] A. Barve, S. Khomane, B. Kulkarni, S. Ghadage, and S.

Katare, “Parallelism in C++ programs targeting objects,”

in 2017 International Conference on Advances in

Computing, Communication and Control (ICAC3), Dec.

2017, pp. 1–6, doi: 10.1109/ICAC3.2017.8318759.

[8] A. Barve, S. Khomane, B. Kulkarni, S. Katare, and S.

Ghadage, “A serial to parallel C++ code converter for

multi-core machines,” in 2016 International Conference

on ICT in Business Industry Government (ICTBIG),

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

39

Nov. 2016, pp. 1–5, doi:

10.1109/ICTBIG.2016.7892700.

[9] E. Strohmaier, J. J. Dongarra, H. W. Meuer, and H. D.

Simon, “Recent trends in the marketplace of high

performance computing,” Parallel Comput., vol. 31, no.

3, pp. 261–273, Mar. 2005, doi:

10.1016/j.parco.2005.02.001.

[10] K. Krewell, “What’s the Difference Between a CPU and

a GPU?,” The Official NVIDIA Blog, Dec. 16, 2009.

https://blogs.nvidia.com/blog/2009/12/16/whats-the-

difference-between-a-cpu-and-a-gpu/ (accessed Mar. 20,

2019).

[11] “Parallel Computing on a Personal Computer |

Biomedical Computation Review.”

http://www.bcr.org/content/parallel-computing-personal-

computer (accessed Nov. 25, 2020).

[12] M. Arora, “The Architecture and Evolution of CPU-GPU

Systems for General Purpose Computing,” undefined,

2012. /paper/The-Architecture-and-Evolution-of-CPU-

GPU-Systems-

Arora/8a77e1722b37fe3d8f5ac56bb50e548b218c4427

(accessed Nov. 21, 2020).

[13] “Combining GPU data-parallel computing with OpenGL

| ACM SIGGRAPH 2013 Courses.”

http://0o10e49gv.y.https.dl.acm.org.kau.proxy.deepknow

ledge.io/doi/10.1145/2504435.2504449 (accessed Nov.

21, 2020).

[14] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M.

Hjelmervik, and O. O. Storaasli, “State-of-the-art in

heterogeneous computing,” Sci. Program., vol. 18, no. 1,

pp. 1–33, Jan. 2010, doi: 10.3233/SPR-2009-0296.

[15] C. Cullinan, T. R. Frattesi, and C. Wyant, “Computing

Performance Benchmarks among CPU, GPU, and

FPGA,” undefined, 2012. /paper/Computing-

Performance-Benchmarks-among-CPU%2C-GPU%2C-

Cullinan-

Frattesi/cbecd8cfb5264f8b36dee412c5980e3305c996e6

(accessed Nov. 21, 2020).

[16] S. Mittal and J. S. Vetter, “A Survey of Methods for

Analyzing and Improving GPU Energy Efficiency,”

ACM Comput. Surv., vol. 47, no. 2, p. 19:1-19:23, Aug.

2014, doi: 10.1145/2636342.

[17] N. Singh, “Automatic parallelization using OpenMP

API,” in 2016 International Conference on Signal

Processing, Communication, Power and Embedded

System (SCOPES), Oct. 2016, pp. 291–294, doi:

10.1109/SCOPES.2016.7955837.

[18] Y. Qian, “Automatic Parallelization Tools,” p. 5, 2012.

[19] A. Athavale et al., “Automatic Sequential to Parallel

Code Conversion,” p. 7.

[20] M. Mathews and J. P. Abraham, “Implementing Coarse

Grained Task Parallelism Using OpenMP,” vol. 6, p. 4,

2015.

[21] “Message Passing Interface (MPI).”

https://computing.llnl.gov/tutorials/mpi/ (accessed Nov.

27, 2020).

[22] A. Podobas and S. Karlsson, “Towards Unifying

OpenMP Under the Task-Parallel Paradigm,” in

OpenMP: Memory, Devices, and Tasks, Oct. 2016, pp.

116–129, doi: 10.1007/978-3-319-45550-1_9.

[23] J. D. Owens et al., “A Survey of General-Purpose

Computation on Graphics Hardware,” Comput. Graph.

Forum, vol. 26, no. 1, pp. 80–113, Mar. 2007, doi:

10.1111/j.1467-8659.2007.01012.x.

[24] Department of Computer Science, King abdulaziz

University Jeddah, Saudi Arabia, M. U. Ashraf, F. Fouz,

and F. Alboraei Eassa, “Empirical Analysis of HPC

Using Different Programming Models,” Int. J. Mod.

Educ. Comput. Sci., vol. 8, no. 6, pp. 27–34, Jun. 2016,

doi: 10.5815/ijmecs.2016.06.04.

[25] M. Scarpino, “OpenCL in Action: How to Accelerate

Graphics and Computations,” Dec. 2011, Accessed: Nov.

21, 2020. [Online]. Available: https://hgpu.org/?p=6708.

[26] N. Newsroom, “NVIDIA, Cray, PGI, CAPS Unveil

‘OpenACC’ Programming Standard for Parallel

Computing,” NVIDIA Newsroom Newsroom.

http://nvidianews.nvidia.com/news/nvidia-cray-pgi-caps-

unveil-openacc-programming-standard-for-parallel-

computing (accessed Nov. 25, 2020).

[27] “Getting Started with OpenACC,” NVIDIA Developer

Blog, Jul. 14, 2015.

https://developer.nvidia.com/blog/getting-started-

openacc/ (accessed Nov. 25, 2020).

[28] “OpenACC Tutorial - Adding directives - CC Doc.”

https://docs.computecanada.ca/wiki/OpenACC_Tutorial_

-_Adding_directives (accessed Nov. 21, 2020).

[29] “OpenACC: More Science Less Programming,” NVIDIA

Developer, Jan. 13, 2012.

https://developer.nvidia.com/openacc (accessed Nov. 21,

2020).

[30] S. Wienke, P. Springer, C. Terboven, and D. an Mey,

“OpenACC — First Experiences with Real-World

Applications,” in Euro-Par 2012 Parallel Processing,

Aug. 2012, pp. 859–870, doi: 10.1007/978-3-642-32820-

6_85.

[31] “OpenACC Directives,” NVIDIA Developer, Mar. 02,

2016. https://developer.nvidia.com/openacc/overview

(accessed Mar. 26, 2021).

[32] A. G. Bhat, M. N. Babu, and A. M. R, “Towards

automatic parallelization of ‘for’ loops,” in 2015 IEEE

International Advance Computing Conference (IACC),

Jun. 2015, pp. 136–142, doi:

10.1109/IADCC.2015.7154686.

[33] B. Li, “Manual and Automatic Translation From

Sequential to Parallel Programming On Cloud Systems,”

Comput. Sci. Diss., Apr. 2018, [Online]. Available:

https://scholarworks.gsu.edu/cs_diss/135.

[34] A. Alghamdi and F. Eassa, “Parallel Hybrid Testing Tool

for Applications Developed by Using MPI + OpenACC

Dual-Programming Model,” vol. 4, pp. 203–210, Mar.

2019, doi: 10.25046/aj040227.

[35] E. Calore, A. Gabbana, J. Kraus, S. F. Schifano, and R.

Tripiccione, “Performance and portability of accelerated

lattice Boltzmann applications with OpenACC,”

Concurr. Comput. Pract. Exp., vol. 28, no. 12, pp. 3485–

3502, Aug. 2016, doi: 10.1002/cpe.3862.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 36, March 2021 – www.ijais.org

40

[36] J. A. Herdman, W. P. Gaudin, O. Perks, D. A.

Beckingsale, A. C. Mallinson, and S. A. Jarvis,

“Achieving Portability and Performance through

OpenACC,” in 2014 First Workshop on Accelerator

Programming using Directives, Nov. 2014, pp. 19–26,

doi: 10.1109/WACCPD.2014.10.

[37] J. Kraus, M. Schlottke, A. Adinetz, and D. Pleiter,

“Accelerating a C++ CFD Code with OpenACC,” in

2014 First Workshop on Accelerator Programming using

Directives, Nov. 2014, pp. 47–54, doi:

10.1109/WACCPD.2014.11.

[38] “[PDF] DawnCC: a Source-to-Source Automatic

Parallelizer of C and C++ Programs | Semantic Scholar.”

https://www.semanticscholar.org/paper/DawnCC%3A-a-

Source-to-Source-Automatic-Parallelizer-C-

Guimar%C3%A3es-

Mendonca/ac4ee9490909aa0161e8278596e85ecd6ece41

48 (accessed Dec. 01, 2020).

[39] M. U. Ashraf, F. A. Eassa, and A. A. Albeshri, “Massive

Parallel Computational Model for Heterogeneous

Exascale Computing System,” in 2017 9th IEEE-GCC

Conference and Exhibition (GCCCE), May 2017, pp. 1–

6, doi: 10.1109/IEEEGCC.2017.8448062.

[40] “org.antlr.v4.runtime Class Hierarchy (ANTLR 4

Runtime 4.9 API).”

https://www.antlr.org/api/Java/org/antlr/v4/runtime/pack

age-tree.html (accessed Dec. 01, 2020).

[41] “Antlr 4 - Listener vs Visitor.”

https://jakubdziworski.github.io/java/2016/04/01/antlr_vi

sitor_vs_listener.html (accessed Dec. 01, 2020).

[42] M. Viñas, B. B. Fraguela, D. Andrade, and R. Doallo,

“Towards a High Level Approach for the Programming

of Heterogeneous Clusters,” in 2016 45th International

Conference on Parallel Processing Workshops (ICPPW),

Aug. 2016, pp. 106–114, doi: 10.1109/ICPPW.2016.30.

[43] R. Xu, X. Tian, S. Chandrasekaran, Y. Yan, and B.

Chapman, OpenACC Parallelization and Optimization of

NAS Parallel Benchmarks. 2014.

[44] A. Paudel and S. Puri, “OpenACC Based GPU

Parallelization of Plane Sweep Algorithm for Geometric

Intersection,” in Accelerator Programming Using

Directives, Nov. 2018, pp. 114–135, doi: 10.1007/978-3-

030-12274-4_6.

[45] “OpenACC Programming and Best Practices Guide,” p.

64.

[46] “HPC SDK | NVIDIA,” NVIDIA Developer, Mar. 11,

2020. https://developer.nvidia.com/hpc-sdk (accessed

Dec. 13, 2020).

[47] J. Zapletal, “Amdahl’s and Gustafson’s laws,” p. 28.

