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ABSTRACT
Cyber Attack is one of the biggest problems for people of different
levels, especially for the industries, which can maliciously disable
systems, steal data. It is an assault launched by cyber criminals us-
ing one or more computers against single or multiple computers
or networks. Server-side attacks are launched directly from an at-
tacker to a listening service. Server-side attacks want to compro-
mise and infringe with data and applications on a server. Applica-
tions like web browsers, media players, email servers, office suites,
and similar applications are the main targets for attackers. An injec-
tion attack is one of the most common types of attack in which the
hacker can steal valuable information from the database or server
and it is the most dangerous attack aimed at web applications and
can lead to data theft, data loss, loss of data integrity, denial of ser-
vice, as well as full system compromise. Malicious requests make it
easier for attackers to attack server-side applications. Our idea has
been demonstrated in this paper where a two-layer security fire-
wall is implemented in the server-side application to detect ma-
licious code(SQL/NoSQL injection) using both machine learning
and non-machine learning approach. The first layer of the firewall
that will be placed between controller and router will be responsi-
ble for detecting malicious code from the request object using input
validation and a parameterized statement which is a non-machine
learning approach. Moreover, the second layer of the firewall will
be placed between the controller and database to detect malicious
code from the query using a machine learning model. We use text
mining for feature extraction from the query, GridSearchCV for
best model evaluation and genetic algorithm for automated hyper-
parameter optimization.
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1. INTRODUCTION
Every organization and company needs servers and databases
to store valuable, confidential data due to its reasonable price,
performance speed and some automated features for managing
data. The security of these server-side applications in today’s
world is one of the most important and challenging tasks that
people all over the world face [1]. The cyber attack has in-
creased every year as people try to benefit from vulnerable sys-
tems which shows the path that needs to incur the importance
on the security of these server-side applications that is not only
today’s world is one of the most important tasks but also high
level challenging tasks that people all over the world. One of
the main findings of a research paper is that the public sector

continues to dominate as the primary target of cyber attacks fol-
lowed by financial services [2]. In Bangladesh, a hacker group
called Hafnium has attacked more than 200 organizations, in-
cluding the Bangladesh Telecommunications Regulatory Com-
mission (BTRC), Bangladesh Bank, commercial banks, and In-
ternet service providers. Hafnium fundamentally targets enti-
ties in the United States across several industry sectors, includ-
ing law firms, infectious disease researchers, defense contrac-
tors, higher education institutions, NGOs, and policy think tanks.
This detrimental group has extensions in tactics and techniques
with other Chinese hacker groups. This group also attacked Ger-
many, Canada, France, Belgium, Italy, Hong Kong, South Korea,
Turkey, United Arab Emirates, and Israel, etc [3]. According to
a recent report, between January 1, 2005, and May 31, 2020,
there have been 11,762 recorded breaches [4]. In recent years,
the number of SQL injection attacks have been growing so fast
and eventually, it became the topmost type to attack database
based web applications. The average daily number of SQL in-
jection attacks has already reached almost 400,000 worldwide
[1].
In 2013, a cyber attack occurred in Yahoo’s 3 billion email ac-
counts gaining access to sensitive customer information. In the
same year, cyber attackers used malware to steal data from the
target company point of sale systems compromising information
of approximately one hundred and ten million credit/debit car-
rying customers. “Peace” a Russian-based cyber attack group
infiltrated LinkedIn stealing email and password combinations
of over 117 million customers in 2015. In 2020, the hotel chain
Marriott disclosed a security breach that impacted the data of
more than 5.2 million hotel guests who used their company’s
loyalty application. In 2020, 500,000 stolen Zoom passwords be-
came available for sale in dark web crime forums [5]. These are
just a few of the many incidents. Cyber attack is becoming more
excruciating day by day comprising lots of economic, reputa-
tional, social, and societal harm. In most cases of applications,
developers focus on usability and functionality. Security issues
come as an afterthought. For example, using unfiltered input as
a parameter to HTTP requests might permit a malicious user to
execute an SQL/NoSQL injection attack. The hacker can steal
all the valuable information from the database using this terrible
attack. A successful injection attack can result in unauthorized
access to sensitive data such as passwords, credit card details,
or personal user information and leads to respectable damage
and regulatory penalties. In some cases, the attacker can gain an
endless backdoor to any organization’s system. Therefore, it is
essential to detect injection attacks before executing a database
query. To solve this problem many models and tools have been
developed for predicting vulnerabilities of a software compo-
nent. Usually, such methods are limited to fixed, very small pat-
terns, and hardly adapt to variations. Moreover, these methods
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depend on parsing the code [6]. To improve the ability to predict
web application vulnerabilities, a wide variety of data mining
and machine learning techniques have been used. For example,
feature extraction and classification are used to predict, if SQL
injection vulnerability resided in the software or not [7].
To control cyber attacks to a great extent in the server-side ap-
plication, our proposed idea is detecting SQL or NoSQL injec-
tion attacks using a two-layer security firewall. After receiving
the HTTP request object, it is passed to our proposed first se-
curity layer via middleware to detect malicious code from the
request object using the non-machine learning approach. If the
first layer of security detects malicious code in the request ob-
ject, then the request will be blocked to go further. Moreover,
If the first layer of the security firewall fails to detect malicious
code in the request object despite having malicious codes, then
the second layer will detect the malicious code from the query
that is constructed from the data of the request object using a ma-
chine learning model. To detect SQL injection attacks, the data-
mining-based method is favourable in detecting unknown attacks
with high accuracy against the rapid emergence of various types
of attack [8]. A NoSQL attack targets the interactive web ap-
plications that are associated with any type of NoSQL database,
such as MongoDB. In this sort of attacks, an attacker injects code
into a NoSQL query which could result in an alternate database
request that can peruse or modify a NoSQL database or change
data on a web application [9][10][11].
The main contribution of the implementation paper are :

(a) A two-layer security firewall in a server-side application has
been proposed. The objective of the first layer is to detect
injection attacks using the analysis of request object data
by user input validation and parameterized statement. On
the other hand, the objective of the second layer is to detect
injection attacks using two classifiers. One classifier is for
detecting SQL injection and another one is for detecting No-
SQL injection attacks.

(b) Genetic algorithms will be used to automatically optimize
the hyperparameter of the models and also used to find the
combinations of features that produce the best-performing
classification model.

(c) A comprehensive comparison of several well-known ma-
chine learning algorithms performance on both balanced
and imbalanced dataset has been published for detecting
SQL and No-SQL injection attacks from the query analy-
sis.GridSearchCV is used for optimizing the hyperparame-
ters of those models manually.

The rest of this paper is organized as follows. Sections 2 and 3
describe the literature review and proposed idea. Section 4 and 5
provide details of the implementation and results. Finally, section
6 draws the conclusion of this paper with a few comments and
suggestions on future research.

2. LITERATURE REVIEW
2.1 Http Server
An HTTP server is defined as a computer that is hosted on
the internet, processes requests via hypertext transfer protocol
used to transfer information on the internet. The main func-
tion of an HTTP server is to store, process and deliver web
pages, JSON data to clients. HTTP server receives the re-
quests from client-side applications like browser, android de-
vice, process the requests, send the pages as Html documents
which may include images, texts, scripts etc. or send the JSON
data as a response after querying from the database.HTTP
verbs(POST/PUT/GET/DELETE) are used to define that what
kind of operation is going to be executed after receiving a request
from a client application.POST requests are made for adding a

resource to the server, PUT requests are made for updating a re-
source, GET requests are for getting resources from the server
and DELETE requests are made for removing a resource [12]. In
the implementation, our proposed two layer security firewall is
placed on a http server.

2.2 Middleware
Middleware can be defined as a component that has a set of func-
tions that has access to request and response objects, can mod-
ify the request object and the response object for parsing the
request body, adding response header etc. It acts as a link be-
tween client and server. The main purpose of middleware is to
provide a mechanism for filtering HTTP requests before reach-
ing the business logic process. Middlewares are chained together
to do HTTP request filter processes one by one. This middleware
handles reading and writing the HTTP session, determining if the
application is in maintenance mode, verifying the CSRF token,
authentication token, refresh token and more [13]. It is also used
for managing transactions and ensuring that any problems can’t
corrupt the system or database server [14]. There are many kinds
of input sanitization and security-related tasks that are executed
in the middleware. If the received request is valid, then middle-
ware will allow the request object to go to the router component.
If the received request is not valid or malicious then it will block
the request to go further.

2.3 Router
The router can be defined as a component that is
used to receive the request through a URL like
”http://www.mydomain.com/path” and pass the request to
a single controller function [13].

2.4 Model-View-Controller(MVC)
MVC is a well-known design pattern used in both client-side and
server-side applications. Developers suggest MVC design pat-
terns to improve the system and make the code quality better.
In this design pattern, controllers receive the request from the
router, extract the data from the request object and send the data
to a model. Then, the controller function executes the SQL/No-
SQL query to fetch data from a database or insert data into the
database. The presentation layer of the MVC system is the view.
It uses data from the model, which is primarily supplied by the
controller, to generate output for the user. A view may also have a
helper that retrieves data [15][16][17]. In our implementation,the
second layer of our proposed security firewall performs dynamic
analysis of the query which is formed inside the controller func-
tions.

2.5 Database
A database is an organized collection of data so that it can easily
be accessed and manipulated. The main purpose of the database
is to manage a lot of data by storing, retrieving and updating.
There are many kinds of databases but we are mainly focusing
on the security of SQL and No-SQL databases in our proposed
paper.

2.5.1 SQL.
SQL database may be defined as a database system that uses SQL
queries to store, update, get or delete the data. It is also called a
relational database because the stored data is connected through
a predefined schema presenting the relations between the data
[18]. There are many SQL databases like Oracle, PostgreSQL,
MySQL, MSSQL etc.

2.5.2 NoSQL.
A NoSQL database is defined as a non-relational database or dis-
tributed database system that doesn’t require the data to have
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Fig. 1. The components of machine learning automated by TPOT [22].

high relations among itself or any predefined schema. It can al-
low data of different data types in runtime. Most of the No-SQL
databases are JSON document-oriented [18]. There are many
databases like MongoDB, CouchDB, Firebase Cloud Firestore
etc.

2.6 Machine Learning in Software Security
Software security can be defined as achieving effective security
awareness techniques to prevent attacking software deliberately
to steal sensitive and personal information with the core intention
of carrying out well-funded, destructive and unethical aims that
could harm individuals, nations or the whole world. The pattern
of injection attack is very dynamic and it’s too difficult to detect
the pattern without a machine learning approach. In recent years,
supervised machine learning in automatic fraud and malware de-
tection has been quite successful that motivated us to explore this
direction [8][19].

2.7 Genetic Algorithm and Tree-based Pipeline
Optimization Tool (TPOT)

A genetic algorithm is a machine learning search technique that
is inspired by Darwinian evolutionary models. The advantage of
genetic algorithms is they can be used to optimize the problems
that are too complicated for human expertise to do. So, the ge-
netic programming approach can be useful to find the combi-
nation feature subsets that are responsible to produce the best
performing classification model. It can be used for solving high
dimensional classification problems when the search space is
large and too difficult to understand [20]. TPOT is a genetic
programming-based automated machine learning system that op-
timizes a series of machine learning models and feature proces-
sors for maximizing classification accuracy on a supervised clas-
sification task.
In our implementation, the components of machine learning such
as data cleaning, feature selection, feature engineering, model
selection and validation, and hyperparameter tuning are continu-
ously performed until an optimized result is achieved. The TPOT
GP algorithm follows the rules of an ideal genetic program-
ming process. In the implementation, we will generate tree-based
pipelines and perform cross-validation against the dataset. The
pipelines that perform better are designed to maximize accuracy
and minimize the number of operators. The pipelines that are se-
lected top through fitness function produce offspring for the next
generation population. Crossover is performed among some of
the offspring and mutation is performed among the remaining

offspring with some random modification. Then a new pipeline
is created. This process is repeated to optimise the pipeline. The
operators that help to improve the classification accuracy are se-
lected but the operators that reduce the classification accuracy
are eliminated. In this way, the best performing classification ma-
chine learning model is found [22].

3. PROPOSED IDEA
Our proposed idea for cyber attack detection in a server-side ap-
plication is a two-layer security firewall which is used to detect
mainly SQL injection and NoSQL injection attacks. Normally,
the http server accepts requests from client side applications like
android, web browser , desktop etc. Many requests are sent from
the client side applications by the users to the server for perform-
ing many kinds of operations like authentication, new data entry,
data fetching etc. The attackers also send requests to the server
but their request objects contain malicious code in it. The server
side application contains the application layer and our proposed
two-layer security firewall. The application layer consists of mid-
dleware, router, controller, model and view. The first layer secu-
rity firewall is placed between middleware and router to detect
malicious code from request objects in real-time using user input
validation, parameterized statement etc. which are implemented
using non-machine learning approach and the second layer secu-
rity firewall is placed between controller and database server to
detect malicious code from the SQL/NoSQL query in real-time
using machine learning models.
The flowchart of the proposed idea in Fig-2 illustrates the process
of detecting malicious code in the request object and detecting
malicious code in the query by machine learning model by our
proposed two-layer security firewall.
Suppose, a normal user sends a request to the server and it is
received by the Middleware at first. Then, Middleware passes
the request object to our first layer of real-time security firewall
where the data from the request object will be extracted for user
input validation and parameterized statements. As a normal user
has sent this request, the first layer of the firewall will not detect
any malicious code in the request object and it will pass the fil-
tered request object to the controller functions through the router.
In the controller functions, the SQL/NoSQL queries are gener-
ally constructed by the static part of the query which is written
by the developers and dynamic values of the request object. Af-
ter the construction of the query in the controller functions, it
is passed to the second layer of our proposed security firewall
for preprocessing and applying text mining algorithms to extract
features from the constructed query. Then it is passed to the ma-
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Fig. 2. Flow diagram of our proposed security firewall in Server
Side Application

chine learning models as test data for binary classification. In the
implementation, two machine learning models will be built into
the second layer of our security firewall. One for detecting SQL
injection attacks and another for NoSQL injection attacks. As the
query is constructed by the data from a normal user, the classifi-
cation model will not detect any malicious code in the query. As
a result, the controller function will execute database operation
using the filtered query and send a normal response to the user.
On the other hand, suppose a hacker sends a malicious request
to the server and it is received by the Middleware at first. Then,
Middleware passes the request object to our first layer of real-
time security firewall where the data from the request object will
be extracted for user input validation and parameterized state-
ments. Then, the first layer detects malicious code in the request
object, blocks the request and aborts the execution. As a result,
the data is saved from the attacker. Due to the dynamic pattern
of the malicious code, it is possible that our first layer fails to
detect the malicious code in the request object and doesn’t block
the request object from going through the Middleware. For this

reason, machine learning models are used to handle the dynamic
pattern of malicious code. So, after the construction of the query,
it is passed to the second layer of our proposed security firewall
that will detect any malicious code even if the first layer fails
to detect it. As a result, the controller function will prevent the
execution of the database query and block the execution. In this
way, the data is saved by the hacker.

4. APPROACH OF IMPLEMENTATION
4.1 Dataset Collection:
To build machine learning models a training dataset and a testing
dataset need to be prepared. As the second layer of our proposed
security firewall consists of the SQL injection model and No-
SQL Injection model, the dataset is needed to be divided into
training data and testing data for both models. The datasets con-
tain different types of SQL injection and No-SQL injection data.
They are described below:

4.1.1 SQL Injection.
SQLIA is a code injection technique that takes advantage of a
security flaw in a web application’s SQL database layer.

(i) Tautology: It is one of the most common types of SQLIA.
The attacker’s motive is to skip authentication and extract
statistics from the net utility database. In this kind of as-
sault the hacker injects code into one or greater conditional
statements so that the final results of the execution of those
statements continually evaluates to true [23].

SELECT * from customer WHERE cus id = 12;

After injecting “12 or 1=1”, the above query will look like:

SELECT * from customer WHERE cus id =
12345 or 1=1;

(ii) Illegal/Logically Incorrect Queries: This attack intends to
spot injectable parameters, perform information fingerprint-
ing, and extract confidential information. This kind of attack
is predicated on writing a question statement that generates
error messages. Once a question is rejected, a blunder mes-
sage is returned from the information including helpful de-
bugging info that helps the attacker within the example be-
low, the attacker’s goal is to cause a type conversion error
that may reveal relevant information.

SELECT accounts FROM users WHERE
login=’’ AND pass=’’ AND pin= convert
(int,(select top 1 name from sysobjects
WHERE xtype=’u’));

The hacker extracts two useful pieces of information from
this error message. The hacker learns that this is a SQL
server database and the error message reveals the value of
the string that caused the type conversion to occur [23].

(iii) Union Query: This type of attack is especially executed to
bypass the authentication process and to extract information
by inserting the union operator into the original query.

SELECT * from accounts WHERE id=’212’
UNION select * from credit card WHERE
user=’admin’--’ and pass=’pass’;

In this example, the second query is malicious because the
text following ‘—‘ is ignored because it becomes a comment
for the SQL Parser. However, if the query is executed, the
attacker receives the credit card information [23].

(iv) Piggy-Backed Query: The intention of this sort of attack is
the retrieval of information and the DoS attack. It works just
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Fig. 3. Our proposed Two Layer Security Firewall in Server Side Application.

like the construct of piggy-backed acknowledgement in net-
work communication where acknowledgement of a packet
is distributed together with successive packets.

SELECT customer info from accounts WHERE
login id = ‘admin’ AND pass = ‘123’ ;

DELETE FROM accounts WHERE CustomerName =
’Rahim’;

After executing the first query the query interpreter sees the
’;’ and thus executes the second query with the first query.
Since the second query is malicious, it will delete all the data
of the customer ’Rahim’ [1][23].

(v) Stored Procedures: In this type of attack, the hacker tries to
execute stored procedures added in the database with mali-
cious inputs. Most database companies store procedures that
extend the functionality of the database and allow interac-
tion with them.

CREATE PROCEDURE DBName .is Authenticated
@user Name varchar2, @pass varchar2,
@pin int AS EXEC("SELECT accounts FROM
users WHERE login=’" +@user Name+ If’ and
pass=’" +@password+ and pass=" +@pass);

The use of stored procedure returns true if it is authorized
and returns false if it is unauthorized [23]. If the hacker
gives input SHUTDOWN; - -” for username or password.
The Stored Procedure generates the following query state-
ment which shut down the system.

SELECT username FROM userTable WHERE
username = ‘Rahim’ AND pass=’ ’; SHUTDOWN;

4.1.2 NoSQL Injection

(i) Tautology: These attacks are executed by injecting code in
conditional statements and generating expressions that are
continuously true for the purpose of bypassing authentica-
tion or accessing confidential mechanisms.

db.members.find(login:"admin", pass: $ne:
"rahim" )

Attackers use the “$ne”(not equal) operator to illegally ac-
cess the system without using the actual username and pass-
word [24].

(ii) Union Queries: This is one of the most common types of
No-SQL injection attack. In this attack, the attacker exploits
a vulnerable parameter to change the data set returned for
a given query. These attacks are mainly used to bypass the
authentication process and extract data. For example, an at-
tacker exploits a vulnerable parameter by adding a boolean
‘OR’ operator so that the expression is always true (e.g. an
empty query ) which leads to the incorrect evaluation of the
entire statement allowing illegal extraction of data [24].

db.collection(’users’).findOne(
"username": "dummy", $or: [ , password:
"" ])

The password becomes a useless part of the query as an
empty query is always true. In this kind of attack, an at-
tacker will be successful only if the username is correct [25].
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(iii) Javascript injections: The benefit of NoSQL databases is
the ability to run JavaScript in the database engine to per-
form complicated queries or transactions such as ‘MapRe-
duce’.But it creates a new class of vulnerabilities for the
No-SQL databases. The attacker can cause a DOS attack by
exhausting the pool size by putting ‘ sleep()’ inside ‘where’
MongoDB operator. Here is an example:

db.collections.find($where: quantity >
’’;sleep(50000);;var foo=’bar’)

(iv) Piggy-backed Queries: In this type of attack, an attacker in-
jects extra malicious queries into the original query to add,
modify or delete data inside collections [24].

4.2 Dataset Preprocessing and feature extraction:
The NoSQL injection dataset has been collected from a paper
that has been done using supervised learning on automatic de-
tection of NoSQL injection [19]. The dataset has been already
preprocessed which made our job a little easier as machine learn-
ing algorithms can’t work with string inputs. The dataset was de-

Table 1. Features of NoSQL injection dataset by information
gain and correlation [19].

Rank By information gain By correlation
1 Contains Comparison Contains Comparison
2 New Query New Query
3 Contains Empty String Contains Empty String
4 Contains Not Equal Contains Not Equal
5 Contains Payload Contains Payload
6 Presence of Return Always True Expression
7 Always True Expression Presence of Return
8 Evaluation Query Opera-

tion
Evaluation Query Func-
tion

9 Contains Logical Operator Element Query Opera-
tion

10 Element Query Operation Contains Logical Opera-
tor

signed with 19 features to start with but finally, the researchers
selected the 10 highest ranked features based on information
gain and correlation. They used WEKA’s ClassifierSubsetEval
[26] with a decision tree(J48) [27], K-nearest neighbour classi-
fier(IBK) [28] and greedy stepwise search with backward elim-
ination to select rank 10 out of initially designed 19 features
which are based on information gain and correlation shown in
table-1. This dataset contains the queries of both CouchDB and
MongoDB [19].
The SQL injection datasets have been collected from Kaggle
[29]. The dataset has not been preprocessed. The unprocessed
and unstructured can be easy to understand by humans but ma-
chine learning algorithms need structured data to perform well .
So, several text mining techniques will be used to extract features
to build a structured dataset.For this reason,the NLTK library of
python is going to be used to extract features from the existing
dataset . In the implementation, the following features shown in
table-2 are selected to extract from the existing dataset.

4.3 Feature Selection
In the implementation, python’s pycaret library is going to be
used that uses the genetic algorithm for selecting the best fea-
tures for our proposed machine learning model. As almost 10
features in the NoSQL dataset and almost 43 features in the SQL
dataset are selected for the experiment, the search space will con-
tain 210 possible feature subsets for the NoSQL dataset and 243

possible feature subsets for the SQL dataset. Each feature will be
considered as a bit in a single genome. A bit string of length 43

Table 2. Features and Descriptions of SQL injection dataset.
Features Descriptions
querySource Identifier of sources of a query
commandType Identifier of operation type repre-

sented by query
utilityStmt Indicator if the SQL is DECLARE

CURSOR or a non-optimizable state-
ment

canSetTag Indicator if the command result tag is
set

sortClause Indicator if sort clause exists
groupClause Indicator if group clause exists
windowClause Indicator if window clause exists
resultRelation Range table index for IN-

SERT/UPDATE/DELETE statements
hasWindowFuncs Indicator if SQL has window func-

tions
hasAggs Indicator if SQL has aggregates
hasDistinctOn Indicator if distinct clause is from

DISTINCT ON
hasSubLinks Indicator if SQL has sub-query
hasForUpdate Indicator if SQL is specified with

FOR [KEY] UPDATE/SHARE clause
hasModifyingCTE Indicator if SQL has IN-

SERT/UPDATE/DELETE in WITH
clause

hasRecursive Indicator if SQL is specified WITH
RECURSIVE clause

cteList The number of WITH clauses
rtable/relid Identifier of range table
rtable/relkind Index for kind of range table entry

{SUBQUERY, RELATION, FUNC-
TION, JOIN, VALUES, CTE}

rtable/funcexpr/funcid Identifier of function
rtable/funcexpr/args/constvalue Constant value and constant length
rtable/funcexpr/args/consttype Identifier of constant type
jointree/quals/args*/opno Identifier of operation number
jointree/quals/args*/boolop* Qualification type BOOLEXPR, OP-

EXPR and boolean operation and, or,
not

jointree/quals/args*/arg/varno Relative table number based on range
table

jointree/quals/args*/opresulttype Identifier of result type of operation
jointree/quals/args*/arg/funcid Identifier of function
jointree/quals/args*/arg/varattno Relative column number based on

range table
jointree/quals/args*/constvalue Constant length and constant value
jointree/quals/args*/consttype Identifier of constant type
targetList/expr Index for target entry expression type
targetList/resorigcols Identifier of original column within

target entry
targetList/expr/funcid Identifier of function
targetList/resorigtbl Identifier of original table within tar-

get entry
targetList/expr/args*/constvalue Constant length and constant value
targetList/expr/args*/consttype Identifier of constant type
returningList Indicator if return value list exists
constraintDeps Indicator if constraint exists
limitCount Indicator if limit count clause speci-

fied to return the result tuples exists
limitOffset Indicator if limit offset clause speci-

fied to skip the result tuples exists
setOperations Indicator if set operation {UNION,

INTERSECT, EXCEPT} exists

and a bit string of length 10 will respectively represent each indi-
vidual in the population of possible solutions in SQL and NoSQL
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Fig. 4. Flow diagram of Implementing Best Classification Model.

Fig. 5. Flow Diagram of Genetic Algorithm Search [20].

injection dataset. zero(0) bit will indicate that the corresponding
feature is eliminated and one(1) bit will indicate that the corre-
sponding feature is selected. According to Fig-5, in the first step
of GA, the initial population is generated randomly. Then a two-
point crossover will be chosen to create two new individuals for
the next generation. Single bit flip mutation will be chosen for
mutation operation. It will be performed by selecting a single bit
on the genome and flipping it. It will prevent huge changes in the
binary genome and cause stability in the result.

4.4 Dataset Analysis Approach
Our proposed SQL injection dataset contains almost 37961 rows
in which 12584 rows are labeled malicious and 25377 rows are
labeled as not malicious. Again, the NoSQL injection dataset
contains almost 1004 rows in which 801 rows are labeled as not
malicious and 203 rows are labeled as malicious. The NoSQL
dataset consists of MongoDB and CouchDB queries.

4.4.1 Sampling Strategies.
There is a huge imbalance in both NoSQL and SQL in-
jection dataset as shown in the Fig-6. For this reason, our
proposed classification model results might be distorted by
these skewed distributions due to the highly imbalanced na-

Fig. 6. Imbalanced ratio of minority and majority class in NoSQL
and SQL injection dataset

ture of the training dataset. This is unwanted. So, various re-
sampling strategies are going to be used before passing the train-
ing dataset to the machine learning model. These are Under-
sampling(Random undersampling, ClusterCentroids,NearMiss)
and Over-sampling(Random oversampling,SMOTE ) [30].
SMOTEENN and SMOTETomek are also going to be applied.
These two strategies are the combination of oversampling and
undersampling techniques. Python’s imblearn library is going to
be used for handling imbalanced datasets.

4.4.2 Grid Search for best hyperparameter.
To find the best performing configuration of each algorithm, a
grid search approach is applied to optimize the hyperparame-
ters of the machine learning algorithms in the implementation.
It means that various values are going to be defined for ma-
chine learning algorithm parameters and multiple models are
going to be trained using various combinations of hyperparam-
eters. After having accuracy, precision, recall and f1 score for
each model, the best performing model can be selected. Python’s
Sklearn library is used for implementing GridsearchCV and ma-
chine learning models.

4.4.3 Genetic Algorithm for best automated hyper parameter
optimisation.
For the automated hyperparameter tuning, python’s TPOT clas-
sifier module in Google Colab has been used that works based on
genetic algorithms. Some parameters are tuned to get the result
from the TPOT classifier. There are 500 pipeline configurations
for evaluation according to the tuned parameters. Classifier gen-
erated 10 generations each with 50 population sizes. Models are
fitted and evaluated against the training data in one grid search
10 fold cross-validation. The best pipeline is the one that has
the highest CV score of 90%. TPOT classifier is run on the im-
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balanced dataset. In the implementation, the TPOT classifier is
going to be run on the balanced dataset too.

5. RESULT ANALYSIS
Table-3 and Table-4 represent the results after applying some
machine learning algorithms on imbalanced data and balanced
data respectively.
From Table-3, we can see that SVM, Decision Tree, AdaBoost
and Random Forest performed equally well comparatively better
than Logistic Regression and Naive Bayes if we consider the ac-
curacy. But AdaBoost and Random Forest performed better than
other algorithms if we consider the f1 score.
From Table-4, we can see that Base, SMOTE, RandomOver-
Sampler, RandomUnderSampler and SMOTETomek resampling
strategies perform almost equal. Their results are almost simi-
lar to the results on the imbalanced data. But the results that are
generated after applying the NearMiss resampling technique are
worse. The results of the SMOTEENN resampling technique is
the best among them. The accuracy, precision, recall and f1 score
are 1 for the AdaBoost algorithm when SMOTEENN resampling
is used.

Table 3. Results after applying machine learning algorithms on
imbalanced data

Model Accuracy Precision Recall F1
score

SVM 0.89 0.89 0.89 0.89
Decision Tree 0.89 0.89 0.89 0.89
AdaBoost 0.89 0.90 0.90 0.90
Random Forest 0.89 0.90 0.90 0.90
Logistic Regression 0.88 0.88 0.88 0.88
Naive Bayes 0.85 0.87 0.87 0.87

6. CONCLUSION AND FUTURE WORKS
In this paper, a two-layer security firewall architecture in the
server-side application is represented that uses both non-data
mining techniques and data mining techniques to detect both
SQL and NoSQL injection attacks. A comprehensive compari-
son of several machine learning algorithms on both balanced and
imbalanced dataset is shown for best model evaluation to detect
NoSQL injection attacks. The hyperparameter optimization us-
ing both GridSearchCV and AutoML is also performed on the
NoSQL injection dataset. It is seen from the result analysis that
machine learning algorithms performed outstandingly on a bal-
anced dataset which is created from the SMOTEENN resampling
technique.
In the implementation, some new machine learning algorithms
like CatBoostClassifier, ExtraTreesClassifier, K Neighbour clas-
sifier, LDA(Linear Discriminant Analysis), Gradient Boosting
classifier, XGBoost classifier etc. are going to be applied as well
as deep neural network on both SQL and NoSQL datasets.
SQL injection dataset will be preprocessed for feature extraction.
A comprehensive comparison of several machine learning algo-
rithms on both balanced and imbalanced dataset will be shown
for best model evaluation to detect SQL injection attacks. The
deep neural network is also going to be applied to it.
Moreover, genetic algorithms will be used to find the feature
combinations that will produce the best-performing model.
In the future, we have plans to include another layer in the se-
curity firewall for detecting and preventing DDoS attacks using
data mining techniques.

Table 4. Results after applying machine learning algorithms on
balanced data

Sampling type Model Accu-
racy

Pre-
cision

Recall F1
score

Base SVM 0.92 0.89 0.91 0.89
Base Decision Tree 0.92 0.86 0.90 0.88
Base AdaBoost 0.91 0.90 0.92 0.91
Base Random Forest 0.92 0.90 0.92 0.91
Base Logistic Regres-

sion
0.90 0.84 0.90 0.86

Base Naive Bayes 0.92 0.89 0.87 0.88
SMOTE SVM 0.89 0.91 0.91 0.91
SMOTE Decision Tree 0.90 0.91 0.91 0.91
SMOTE AdaBoost 0.90 0.91 0.91 0.91
SMOTE Random Forest 0.90 0.91 0.91 0.91
SMOTE Logistic Regres-

sion
0.89 0.89 0.89 0.89

SMOTE Naive Bayes 0.86 0.89 0.89 0.89
RandomOver-
Sampler

SVM 0.90 0.91 0.90 0.90

RandomOver-
Sampler

Decision Tree 0.90 0.91 0.91 0.91

RandomOver-
Sampler

AdaBoost 0.90 0.91 0.91 0.91

RandomOver-
Sampler

Random Forest 0.90 0.91 0.91 0.91

RandomOver-
Sampler

Logistic Regres-
sion

0.89 0.89 0.89 0.89

RandomOver-
Sampler

Naive Bayes 0.87 0.89 0.89 0.89

NearMiss SVM 0.83 0.89 0.89 0.89
NearMiss Decision Tree 0.84 0.88 0.88 0.88
NearMiss AdaBoost 0.83 0.89 0.89 0.89
NearMiss Random Forest 0.86 0.88 0.88 0.88
NearMiss Logistic Regres-

sion
0.84 0.89 0.89 0.89

NearMiss Naive Bayes 0.88 0.89 0.89 0.89
RandomUnder-
Sampler

SVM 0.88 0.89 0.89 0.89

RandomUnder-
Sampler

Decision Tree 0.89 0.91 0.91 0.91

RandomUnder-
Sampler

AdaBoost 0.89 0.91 0.91 0.91

RandomUnder-
Sampler

Random Forest 0.88 0.91 0.91 0.91

RandomUnder-
Sampler

Logistic Regres-
sion

0.88 0.89 0.89 0.89

RandomUnder-
Sampler

Naive Bayes 0.87 0.87 0.87 0.87

SMOTEENN SVM 0.99 0.99 0.99 0.99
SMOTEENN Decision Tree 0.99 1 1 1
SMOTEENN AdaBoost 1 1 1 1
SMOTEENN Random Forest 0.99 1 1 1
SMOTEENN Logistic Regres-

sion
0.99 0.99 0.99 0.99

SMOTEENN Naive Bayes 0.99 0.99 0.99 0.99
SMOTETomek SVM 0.89 0.89 0.89 0.89
SMOTETomek Decision Tree 0.89 0.89 0.89 0.89
SMOTETomek AdaBoost 0.89 0.90 0.90 0.90
SMOTETomek Random Forest 0.89 0.90 0.89 0.89
SMOTETomek Logistic Regres-

sion
0.87 0.88 0.88 0.88

SMOTETomek Naive Bayes 0.85 0.87 0.87 0.87
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