

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

19

Effective Cryptographic Technique for Securing Cloud

Storage Systems

Isaac Kofi Nti
Department of Electrical &

Electronic Engineering
Sunyani Technical University

Sunyani, Ghana

Eric Gyamfi
Department of Electrical &

Electronic Engineering
Sunyani Technical University

Sunyani, Ghana

Marvin Appiah Osei
Department of Electrical &

Electronic Engineering
Sunyani Technical University

Sunyani, Ghana

ABSTRACT
Storing of data in the cloud (Cloud Computing) offers an

effective and quick way of granting access to ones

information from a third party service provider, providing

business expansion at a lesser cost. Cloud data storage

systems provide means to store bigger data in storage servers

[1]. The data stored in the cloud are stored and accessed from

the internet over a longer time, making data exposed to

hackers to steal stored and transmitted data over the cloud

environment, leading to data integrity loss and users of cloud

data unhappy. This paper proposed a novel cryptographic

techniques to enhance the security in cloud environment and

reduce the time associated with cryptographic encryption to a

minimum.

General Terms

Cryptographic Technique, Securing Cloud Storage Systems

Keywords

Cloud-Storage, Cryptographic-Tactics, Data Confidentiality,

Data Integrity, Data Storage

1. INTRODUCTION
The need for storage system for companies, businesses and

enterprise grows 50% approximately in every year, this leads

to a huge investment in storage facilities by organizations

which are underuse. On the other hand there is a high cost

associated with huge data management. Meanwhile every

business man wants to minimize risk and maximise profit,

hence to overcome the huge cost associated with data

management a lot of small and medium size organizations

ends up in outsourcing the storage of their organization data to

3rd party storage service providers that offer storage

management services and on-demand storing space [2].

Computing in the cloud (cloud computing) is among the latest

method in current dispensation for minimizing operation cost

and losses in today’s business world and information

communication and technology (ICT) age. Storage in the

cloud provides and convenience means of data shearing to

cloud users, cloud users can remotely store and retrieved data

in the cloud at easy [1]. Protecting data integrity in the cloud

has been a concern, because the physical possession of the

outsourced data is not known to the user. Computing in the

cloud permits cloud users to store their data in space so as to

make use of accessible on-demand services. Cloud computing

allows and offers small and medium scale businesses with

limited resources and budgets to achieve high savings and

improvement in productivity by employing cloud based

services such as project management for enhancing

collaboration among staff members.

One of the key concern in cloud computing adaptation is

security. Cloud data storage increases every day, hence a

secured mechanism is required to that data stored in the cloud

is secured from unauthorised access [1]. Security is key in

data stored in cloud environment [2] [3, 1]. The advancement

of outsourced storage to storage service dealers point out the

importance of mounting economical and efficient security

algorithms and methods to safeguard the information hold on

in an exceedingly networked storage system [2].

Ensuring the integrity of data distributed over cloud is a very

difficult challenge and the key solution to this challenge is to

employ cryptographic methods in cloud environs [1]. In this

paper we look at various cryptographic techniques proposed

by other researchers and propose an effective cryptographic

technique for securing data stored in the cloud, which will

bring improvement in current implementations of

cryptographic file systems: data veracity, key management for

cryptographic file systems by implementing lazy revocation,

and constancy of encrypted file objects.

2. CRYPTOGRAPHIC CLOUD

STORAGE
Cryptography (or cryptology) stand for “hidden secret” is the

practice and study of techniques for secure communication

within the presence of third parties (called adversaries). A lot

of usually, it is concerning constructing and analysing

protocols that overcome the influence of adversaries and that

are associated with many aspects in data security like

information confidentiality, information integrity,

authentication, and non-repudiation [4]. The information

stored might be make known or altered by any unauthorized

access, it is therefore vital to ensure that the user’s sensitive

data are secured. Data storage in cloud must be secured [5],

hence cryptographic techniques is adopted for data security in

the cloud. Figure 1 shows the cloud storage strategy.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

20

Owner

Crptographic Methods

Cloud

User

Data

Encrypted Data Download

Figure 1 Cloud Environment Strategy

Figure 1 shows cryptographic cloud storage, the data owner

secures the sensitive information from unlawful access

(hackers) by applying cryptographic methods to the sensitive

data. The encrypted data is then uploaded to the cloud

environs. The data is then decrypted and downloaded by the

authorized user. Two factors namely Integrity and

Confidentiality measure the strength of Cryptographic Cloud

Storage [1]. Confidentiality in cloud storage Cryptographic

means the user information or data is encrypted with the

advanced cryptographic techniques, which maintain the

secrecy of data [6]. Integrity in cloud storage is assurance that

the stored information in the cloud is and cannot be modified

by unauthorized people

2.1 Cryptographic Techniques
The main parts of a cryptographic storage service which might

be enforced by employing a completely different techniques,

out of that, some were aimed specially for cloud storage.

Within the starting of the Computing in the Cloud, common

secret writing technique similar to Public Key secret writing

was applied. This ancient methods doesn't offer the

anticipated result because it support one to at least one secret

writing sort of communication. Public Key secret writing isn't

extremely climbable. This gave rise to manoeuvre onward to

more advanced secret writing strategies. The advanced

cryptographic strategies comprises the below secret writing

strategies.

 Searchable Encryption

 Asymmetric Searchable Encryption (ASE)

 Symmetric searchable encryption

 Identity Based Encryption

 Homomorphic Encryption

 Cloud DES Algorithm

 Attribute-based Encryption

 KP-ABE

 MA-ABE

 CP-ABE

2.1.1 Searchable Encryption

Searchable symmetric encryption (SSE) allows an

organization to source the storage of their data to a unique

party in an exceedingly very personal manner, whereas

maintaining the pliability to by selection search over it. This

disadvantage has been the main focus of active analysis and

lots of security definitions and constructions are planned.

Private-key storage outsourcing [7] permits shoppers with

either restricted resources or restricted experience to store and

distribute large amounts of symmetrically encrypted info at

low worth. Since regular private-key secret writing prevents

one from searching over encrypted info, purchasers jointly

lose the facility to selectively retrieve segments of their info.

To influence this, several techniques area unit projected for

provisioning bilaterally symmetric cryptography with search

capabilities [7]; the ensuing construct is typically referred to

as searchable cryptography. The house of searchable

cryptography has been known by office together of the

technical advances, which is able to be accustomed balance

the requirement for every privacy and national security in

information aggregation systems.

2.1.2 Symmetric Searchable Encryption (SSE)
It is acceptable for the environs wherever a client that searches

the information is accountable for the information generation.

One Writer/Single Reader (SWSR) comes from cloud storage

word. SSE techniques were given in [8] and magnified

constructions and security terms [7]. SSE has 2 major edges

they're efficiency and security, even though it has

disadvantages like usefulness and trade-off efficiency, SSE

techniques are acceptable for the individual that perform the

encryption and for the person that searches with a keyword

from the cloud storage system. SSE are mostly economical

because, pseudo-random functions and as well as block

ciphers for encryption purpose. In [7], the researchers affirms

that search technique is efficient and effective, since SSE

permits pre-processed data through efficient represent in

information structures.

2.1.3 Homomorphic Encryption
The Homomorphic encryption concepts explain by Ronald

Rivest et al. cited by [9]. This encryption technique is useful

in the cloud environs to protect the records. The

Homomorphic encryption Homomorphic encryption concepts

permits performing computations on the encrypted data. It is

only of the advanced cryptographic technique. The key

drawback of homomorphic encryption is given [10] as been

slow with respect to processing time during computation.

2.2 RELATED WORK
2.2.1 Cryptographic file systems Integrity
Most existing cryptographic file systems shows that there is a

quid pro quo in the middle of the amount of server-side

storing of integrity data and the access period to read and

write discrete file chunks [2]. ECFS proposed by [11], TCFS

proposed by [12], these two are an advance of [13], NASD

proposed by [14] and SNAD are the most universally integrity

cryptographic techniques. This approaches stores a keyed hash

or a hash for every blocks on the server, their output is a linear

storage for integrity in the numeral of chunks at the storage

server and unchanged access period. Cepheus by [15] and

SUNDR by [16] proposed a methodology where for every file,

a Merkle hash tree plotted on the ith-node tree of the file. The

authentication root of the hash key is only stored on the

storage server, which contributes to an increase in the period

involved in checking the integrity of chunks (blocks) and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

21

chunks content update. Another approach called SIRIUS

proposed by [17] provides a storage of digital signature for

every file, making the entire file to be read whiles checking

the integrity of individual block in the file.

2.2.2 Authenticated Encryption
An authenticated encryption proposed by [18, 19] makes use

of a cryptographic basic that offers communication and

privacy authenticity at the same period. The customary tactic

for building true encryption is by all-purpose configuration,

thus, a mishmash of an unforgeable communication (message)

authentication code (MAC) and a secure encryption pattern.

On the other hand, [18] did an analysis of the composition

security and made available proofs, that some of the generally

whispered secure compositions are in fact insecure. It believed

the authenticated encryption method employed in SSL and

SSH is evidenced to be insecure by Krawczyk (2001) cited by

[2] and [20], respectively. An advance integrity mechanism

was proposed by [20] that offer protection against repeat and

out-of-order transfer attacks for network protocols. We make

focus on the storage scenario integrity which makes a

difference from the network case proposed by [20].

A parallel computing as a means to enhance the performance

of cryptography was proposed by [21], his proposed method

addresses the matter of enhancing the performance of robust

cryptographic algorithms that are normally used and executed

by most internet users.

Another methodology to reduce the encryption speed was

proposed by [22]. In their system, a combinations the benefits

of multiprocessing and cryptological algorithms was used.

The employment of multiprocessing enhances the speed of

system when compared to the normal crypto systems. During

this approach they have divided a file into two slices and have

applied one rule with totally different key for every slice and

the processing of the algorithm is done in a parallel

environment. From the experiments it's distinguished that the

execution time of a cryptological rule is significantly reduced

during a parallel environment in comparison to the generic

ordered ways.

Hur, explains the cryptographically based mostly solution for

data sharing mistreatment cipher-text policy attribute-based

encryption (CP-ABF) to boost the security of the data. In this

technique the data owners defines the access policies on the

information to be distributed [23]. The foremost downside of

this technique is that the unauthorized users will access the

key to decipher the encrypted information.

The above discussion points outs that there is a need for a

faster and efficient crypto algorithm for present applications.

This paper therefore propose a cryptography algorithm that

breaks every file (message) into three separate chunks and

perform parallel encryption to reduce the encryption time.

3. METHODOLOGY
The encryption is a process of making plaintext to cipher-text

and decryption is converting cipher-text to plain text.

Performing these processes in the same in sequential way is

always consumes a lot of time. The proposed method thus the

implementations of the encryption and decryption in parallel

way using threads. A subdivision approach is used to divide

the plaintext into N number of chunks with equal size, each

chunk is then moved to the threads, which each threads takes

these chunks of the data as input and then encrypts them and

present the encrypted text as outputs. All the various outputs

are put together to form a single file as shown in figure 2.

Subdivision

Algorithm

Chunk (A) Chunk (B) Chunk (C)

PEa PEb PEc

Encrypted

File

Plaintext

Figure 2 Parallel Encryption Phase

Subdivision

Algorithm

Chunk (A) Chunk (B) Chunk (C)

PEa PEb PEc

Plaintext

Encrypted

File

Figure 3 Parallel Decryption phase

The approach is tested on Caesar cipher method and

transposition method on text file. The implementation is

done on sequential and parallel way for the same input file.

The key selection is done using user input. For encryption

process equation 1 is use, whiles decryption process equation

2 is used. Both equation 1 and 2 shows how the encryption

and decryption are done using single key on the given input

text data.

The implementation steps for encryption is as given bellow.

 Read the given plaintext file.

 Split the file into number of chunks.

 Create the threads and assign each chunks to the

created threads.

 All the chunks are encrypted in parallel using

threads.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

22

 Write the result to a new file which is an encrypted

file.

The parallel implementation steps for decryption are as given

bellow.

 Read the given cipher text file.

 Split the file into number of chunks.

 Create the threads and assign each chunks to the

created threads.

 All the chunks are decrypted in parallel using

threads.

 Write the result to a new file which is a decrypted

file.

4. RESULTS AND DISCUSSIONS
The sequential process of encryption take time [21] as the size

of file increases. In this work same sequential process of

encryption was implemented by means of threads base on

parallel for loop, and it was observed that, the performance

(speed) improved compared to the traditional sequential

method. The results proves that using threads execution

reduces time to a half required in traditional sequential

execution of the same content (plaintext) seize, but as the

number of threads increases, the performance will be

degraded.

4.1 Encryption phase
Figure 4 shows a sample plaintext to be fed into the proposed

algorithm subdivision section and figure 5 shows the output of

the subdivision, which the input plaintext is subdivided into

three equal chunks, which are supplied to parallel encryption

process.

Figure 4 Sample Plaintext

Figure 5 Input File Break into Chunks File

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

23

Figure 6 The Encrypted Output of each chunk

Figure 7 Combined Encrypted File

4.2 Decryption Phase

Figure 8 Decrypted Output of each Chunk File

Figure 9 Combine Output of Decrypted File

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

24

Figure 6 shows the output of each encrypted chunk file, the

various outputs are combined to give a completed encrypted

file of the input plaintext as shown in figure 7.

Figure 8 and 9 shows the output files obtained after

decryption, the complete encrypted file is broken into chunks

and each chunk file decrypted separately and the results

combined to form one file as shown in figure 9.

4.3 Discussions
The execution time is used as the basic for ascertaining the

performance of AES parallel and natural for loop algorithm

[24]. Thus the performance of an encryption algorithm is

inversely proportional to the time taken to encrypt the file.

The lesser the time required for execution, the higher the

performance of the encryption algorithm. Table 1 and 2,

figure 9, 10, 11 and 12 shows the time involved in the

encryption and decryption methods of the proposed

framework and the traditional sequential algorithm.

From table 1 it is seen that using the proposed method to

encrypt a data of 6Kb is 0.0484068 seconds faster than the

traditional sequential execution algorithm, a 0.0307668

seconds faster when input plaintext is 7Kb and 0.0420913

seconds faster for 9Kb input plaintext.

Table 1: Encryption with time performance

Serial

No.

Data

Size

Encryption

Time with

parallel

Algorithms

Encryption

Time with

natural for

loop

Algorithms

Variance

1 6 KB 0.0365364 0.0849432 0.0484068

2 7 KB 0.0342448 0.0650116 0.0307668

3 9 KB 0.0381994 0.0802907 0.0420913

Table 2: Decryption of Cypher text with time

Serial

No.

Data

Size

Decryption

Time with

parallel

Algorithms

Decryption

Time with

natural for

loop

Algorithms

Variance

1 8 KB 0.0293788 0.0681649 0.0387861

2 9 KB 0.0281139 0.0644594 0.0363455

3 11
KB

0.0347711 0.0625541 0.027783

Figure 9 Encryption Time Between parallel and for loop

Algorithms

Figure 10, shows the performance for the encryption and

decryption algorithms with different data size.

Figure 10 Performance Analysis of encryption time

In figure 11, the various execution time for decryption of the

cypher text is shown.

Figure 11 Decryption execution time of cypher text

Figure 12 Performance Representation of Execution Time

5. CONCLUSION
The paper presents a parallel for loop algorithm and a

comparative analysis with a natural for loop algorithm for data

encryption and storage in the cloud based on different set of

parameters. The results obtain reveals that parallel encryption

algorithm is highly efficient algorithm with a high value

throughput and performance based on execution time, and it is

highly secured (data integrity and confidentiality) and the best

power effective algorithm as compared natural for loop. It is

a high speed algorithm nonetheless it is cryptographically

secure.

0
0.05

0.1
0.15

0.2
0.25

Encryption Time
with parallel
Algorithms

Encryption Time
with natural for
loop Algorithms

Variance

4 KB 5 KB 7 KB

0%

20%

40%

60%

80%

100%

Encryption
Time with

parallel
Algorithms

Encryption
Time with

natural for loop
Algorithms

Variance

4 KB 5 KB 7 KB

0

0.05

0.1

0.15

0.2

0.25

Decryption Time
with parallel
Algorithms

Decryption Time
with natural for
loop Algorithms

Variance

6 KB 7 KB 9 KB

0%

20%

40%

60%

80%

100%

Decryption Time
with parallel
Algorithms

Decryption Time
with natural for
loop Algorithms

Variance

6 KB 7 KB 9 KB

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 4, July 2017 – www.ijais.org

25

6. ACKNOWLEDGMENTS
Our thanks to the almighty God for protection and guidance

and to all who have contributed towards development of the

research.

7. FUTURE WORKS
This paper offers application of encryption and decryption

algorithm for text file employing diverse cryptographic

methods using C# as programming language. The

encryption and decryption are implemented for Caesar

cipher and subdivision algorithm. The time involved with

sequential and parallel methods proposes that, employing

threads, it is possible to realize parallelism to enhance the

performance of encryption algorithms. The same comparison

may be done for different algorithms and for different input

formats in feature.

8. REFERENCES
[1] R. Kirubakaramoorthi, D. Arivazhagan and D. Helen,

"Survey on Encryption Techniques used to Secure Cloud

Storage System," correspondenceIndian Journal of

Science and Technology, vol. 8, no. 36, pp. 1-7, 2015.

[2] A. M. Oprea, Efficient Cryptographic Techniques for

Securing Storage Systems, School of Computer Science

Carnegie Mellon University Pittsburgh, PA 15213, 2007.

[3] D. Patil, R. Bhavsar and A. Thorve, "Data security over

cloud," in Emerging Trends in Computer Science and

Information Technology (ETCSIT2012) , 2012.

[4] M. Tahghighi, S. Turaev, R. Mahmod, A. Jafaar and M.

Said, "The Cryptanalysis and Extension of the

Generalized Golden Cryptography," in IEEE conference

on open system, Lankawi, Malaysia,, 2011.

[5] A. Bessani, M. Correia and B. Quaresma, "DEPSKY:

dependable and secure storage in a cloud-of-clouds.," in

6th Conference on Computer Systems (EuroSys’11),

2011.

[6] S. Yu, C. Wan, K. Ren and W. Lou, "Achieving Secure,

Scalable, and Fine-grained Data Access Control in Cloud

Computing," in IEEE Communications Society for

publication, 2010.

[7] C. Reza, G. Juan, K. Seny and O. Rafail, "Searchable

Symmetric Encryption: Improved defination and efficient

construction," 2006. [Online]. Available:

https://eprint.iacr.org/2006/210.pdf. [Accessed 12 March

2016].

[8] D. Wagner, D. Song and A. Perrig, “Practical techniques

for searching on encrypted data," in IEEE Symposium on

Research in Security and Privacy, 2000.

[9] D. Boneh and M. Franklin, "Identity-Based Encryption

from the Weil Pairing," in Proceedings of Cryptography

LNCS, 2001.

[10] C. Fontaine and F. Galand, "A survey of homomorphic

encryp¬tion for nonspecialists," EURASIP Journal on

Information Security, pp. 1-15, 2007.

[11] D. Bindel, M. Chew and C. Wells, "Extended

cryptographic file system," manuscript, 1999.

[12] G. Cattaneo, L. Catuogno and A. P. Sorbo, "The design

and implementation of a transparent cryptographic file

system for Unix," in USENIX Annual Technical

Conference 2001, 2001.

[13] M. Blaze, "A cryptographic file system for Unix," in

First ACM Conference on Computer and Communication

Security (CCS), 1993.

[14] H. Gobioff, D. Nagle and G. Gibson, "Integrity and

performance in network-attached storage," 1998.

[15] K. Fu, Group sharing and random access in

cryptographic storage file systems, Master’s thesis,

Massachusetts Institute of Technology (MIT), 1999.

[16] J. Li, M. Krohn, D. Mazieres and D. Shasha, "Secure

untrusted data repository," in 6th Symposium on

Operating System Design and Implementation (OSDI),

2004.

[17] E. Goh, H. Shacham, N. Modadugu and D. Boneh,

"SiRiUS: Securing remote untrusted storage," in Network

and Distributed Systems Security (NDSS) Symposium,

2003.

[18] M. Bellare and C. Namprempre, "Authenticated

encryption: Relations among notions and analysis of the

generic composition paradigm," in Asiacrypt 2000, 2000.

[19] J. Katz and M. Yung, "Unforgeable encryption and

chosen ciphertext secure modes of operation," in FSE

2000, 2001.

[20] M. Bellare, T. Kohno and C. Namprempre,

"Authenticated encryption in SSH: Provably fixing the

SSH binary packet protocol," in 9th ACM Conference on

Computer and Communication Security (CCS), 2002.

[21] O. Khalifa, "The performance of cryptographic

algorithms in the age of Parallel computing," Heriot Watt

University School of Mathematical and Computer

Science, 2011.

[22] S. Karthikeyan, Sairamn, G. Manikandan and J.

Sivaguru, "A Parallel Approach for Improving Data

Security," Journal of Theoretical and Applied

Information Technology, vol. 39, no. 15, pp. 1-7, 2012.

[23] J. Hur, " Improving Security and Efficiency in Attribute-

Based Data Sharing," In IEEE Transactions on

Knowledge and Data Engineering, vol. 25, no. 10, pp.

2271-2282, 2013.

[24] O. Nyarko- Boateng, M. Asante and I. K. Nti,

"Implementation of Advanced Encryption Standard

Algorithm with Key Length of 256 Bits for Preventing

Data Loss in an Organization," International Journal of

Science and Engineering Applications, vol. 6, no. 03, pp.

88-94, 2017.

