

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

22

A Framework for a Decision Support System to Optimize
Cloud-hosted Services for Multitenancy Isolation

Laud Charles Ochei
Department of Computer

Science
University of Port Harcourt

Rotimi Ogunsakin
Department of Computer

Science
University of Port Harcourt

Nemitari Ajienka
Department of Computing and

Technology
Nottingham Trent University

ABSTRACT
One of the challenges of optimizing the deployment of
components of cloud-hosted services for guaranteeing
multitenancy isolation is how to make optimal decisions that
involve resolving the trade-off between a lower degree of
isolation versus the possible interference that may occur
between components or a higher degree of isolation versus the
challenge of high resource consumption and the running cost
of the components. Although, many cloud providers offer some
functionality in the form of rule-based algorithms, such as
Amazon’s Auto-Scaling and Microsoft’s Windows Azure
Traffic Manager. These functionalities are deployed to
configure the scaling function of the cloud-hosted services but
do not implement the varying degrees of multitenancy isolation
for individual components. The aim of this paper is to present
a framework for developing a decision support system for
optimizing the deployment of components of cloud-hosted
services for guaranteeing multitenancy isolation. The
framework comprises of a decision support model algorithm, a
system architecture, and an algorithm for creating the input
files for implementing the decision support system. Extensive
experimental evaluation of the framework with a decision
support model algorithm shows that it can be used by cloud
providers and users to guarantee varying degrees of isolation
between tenants.

Keywords
Framework, Decision Support System, Cloudhosted Service,
Cloud Deployment, Optimization, Multitenancy, Tenant
Isolation.

1. INTRODUCTION
Applications and services are increasingly being deployed to
the cloud to be used by multiple tenants/ users, and there is
therefore a need to isolate tenants, processes, and components,
and thus implement multitenancy. Multitenancy architectures
are typically used for deploying components of cloud-hosted
services for multiple tenants/users. This is based on the
assumption that when tenants share resources, it would lead to
a reduction in resource consumption and running costs per
tenant.

Multitenancy is a software architecture where one instance of a
cloud offering is used to serve multiple tenants and/or
components [1] [2]. Figure 1 (adopted from Fiaidhi et al. [3])
represents general architecture for multitenancy cloud en-
vironments employing customer integration in three layers:
application, infrastructure and data-centre layer. A similar view
is shared by Walraven et al. [4] who emphasized that
multitenancy can be achieved at three levels: infrastructure
level1, middleware level2 and at the application level3.

Two of the most important challenges to address when
implementing multitenancy are: (i) how to ensure that there is
isolation between multiple components of a cloud-hosted
application when one of the components experiences high load;
(ii) how to guarantee the varying degrees of isolation between
tenants and components of the cloud-hosted services [1], [5].
Varying degrees of tenant isolation are possible, depending on
the type of component being shared, the process supported by
the component and the location of the component on the cloud
application stack (i.e., application level, platform level, or
infrastructure level) [6], [1].

Fig. 1: Overview of a Generic Multitenancy Cloud Architec- ture, adopted from [3]

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

23

A high degree of isolation can be achieved by deploying an
application component exclusively for one tenant. This would
ensure that there is little or no performance interfer- ence
between the components when the workload changes.
However, because components are not shared (e.g., in a case
where there are strict laws and regulations preventing them
from being shared), it implies duplicating the components for
each tenant, which leads to high resource consumption and
running costs. Overall, this will limit the number of requests
allowed to access the components. A low degree of isolation
may also be required for a component, for example, to allow
sharing of the component’s functionality, data, and resources.
This would reduce resource consumption and running costs,
but the performance of other components may possibly be
affected when one of the components experiences a change in
workload [7].

This leads to an optimal decision-making issue with regard to
the trade-off between a lower degree of isolation versus
possible interference that may occur between components or a
high degree of isolation versus the challenge of high resource
consumption and the running cost of the component. In other
words, this is a decision-making problem that requires an
optimal decision to be taken in the presence of a trade-off
between two or more conflicting objectives [8], [9].

Existing approaches to address this problem often look at it
from the perspective of the cloud provider (i.e., SaaS, PaaS or
IaaS). For example, many cloud providers offer some
functionality in the form of rule-based algorithms, such as
Amazon’s Auto-Scaling and Microsoft’s Windows Azure Traf-
fic Manager. In addition, some optimization models have been
proposed for use by SaaS providers such as Salesforce.com.
Although these tools and models can be deployed to configure
the scaling function of the cloud-hosted services, they do not
implement the varying degrees of multitenancy isolation for
individual components.

Motivated by this problem, this paper presents a framework for
developing a decision support system for: (i) optimiz- ing the
deployment of components of cloud-hosted services for
guaranteeing multitenancy isolation; (ii) making optimal
decisions when faced with the trade-off between a lower degree
of isolation versus the possible interference that may occur
between components or a high degree of isolation versus the
challenge of high resource consumption and the running cost
of the components. The framework comprises of a decision
support model algorithm, a system architecture, and an
algorithm for creating the input files for implementing the
decision support system.

The framework has been extensively evaluated by com- paring
the solutions obtained from our framework with the optimal
results obtained from an exhaustive search of the entire solution
space for a small problem. The main research question to
address in this paper is: “How can we make optimal decisions
that involve resolving trade-offs between conflicting objectives
to support the deployment of components of a cloud-hosted
service for guaranteeing multitenancy isola- tion?”. To the
best of our knowledge, this study is the first to present a
framework for developing a decision support system for
making optimal decisions for resolving trade-offs between
conflicting objectives when deploying components of a cloud-
hosted system to guarantee multitenancy isolation. This paper
looks at the problem from the perspective of a tenant who
knows in advance the number of tenants or users to grant
access to its service or components, owns software
components and is responsible for configuring them to design

and deploy its cloud-hosted application on a shared cloud
platform not controlled by the cloud provider. Many cloud
providers offer runtime information of components and mon-
itoring information, for example, information about network
availability and utilisation of components deployed on their
cloud infrastructure. It is the responsibility of the customer to
extract, deduce and interpret these values and then provide
important decisions regarding, for example, the availability
of components, provisioning of required components and
decommissioning of unused components.

This paper extends and expands on the previous work
conducted by Ochei et al. [7]. We summarise the additions to
the previous work as follows. Firstly, a framework is provided
that can be used by cloud providers and users to develop a
decision support system for optimizing the deploy- ment of
components of cloud-hosted services for guaranteeing
multitenancy isolation. Secondly, we modified the previous
decision support model algorithm to include a module to further
evaluate the results of the optimization model. Thirdly, the
system architecture for Decision Support System has also been
modified in line with the inclusion of the module to evaluate
the decisions support systems. Fourthly, we include an
algorithm for creating input files for running the decision
support system. The instance file represents a typical structure
of components of a cloud-hosted service. Fifthly, an extensive
experimental evaluation of the decision support system with
two variants of a metaheuristic which are based on a simulated
annealing algorithm and hill climbing. Lastly, recommenda-
tions and best practice guideline for using the decision support
system has been provided.

The main contributions of this paper are:

1) Creating a novel decision support model algorithm
called optimalDSS, together with a system
architecture called optimalDssArch for making
decisions regarding the deployment of components of
a cloud-hosted service with guaranteed multitenancy
isolation. The paper also includes a novel
evaluateDSS algorithm for analysing optimal
solutions and other related information for mak- ing
the best decisions for the optimal deployment of
components.

2) Presenting a novel algorithm for creating input files
(i.e., instance file, service demand file and workload
files) for running the decision support system. The
algorithm can generate input files all at once. In
particular, the instance file represents a typical
structure of components of a cloud-hosted service.

3) Extensive experimental evaluation of the decision
sup- port system with two variants of a metaheuristic
which are based on a simulated annealing algorithm
and hill climbing.

4) Presenting recommendations and implications for
prac- titioners for using the decision support system
to deploy optimal components to the cloud for
guaranteeing mul- titenancy isolation.

The rest of the paper is structured as follows: Section

II reviews prior related studies to the work presented in the
paper. Section IV described the guaranteed multitenancy
decision support system framework while Section V described
the Decision Support Model Algorithm called optimalDSS to
assist decision makers (e.g., software architects and cloud
developers). Section VI describes the dataset, and experimental

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

24

setup while Section VII describes the derived results from the
experiments. The results are then discussed in Section VIII and
the implications of the study for practitioners (e.g., cloud
engineers) are discussed in Section IX. Finally, the study is
summarised and concluded in Section XI with plans for further
work outlined therein.

2. REVIEW OF RELATED WORK
In this section of the paper, we review some of the related work
to this study. To the best of our knowledge, this study presents
a novel decision support algorithm for cost-effective cloud
component deployment while guaranteeing multitenancy
isolation.

2.1 Related Work on Multitenancy
Isolation
Multitenancy isolation has recorded considerable traction in the
cloud computing domain in the past years. Multitenancy
Isolation is paramount to ensure each user accessing a cloud-
hosted service is insulated from the interference that may occur
as a result of the activities of other cloud users, and that each
cloud user’s data are not visible to other cloud users.

Pathirage et al. [10] argued that multitenancy could en- able
cloud middleware that maximizes sharing and supports near-
zero costs for unused applications. According to Fiaidhi et al.
[3], the three main ways of achieving multitenancy in cloud
environments are: using databases, virtualization or physical
separation. Walraven et al. [4] emphasized that multitenancy
can be achieved at three levels: infrastructure level using
virtualization; middleware level using shared OS and
middleware; and at the application level where maximum cost
efficiency is achieved by sharing the underlying infras-
tructure, database, OS, middleware and application between
different tenants. The authors explored the challenges of
performance isolation in view of multitenant software-as-a-
service (SaaS) cloud applications and proposed a middleware
architecture prototype which enforces performance isolation
based on tenant-specific SLAs using a tenant-aware profiler
and scheduler. Differently from the study in [4], our decision
support algorithm does not rely on the tenants’ SLAs. Cai et al.
[11] on the other hand proposed and developed a 3-step
transparent approach to enable an existing web application to
support multitenancy when migrated to the cloud. Calero et al.
[12] proposed an authorization model for controlling access to
resources in a multitenancy cloud environment. The basic
authorization model that takes into cognizance a 3-tuple, which
are the subject, its privilege, and the object of interest, was
extended to enable multitenancy support.

Hence, Ochei et al. [6] resolve to analyze the degree of tenant
isolation for cloud-hosted software services. The authors posit
that guaranteeing multitenancy isolation requires making
optimal decisions regarding the trade-off between a lower
degree of isolation versus the possible interference that may
occur between components or a high degree of isolation versus
the challenge of high resource consumption and the running
cost of the components.

2.2 Related Work on Optimal Deployment
of cloud-hosted Services
Research work on optimal deployment and allocation of cloud
resources on the cloud is quite significant. However, there has
been little or no work on providing an optimal solu- tion for
deploying components of a cloud-hosted application in a way
that guarantees the required degree of multitenancy isolation.
In [13], the authors used an evolutionary algorithm to minimize

resource consumption for SaaS providers and improve
execution time. The authors in [14] and [15] used a multitenant
SaaS model to minimize the cost of cloud infrastructure.
Heuristics were not used in this work. The authors in [16]
developed a heuristic for capacity planning that is based on a
utility model for the SaaS. This utility model mainly considers
the business aspects related to offering a SaaS application with
the aim of increasing profit.

The authors in [17] proposed a geography- aware task
scheduling (GATS) approach by considering spatial variations
in a cloud environment (e.g., a distributed green data center

- DGDCs) to maximize the total profit of the cloud provider by
intelligently scheduling tasks of all applications. Also, [18]
proposes a revenue-based workload admission control method
to judiciously admit requests by considering factors including
priority, revenue and the expected response time. Then, this
paper presents a cost-aware workload scheduling method to
jointly optimize the number of active servers in each CDC, and
the selection of Internet service providers for the CDCs
provider. In [19] a new approach to optimize the profit of
VCDC based on the service-level agreements (SLAs) between
service providers and customers. Heuristics based on simulated
annealing and particle swamp optimization were used in this
work.

In [20], the authors described how the optimal configuration of
a virtual server can be determined, for example, the amount of
memory to host an application through a set of tests. Fehling et
al [21], considered how to evaluate the optimal distribution of
application components among virtual servers. A closely
related work to ours is that of Aldhalaan and Menasce [22],
where the authors used a heuristic search technique based on
hill climbing to minimize the SaaS cloud provider’s cost of
using VMs from an IaaS with response time SLA constraints.
Related work on multitenancy isolation has largely focused on
isolation at the data tier [23]. The main aspect of isolation is
usually performance isolation. For example, the authors in

[24] mainly focus on performance isolation in a multitenant
application in the cloud. The varying degrees of multitenancy
isolation based on multitenancy patterns and the different
aspects of isolation are described in [25].

Most work on optimal deployment and allocation of cloud
resources on the cloud focuses on minimising the cost of using
the cloud infrastructure resources [13]. Previous work concern-
ing the optimization of cloud resources does not use heuristics
at all, although a few use simple heuristics. For example, the
authors in [26], [22] used a heuristic based on hill climbing for
minimising the cost of SaaS cloud providers with response time
SLAs constraints. This study, unlike others, focuses on
providing an optimal solution for deploying components of a
cloud-hosted application in a way that guarantees the required
degree of multitenancy isolation.

2.3 Related work on Decision Support
System for Optimal Deployment of Cloud-
hosted services
There are several works on developing decision support
systems for performing different kinds of cloud operations. For
example, Sri and Balaji [27] developed a speculation-based
decision support system for efficient resource provisioning in
the cloud data centers. The decision support system guaranteed
to dodge over/under utilization of resources and minimized the
cost economically without compromising the Quality of
Service.

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

25

Mathirajan et al [27] developed a cloud-based decision support
system (C-DSS) for transport analytics. The C-DSS is based on
an intelligent model on location of depots for opening new
depots and/or closing a few existing depots and allocation of
city-buses to depots. Andrikopoulos et al. developed decision
support for application migration to the cloud [28]. Menzel and
Ranjan developed CloudGenius, a decision support for web
server cloud migration [29].

This study, unlike other decision support systems, focuses on
providing a decision support system for providing an optimal
solution for deploying components of a cloud-hosted service in
a way that guarantees the required degree of multitenancy
isolation.

3. PROBLEM FORMALIZATION AND
NOTATION
Before we describe the framework, it is important to un-
derstand the formalisation of the problem that motivated the
development of the framework. The reader is referred to the
previous work conducted by Ochei et al. to understand the
problem formalization and notation including the system model
and description of the problem, the optimal function of the
problem, and the mapping of the problem to a multi- choice
multidimensional knapsack problem (MMKP) [7]. It is
important to note that the model for the optimal component
deployment problem assumes that CPU, RAM, Disk, and
Bandwidth service demands are known or easily measured. The
cloud provider can provide third-party tools to measure this, or
the SaaS customer can extract and measure the data. These
sections will not be repeated in this paper.

The problem that motivated the development of the frame-
work has several application areas such as optimal allocation in
a resource-constrained environment, monitoring runtime
information of components, and controlling the provisioning

and decommissioning of components in a cloud environment.
As a specific example, consider a version control system (e.g.,
subversion) configure to record changes to a file or set of files
(e.g., source code) over time so that you can recall specific
versions later. In such a system, the shared component would
be better for reducing resource consumption while the
dedicated component would be better to avoid performance
interference. However, this might not necessarily be so because
as additional copies of the files are created in the repository, the
disk space consumed continues to enlarge. Over time,
performance begins to degrade as more time is spent searching
across many files on the disk. This is a trade-off decision that
required a decision support system to analyse the set of optimal
solutions together with other related information to provide an
optimal decision for deploying the components to the cloud.

4. A FRAMEWORK TO DEVELOP A
DECISION SUPPORT SYSTEM FOR
GUARANTEEING MULTITENANCY
ISOLATION
The framework is first presented as part of an input- process-
output (IPO) model (see Figure 2). This approach is widely
used in systems analysis and software engineering for
describing the basic structure of a service or process [30], [31].
In our case, the model represents a cloud-hosted service that
can be designed to use or integrate with several components
and/or other services. In using the IPO model, the framework
receives inputs from a user (that is, a cloud provider or a cloud
user), sends it to the decision support system which carries out
some analysis and optimization, and then returns decisions
regarding multitenancy isolation. Such decisions could be, for
example, the optimal solutions regarding the required degree of
isolation; optimal solutions that would allow a certain number
of requests to access a component; or a whole system, or a
notification when a certain threshold is reached.

Fig. 2: Framework for developing a decision support system to deploy cloud-hosted services for guaranteeing multitenancy

isolation (as part of an Input-Process-Output Model)

The main architecture for the decision support system is
presented in Figure 3. It is important to note that the main
addition to the architecture in our previous work [7] is the
decision analyzer. In the previous architecture, the main output
was the optimal solutions. This can be likened to the usual
monitoring information provided by cloud providers.
Although, many providers offer monitoring information, for
example, information about network availability and utiliza-
tion of components deployed on their cloud infrastructure.
However, it is the responsibility of the customer to extract,

deduce and interpret these values and then provide information
regarding the availability of components.

In our case, the optimal model will provide data regard- ing the
optimal values and the associated optimal solutions. However,
further analysis is required to provide information regarding the
set of solutions that would guarantee a low degree of isolation
and not just a high degree of isolation, or which optimal
solution(s) would guarantee a certain level of resource
consumption for certain components or the whole system.

Fig. 3: Architecture for Decision Support System.

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

26

Finally, we present a sequence diagram in Figure 4 to illustrate
the overall flow of tasks in using the components of the
framework to develop a decision support system for deploying

components of a cloud-hosted service for guaran- teeing
multitenancy isolation.

Fig. 4: Sequence Diagram for Implementing DSS

5. DECISION SUPPORT MODEL
ALGORITHM FOR OPTIMAL
DEPLOYMENT OF COMPONENTS
In this section, we describe the Decision Support Model
algorithm, optimalDSS, to assist decision-makers (e.g., soft-
ware architects, cloud developers) in analyzing different cloud
deployment scenarios for deploying components of cloud-
hosted software, to guarantee multitenancy isolation. In this
paper, we provide the main algorithm which can be used to
drive the decision support system (DSS). The DSS can be
implemented in different ways such as a desktop application,
web application or cloud-based hosted service, or embedded
into other applications running on the cloud or distributed
environment.

It is important to note that the DSS provided in this paper can
be seen as an abstract format that allows the implemen- tation
of a decision support system for optimal deployment of
components to the cloud in various ways. It captures the
essential properties required for the successful implementation
of DSS for optimal deployment of components of a multitenant
cloud-hosted service while leaving large degrees of freedom to
cloud deployment architects depending on the required degree
of isolation between components, and the deployment
environment. Furthermore, our approach can be applied at
different levels of the application or cloud stack as long as the
components can be represented as described in the optimization
model.

5.1 OptimalDSS: An algorithm for Decision
Support Model
This section describes the OptimalDSS algorithm first pre-
sented in our previous work [7]. This algorithm is repeated here
for ease of reference, and clarity, and to show how this
algorithm fits into the Decision Support System. The
optimalDep model presented in our previous work [7] maps to
the optimizer module in the architecture for the decision sup-
port system shown in Figure 3. The goal of the optimizer is to
address the problem of providing optimal solutions and other
related information (e.g., the number of function evaluations to
produce the optimal value, the magnitude of deviation of the
optimal value from the target solution) for deployment to the
cloud in such a way that meets the system requirements and
also provides the best value for the optimal function. The
OptimalDSS algorithm is an extension of the optimalDep. In
this algorithm, we have added a module referred to as:
evaluateDSS, which can be embedded within the optimalDSS
or implemented as a separate module. In short, Algorithm 2 is
an implementation of the evaluateDSS module in line 21 of
Algorithm 1.

Algorithm 1 optimalDSS Algorithm
1: optimalDep (workloadFile, mmkpFile)
2: optimalSoln ← null
3: optValue, isolValue, Req, Pen, optimalSoln ← null
4: Accept workload from SaaS users
5: Load workloadFile, mmkPfile; populate global
variables
6: repeat
7: /*Compute No. of req. using QN Model*/
8: for i ← 1, NoGroups do
9: for j ← 1,GroupSize do
10: Calculate Utilization
11: Calculate No. of req.
12: Calculate Total No. of req.
13: Store fitValue, Isol, qLength of optimal soln.
14: end for
15: end for
16: Update the mmkpFile with qLength
17: /*Run Metaheuristic-SA(Greedy) or
Hill(Greedy)*/
18: SA(GREEDY)() ← result
19: /*Encapsulate all result properties in Result
class*/
20: /*and return an object of Result class
21: EVALUATEDSS(RESULT)()
22: /*Display results from DSS*/
23: /*regarding optimal deployment*/
24: until no more workload
25: Return (DegreeIsoln, ResUtil, Perf)

Decision Analyser of the OptimalDSS Algorithm
The following example (Table III) shows the different ways of
evaluating the results of the Decision Support System. In this
paper, we look beyond the optimal value, which is an objective
function that is optimized in the optimization model presented
in our previous work [7]. That is, in addition to the optimal
value, we show how the optimalDSS can be used to provide
information regarding the degree of isolation of the
components, resource consumption, performance, and security.

Algorithm 2 evaluateDSS Algorithm

1: evaluateDSS (optimalResult)
2: worstOptVal, worstSoln ← null
3: worstIsolVal, worstReqNo, worstPen ← null
4: bestOptVal, bestSoln ← null
5: bestIsolVal, bestReqNo, bestPen ← null

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

27

6: /*set worstOptVal, bestOptVal as first item in list*/
7: worstOptVal, bestOptVal ← first value in list
8: for i ← 1,NoSimulations do
9: for j ← 1,resultSize do
10: if currenOptVal < worstOptVal then
11: /*replace the initial worst values by*/
12: /*the current worst values*/
13: worstOptVal ← currentOptVal
14: worstSoln ← currentWorstSoln
15: worstIsolVal ← currentIsolVal
16: worstReqNo ← currentReqNo
17: worstPen ← currentPen
18: end if
19: Store worstOptVal, worstSoln
20: Store worstIsolVal, worstReqNo, worstPen
21: if currentOptVal > bestOptVal then
22: /*replace the initial best values by*/
23: /*the current best values*/
24: bestOptVal ← currentOptVal
25: bestSoln ← currentWorstSoln
26: bestIsolVal ← currentIsolVal
27: bestReqNo ← currentReqNo
28: bestPen ← currentPen
29: end if
30: Store bestOptVal, bestSoln
31: Store bestIsolVal, bestReqNo, bestPen
32: end for
33: end for
34: /*Display worst and best values of DSS*/
35: Return (all required results from DSS)

Every time there is a change in the workload, the op- timalDSS
algorithm finds a new optimal solution for deploying
components with the highest degree of isolation and the highest
number of supported requests. This information is encapsulated
in the optimal value.

In line 18, the metaheuristic that runs to produce the optimal
algorithm returns a class that encapsulates the result properties
of the decision support system. In line 20, this result is then
analyzed in EvaluateDecision module to produce several
important pieces of information that can be used to make
optimal decisions regarding the optimal deployment of
components of cloud-hosted services. Such information may
include, may include but is not limited to: (i) the degree of
isolation of the components; (ii) resource utilization and
consumption of the components; (iii) performance (e.g., the
time required to produce optimal solutions for deployment)
computation time interference (iv) security interference (e.g.,
quality of optimal solutions, number and magnitude of penalty
violations) ; (v) deployment rate (that is, the rate at which
optimal components can be deployed).

The evaluateDSS algorithm works as follows: the input to the
algorithm is a group of objects 4 class object that encapsulates
all variables (e.g., number of simulations) and methods (e.g,
best and worse optimal solution) required to access the
information required for evaluation by the decision analyser.

After defining and initializing the variables and data struc- tures
(line 2-5) to store the required values, set a loop to iterate (line
8-9) and search through the optimal results based on the
conditions/rules provided to the decision analyser (line 10 and
line 20). In line 10, if the current worst value is lower

previous/initial worst optimal value, then replace the worst
optimal value with the current value. Other rules could be set
for the decision analyser. For example, set rules to specify that
a new set of components be selected for deployment once the
arrival rate of requests exceeds a defined threshold. The loop
continues until all the solutions are traversed. The selected
values are then stored and later displayed to the user.

We assume that the input of this algorithm (i.e., the optimal
results) is stored in a linear data structure (e.g., array list) and
the size of the data structure is N. The time complexity to find
the worst or best optimal value in the data structure is linear
O(N) and the space complexity is O(1).

6. EVALUATION
The decision support system is driven by the OptimalDSS
algorithm shown in Algorithm 1. This algorithm combines an
open Queuing Network model and a meta-heuristic to select a
set of optimal solutions for deployment to the cloud in order to
guarantee multitenancy isolation.

6.1 Dataset
The dataset used for simulation experiments on the opti-
mization model was based on a simulation test bed. There
are four types of datasets used in this study:

(i) MMKP Instance file: This file represents the
components and their properties.See section 6.2 for
an algorithm to gener- ate the MMKP instance.

(ii) Workload file: This file contains information about
the varying workload that the system is exposed to.

(iii) Service demand: This file contains information about
the service demands of the system.

(iv) MMKP Instance file: This file contains information
about the updated instance based on workload
changes.

The dataset was generated and tailored on the MMKP instances
widely cited in the literature: (i) OR benchmark Library [32]
and other standard MMKP benchmarks, and (ii) the new
irregular benchmarks used by Shojaei et al. [33].

4In most high-level programming languages like Java, this is
equivalent to a class which is used to represent a group of
objects which have common properties. Several MMKP
instances of various sizes and densities were randomly
generated following a Poisson distribution. The MMKP
problem instances represent a repository of compo- nents (e.g.,
database, a database table, a message queue, VM or docker
container) that can be deployed to design (or integrate with) a
cloud-hosted service. The weight values generated in the
MMKP instance could be normalised (or transformed) to
represent different resources units (gigabytes of memory) of the
components.

6.2 createInstance: An algorithm for
MMKP instance files
This paper also provides the createInstance algorithm (see
Algorithm 3), for creating all the input files required to run the
decision support system. The decision support system requires
three types of input files, namely, instance file, service demand
file and workload file. The algorithm shows how the three input
files can be created all at the same time, and once these files
have been created, they can be used as input into the decision
support system.

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

28

The createinstance algorithm works as follows:

The algorithm starts by defining and initializing the vari- ables
required for generating files for workload, service de- mand
and problem instance (line 2-6). Thereafter a loop is set up to
run from 0 to the number of workloads required (line 7-37). For
each iteration, first, calculate the resource limit for each
resource supporting the components (based on the specified
rule), and for each component group, calculate values for
isolation level, resource values, number of users, service
demands, and arrival rate (based on a Poisson distribution as
shown line 19), and write values to workload file and service
demand file, an instance file.

6.3 Experimental Settings and procedure
Aim of the Experiment: The aim of the experiment is to
evaluate the performance of the decision support system in
terms of the quality of solutions obtained when there are
varying workloads changes.

The instance-generating program and the algorithms were
written using Java programming with Apache Netbeans IDE
11.3. All experiments have been carried out on the same
computation platform, which is Windows 10 Pro running on a
SAMSUNG Laptop with an Intel(R) CORE(TM) i7-3630QM
at 2.40GHZ, with 8GB memory and 1TB swap space on the
hard disk.

In the experiment, we carried out 1000 function evaluations and
20 runs. This implies that we take the best and worst optimal
values out of 20000 solutions (1000 ˆ 20). This is a fairly large
number of solutions with which to evaluate the metaheuristic
that drives the decision support system. Table 2 shows the
parameters used for the experiments.

This study is novel and there are no existing approaches that
can be used to make a direct comparison with our approach in
terms of the quality of optimal solutions. This study is novel in
the sense that the optimalDep algorithm combines a Queuing
Network model and metaheuristics to find optimal solutions for
component deployment while guaranteeing the required degree
of multitenancy isolation. Because of this, the solutions
obtained from our approach were compared with the optimal
solutions obtained from an exhaustive search of a small
problem instance. Thereafter, the obtained solutions are also
compared with the target solution obtained from different
problem instances of varying sizes and densities.

Algorithm 3 createInstance Algorithm

1: createInstance ()
2: NoWorkloadFiles, NoGroups, NoComp, NoConstr ←
0

3: CPUlimit, RAMlimit, Disklimit, BWlimit ← 0
4: maxCPU, maxRAM, maxDisk, maxBW ← 0
5: Create new instanceFile, worklaodFile,
servicedemandFile
6: ARate ← 0
7: for i ← 1, NoWorkload do
8: Calculate Resource limit
9: Write instance, resource properties to workload
file
10: Write instance, resource properties to serv.
demand file
11: for i ← 1, NoWorkload do
12: Write instance properties to instance file
13: Write Resource limits to file
14: end for
15: Write instance properties to service demand
file
16: Write Resource limits to service demand file
17: for i ← 1, NoGroups do
18: Write group size to instance file
19: Generate Arrival rate following Poisson
distribution
20: for i ← 1, NoWorkload do
21: Write group size to workload file
22: end for
23: Write group size to service demand file
24: end for
25: for i ← 1, NoGroups do
26: Generate isolnLevel, NoUsers, CPUlimit,
27: RAMlimit, Disklimit, BWlimit
28: Write isolnLevel, NoUsers, CPUlimit,
29: RAMlimit, Disklimit, BWlimit to
instance file 30: Create service demands for
the components 31: Write service
demands to file
32: for i ← 1, NoWorkloadFiles do
33: Write Arrival Rate and Service Demand
34: to workload file
35: end for
36: end for
37: end for
38: Close all files
39: Return (instanceFile, servicedemandFile,
workloadFile)

TABLE I: Experimental Parameters (based on Simulated An- nealing)

Open Multiclass QN

Model

Value

λ (offered load) [0,4]

Isolation Value [1,2,3]

No. of Requests [1,10]

Resource consumption [1,10]

Service Demands [0.15, 0.24]

Metaheuristic

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

29

No. of Iterations 1000000

Population size 1000

No. of Runs 20

Temperature T0 = st. dev of N randomly gener-

ated solutions (N=no. of groups)

Cooling Schedule Ti`1 “ T0 ̀ pA ´ T0q

7. RESULTS
This section presents the results of an extensive evaluation of
the DSS to show how we can deduce more information
regarding the optimal deployment of components of a cloud-
hosted service. This section compliments the results about the
quality of optimal solutions, robustness of solutions, and the
computational effort required to produce optimal solutions for
deploying components of cloud-hosted solutions discussed in
[7]. Results are shown in Table I to Table IV. Column 1 shows
the workload represented either as a single value for
increasing(or decreasing) arrival rates or as a set of values for
fluctuating(varying) arrival rates. Column 2 - 5 shows the
results shown in the following format - (worst-case value/best-
case value). The second column shows the worst and best set
of optimal solutions selected for deployment. The third column
shows the first optimal value associated with the worst or best
solution.

7.1 Small Problem Instance
This section presents results for a small dataset that rep- resents
a small problem instance. The small dataset has an instance file
with the following dimensions - C(10, 20, 4), that is, the
instance file has ten groups of components, 20 components per
group and is supported by four resource types

CPU, memory, disk space and bandwidth. The dataset also has
an accompanying service demand file and a workload file.

1) Components Experiencing the same workload:
Table II shows the results of a decision support
system for a workload (i.e., arrival rate) that
increases (or may decrease over time). In this
scenario, all the components in a particular group are
exposed to the same arrival rate.

Fig. 5: Workload Changes for increasing (or decreasing) arrival rates

In order to evaluate the degree of isolation of each optimal
solution we have to first obtain the solution with the lowest
optimal value and the solution with the highest optimal value.

For the results of HC(greedy) in Table II, when the system
experiences a workload of 3.9 (request/second) the lowest and
highest optimal value is 3036.34 and 3132.70, respectively.

In this study, we assume there are three degrees of tenant
isolation which also correspond to the three types of mul-
titenancy patterns that can be used to deploy components to the
cloud (shared pattern, tenant-isolated pattern and dedicated
pattern). The shared pattern guarantees the lowest degree of
isolation, and the dedicated guarantees the highest degree of
isolation, while the tenant-isolated pattern is in the middle [34]
[6].

The following computation shows how to deduce the required
degree of isolation decision using the decision support system.

1. Calculate the magnitude of the optimal solution for
the workload

𝑚𝑎𝑔 = 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡 − 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑒𝑠𝑡
(1)

From the above equation, Mag = 3132.70 - 3036.34= 96.36

2. Compute the range of values for a low degree of isolation
(i.e., shared pattern), a middle-level degree of isolation,
and the highest degree of isolation (i.e., the dedicated
pattern used for deployment). We assume that each of the
three degrees of isolation contains one-third of the
magnitude of the optimal values (that is, 33% of the
values) from the lowest degree to the highest degree of
isolation.

i. Low degree of isolation:
𝑚𝑎𝑔 = 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡 − 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑒𝑠𝑡

 (2)

ii. Middle-level degree of isolation
𝐼𝑠𝑜𝑙𝑛௛௜௚௛ = [(𝑀𝑎𝑔 − (𝑀𝑎𝑔 ∗ 0.33) −

𝑀𝑎𝑔] (3)

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

30

iii. High degree of isolation:
𝐼𝑠𝑜𝑙𝑛௛௜௚௛ = [𝑀𝑎𝑔 ∗ 0.33) − (𝑀𝑎𝑔 −

(𝑀𝑎𝑔 ∗ 0.33)] (4)

Assuming a cloud deployment architect wants to deploy
components of a cloud-hosted service that guarantee a low
degree of isolation, maybe to improve the sharing of resources
between the components and the system as a whole. Then the
cloud architect would choose an optimal value between 0 –

31.80. In this example, 31.80 (that is, 96.36 * 0.33) is the upper
bound of the magnitude of the optimal values. Assuming again

that this value is 25, then this will translate to an optimal value
of 3061.34. The minimum optimal value for the required degree
of isolation is therefore 3061.34 (that is, 3036.34 + 25) and the
maximum optimal value for the required degree of isolation is
3068.14 (that 3036.34 + 31.80). These two values become an
input to the decision support system, and it produces the
following optimal solutions: [18, 18, 1, 8, 4, 7,

10, 9, 3, 10].

Assuming the required optimal value is L (that is, 3061.34) and
the upper bound of the magnitude of the optimal values is

TABLE II: Results of DSS based on HC(Greedy) for workload with increasing(or decreasing) arrival rates

Workl
oad

Optimal Solutions Optimal
value

Isolati
on

value

No.
Request

Penalt
y

2.7 [9, 3, 1, 8, 13, 19, 2,
15, 3, 4]/

[6, 3, 1, 6, 4, 7, 11,
15, 14, 10]

2937.20/30
38.38

29/30 38.20/38.
38

0/0

2.9 [6, 18, 1, 3, 2, 7, 10,
15, 1, 10]/

[6, 1, 1, 15, 12, 7, 18,
5, 14, 19]

2946.17/30
44.76

29/30 44.76/48.
17

0/0

3.1 [6, 1, 1, 15, 4, 7, 9,
15, 14, 10]/

[6, 1, 1, 15, 4, 7, 9,
15, 14, 10]

2949.90/30
45.85

29/30 45.85/50.
90

0/0

3.3 [6, 18, 1, 3, 12, 7, 18,
12, 14, 19]/

[6, 6, 1, 6, 12, 7, 2,
12, 3, 19]

2956.09/30
56.24

29/30 56.24/58.
09

0/0

3.5 [6, 1, 1, 15, 4, 7, 9,
15, 14, 10]/

[6, 1, 1, 15, 12, 7, 18,
5, 14, 19]

2971.89/30
78.24

29/30 72.89/78.
24

0/0

3.7 [11, 3, 1, 8, 4, 10, 11,
15, 18, 19]/

[6, 3, 1, 15, 7, 7, 18,
12, 1, 4]

3004.50/31
01.91

29/30 101.91/10
6.50

0/0

3.9 [18, 18, 1, 8, 4, 7, 10,
9, 3, 10]/

[6, 6, 1, 6, 12, 7, 2,
12, 3, 19]

3036.34/31
32.70

29/30 132.70/13
7.34

0/0

U (that is, 3068.14). From an implementation point of view,
this translates to inserting the following rule (Algorithm 4) in
the EvaluteDecision module of the decision support system.

Algorithm 4 Algorithm for producing Optimal
Solution for specified Optimal Value
1: INPUT: req. optimal value
2: OUTPUT: optSoln, degofIsolation
3: optSoln ← null
4: if optSoln ≥ L AND optSoln ≤ U then

5: return current best optimal solution
6: end if
7: return (optSoln, degofIsolation)
3. Component Experiencing the Varying Workload:

Table III shows the results of the decision support
system for a cloud- hosted service that experiences
varying workload changes. In this scenario, different
components in the group experience varying
workloads. That is, the arrival rates for these compo-
nents follow a Poisson distribution. Figure 5 and 6

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

31

represent the workload for the first workload file in
Table III and V. In this workload file, the arrival
rates to each component group are given in the
following vector: [1,2,3,2,2,4,4,4,3,1,3]. We assume

that each workload changes every 60 minutes. In
some dynamic and real-time systems, these changes
can be much faster, for example, in seconds and
milliseconds.

Fig. 6: Workload changes for fluctuating (or varying) arrival rates

7.2 Large Problem Instance
This section presents results for a large dataset that rep- resents
a large problem instance. The large dataset has an instance file

with the following dimensions - C(500, 20,4), that is, the
instance file has 500 groups of components, 20 components per
group and is supported by four resource types

TABLE III: Results of DSS based on HC(Greedy) for work- load with fluctuating(varying) arrival rates

Workload Optimal Solutions Optimal
Value

Isol.

valu
e

No.
Request

Pen.

[1,2,3,2,2,4,
4,3,1,3]

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/

[18 3 14 12 17 10 0 18
11 10]

3047.48/3
052.48

30/3
0

47.48/5
2.48

0/0

[3,2,1,3,4,0,
2,2,4,2]

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10]

3077.68/3
082.69

30/3
0

77.68/8
2.69

0/0

[3,1,2,4,4,2,
1,3,4,2]

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10]

3069.01/3
074.01

30/3
0

69/01/7
4.01

0/0

[4,2,4,4,2,3,
3,4,2,3]

[0, 3, 13, 12, 13, 10, 0,
18, 4, 4]/

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10]

3061.04/3
066.04

30/3
0

61.04/6
6.04

0/0

[2,3,4,0,0,2,
2,1,2,3]

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10]

3039.13/3
043.13

30/3
0

39.13/4
3.13

0/0

[1,3,1,1,4,3,
3,3,2,0]

[5, 3, 8, 19, 17, 10, 16,
18, 11, 10]/

[18 3 14 12 17 10 0 18
11 10]

3025.71/3
030.71

30/3
0

30.25/3
0.71

0/0

[1,4,2,2,3,2,
2,4,1,1]

[5, 6, 2, 12, 17, 16, 10,
18, 4, 4]/

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10]

3039.90/3
044.90

30/3
0

39.90/4
4.90

0/0

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

32

TABLE IV: Results of DSS based on SA(Greedy) for work- load with increasing(or decreasing) arrival rates

Workl
oad

Optimal Solutions Optimal
Value

Isolation
value

No.
Request

Pen.

2.7 [6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/

[6, 1, 1, 15, 4, 7, 9, 15,
14, 10]

2837.21/3
040.40

28/30 38.21/40.
40

0/0

2.9 [6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/

[6, 3, 1, 15, 7, 7, 18,
12, 1, 4]

2945.17/
3047

29/30 48.17/ 47 0/0

3.1 [18, 18, 1, 12, 12, 12,
11, 5, 14, 19]/

[6, 18, 1, 3, 2, 7, 10,
15, 1, 10]

2846.84/3
050.53

28/30 46.84/50.
53

0/0

3.3 [9, 3, 1, 3, 16, 7, 10, 5,
3, 10]/

[6, 3, 1, 15, 7, 7, 18,
12, 1, 4]

2956.09/3
062.16

29/30 58.09/62.
16

0/0

3.5 6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/

[6, 1, 1, 15, 12, 7, 18,
5, 14, 19]

2881.41/
3086

28/30 82.41/86 0/0

3.7 [6, 3, 1, 3, 12, 1, 2, 12,
14, 7]/

[6, 1, 1, 15, 4, 7, 9, 15,
14, 10]

2881.99/3
101.91

28/30 81.98/101
.91

0/0

3.9 [6, 1, 1, 15, 4, 7, 9, 15,
14, 10]/

[6, 18, 1, 3, 12, 7, 18,
12, 14, 19]

2945.65/3
177.79

28/30 146.65/17
7.80

0/0

- CPU, memory, disk space and bandwidth. The
dataset also has an accompanying service demand
file and a workload file.

Components Experiencing the same workload: In this
scenario, all components in the group experience the same
workloads. The length of the array containing the best and
worst optimal solutions is very large. As a result, these optimal
solutions for the different workloads will not be represented in
a tabular form, as shown in Table II to V. Therefore, we will
only show the optimal value, isolation value, and the number

of requests for one workload with an arrival rate of 2.7 requests
per second.

Due to space limitation, we have shown sample optimal
solutions (i.e., the best and worst optimal solutions) for a large
problem instance (i.e., C(500,20,4)) when arrival rates in the
workload file are the same (i.e., 2.7 requests per seconds) and
also when arrival rates in the workload file vary is shown in
Appendices B. The problem instance is applied on SA(Greedy)
metaheuristics.

TABLE V: Results of DSS based on SA(Greedy) for workload with fluctuating(varying) arrival rates

Workload Optimal Solutions Optima
l value

Isol.

value

No.
Request

Pen
.

[1,2,3,2,2,4,4,
3,1,3]

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/

[0, 3, 4, 19, 17, 10, 0, 11,
12, 16]

2855.3
7/

3057.8
7

28/3
0

56.37/57.8
7

0/0

[3,2,1,3,4,0,2,
2,4,2]

[18, 3, 16, 19, 7, 16, 0,
7, 9, 12]/

[0, 12, 16, 19, 7, 16, 0,

2831.3
7/

3083.4

28/3
0

34.37/83.4
6

0/0

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

33

18, 9, 12] 6

[3,1,2,4,4,2,1,
3,4,2]

[5 6 2 12 17 16 10 18 4]/

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]

2858.8
7/

3074.0
1

28/3
0

55.96/126.
73

0/0

[4,2,4,4,2,3,3,
4,2,3]

[7, 6, 10, 19, 17, 10, 0,
11, 11, 16]/

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]

2864.1
8/

3076.9
9

28/3
0

65.18/76.9
9

0/0

[2,3,4,0,0,2,2,
1,2,3]

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/

[4, 6, 8, 12, 17, 10, 0, 18,
18, 0]

2822.4
6/

3043.1
3

28/3
0

25.46/43.1
3

0/0

[1,3,1,1,4,3,3,
3,2,0]

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/

[0, 3, 16, 6, 7, 16, 0, 18,
4, 12]

2828.2
9/

3032.6
1

28/3
0

30.29/32.6
1

0/0

[1,4,2,2,3,2,2,
4,1,1]

[0, 3, 2, 19, 7, 16, 0, 7,
13, 12]/

[0, 6, 13, 2, 11, 16, 0, 18,
4, 10]

2842.7
1/

3044.9
0

28/3
0

43.71/44.9
0

0/0

TABLE VI: Summary of results of DSS based on Large Dataset - C(500,20,4)

Meta-

heuristic

Workloa
d

Arrival

rate

Optimal

Soln

Optima
l

Value

Isolatio
n

value

No. of

Reque
st

 Same
arrival

HC(Greedy
)

2.7
req/sec
[Appendi
x A]

rate for
all
compon
ents in
all
groups

Append
ix B

151627.
98/

152295.
57

1488/1
494

2834.9
8/

2895.5
7

 Same
arrival

SA(Greedy
)

2.7req/se
c
[Appendi
x A]

rate for
all
compon
ents in
all
groups

Append
ix C

151175.
40/

151865.
32

1490/1
483

2876.4
0/

2863.3
2

Component Experiencing the Varying Workload: In this
scenario, different components in the group experience varying
workloads. In the workload file that represents varying arrival
rates to each component group, this can also be represented as
a vector whose length is 500. The reader can inspect the
attached workload file to see the order of the arrival rates. As
usual, it is assumed that each workload changes every 60
minutes. The instance file is applied both to HC(Greedy) and
SA(Greedy) metaheuristics.

8. DISCUSSION
In this section, the results derived from the evaluation of the
decision support system are discussed.

8.1 Degree of Isolation
The isolation value of the DSS can be used to infer the degree
of isolation of the systems. For the format used in computing
the optimal function, we can know the number of isolation
values. Best optimal values imply the highest combined value
of isolation for the set of optimal solutions. The worst
(minimum value) means the lowest combined value of
isolation. This corresponds to a low degree of isolation which
corresponds to a shared pattern. It has to be pointed out that this
is not necessarily an undesirable solution, from a practical point
of view. It simply means that the set of solutions allows
resources to be shared more flexibly. This may be a valuable

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

34

option for a business that is not interested in the highest degree
of isolation. These two options (i.e., low or high degree of
isolation) are in some sense at opposite extremes of a spectrum.
Between these extremes lies a third option, which translates to
specifying an optimal value between a given range.

8.2 Resource Utilization of the Components
The number of requests that can be allowed to access a
component is a very important parameter that can be used to
study the behaviour of the cloud-hosted system and thus make
a decision about the resources or capacity of the components
and the resources.

The decision support system provides information about the
number of requests that can access a component. This gives an
indication of the level of utilization of the components and the
system as a whole.

8.3 Performance Interference
The decision about the performance of the system can be
inferred from the decision support system. This is important in
a situation where there is a limitation in terms of time and

resources required to produce a stable and robust optimal
solution for deploying components of a large and complex
cloud system. Another situation is in a case where there are
limitations in the computation machine on which the decision
support system is executed, or it is infeasible to obtain the
optimal solution.

The number of function evaluations can be used to
answer this kind of question: Assuming there is a
limitation in terms of time, what are the optimal
solutions that can be provided for deployment to the
cloud?

8.4 Penalty violations
The magnitude of penalty violations by the solutions for
violating the constraints is an indication of the quality of the
solutions. Solutions with lower penalty values are regarded as
better solutions because the solutions had fewer violations of
the constraints of the problem. From a practical point of view,
it means that the solutions with fewer violations translate to a
lower cost of deployment of the components to the cloud.

TABLE VII: Summary of trade-offs, DSS parameters and effect on cloud-hosted service

S
N

Trade-offs for
considera-

tion

DSS
paramete

rs

Effect on Cloud-hosted
Service

1 tenant isolation
versus re-

source sharing

Isolation
value

If the isolation value from the
DSS is low, then it

means that the cloud consumer
has the ability to share
resources.

2 tenant isolation
versus the
number of users

No. of
requests

If the isolation value from the

DSS is high 5 then it

that the cloud consumer needs
more scope of control of the
cloud stack.

3 tenant isolation
versus

customizability

Isolation
value

If the isolation value from the
DSS is high then it

will be more flexible to
customize the cloud service

4 tenant isolation
versus

size of
generated data

Isolation
value

If the isolation value from the
DSS is high then it

means it will be more difficult
to achieve a high degree of
isolation if a large volume of
data is generated by the cloud
service.

5 tenant isolation
versus

scope of control

Isolation
value

If the isolation value from the
DSS is high (on the

upper one-third (of the
difference between the lowest
and highest optimal value)
then it that the cloud
consumer needs more scope of
control of the cloud stack. The
reverse is true for a low
isolation value.

6 tenant isolation No. ofIf penalty values are more, it

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

35

versus

business
constraints

requests,

Penalty
values
(security)

means that the com-

ponent or system is more
vulnerable to security
breaches.

9. RECOMMENDATIONS AND
CONSIDERATIONS FOR
IMPLEMENTATION OF DECISION
SUPPORT SYSTEM
This section discusses the recommendations and considera-
tions for practitioners (e.g., cloud providers and users) to use
the decision support system.

9.1 Optimal Decisions related to Trade-offs
for achieving the required degree of tenant
isolation
The DSS can be used to make trade-off decisions for con-
sideration when deploying components of cloud-hosted service
for guaranteeing multitenancy isolation. Table VII summarises
some of the key trade-offs to consider, the parameters to tune
on the DSS, and the effect on cloud-hosted service.

9.2 Evaluation of the Optimal Solutions for
the deployment of cloud-hosted services
The DSS can be used to evaluate the optimal solutions to be
deployed to the cloud. Specifically, the DSS can be used to
evaluate the quality of the solutions, the robustness of the
solutions, and the estimated computational time required to
produce the required optimal solutions for deployment. This is
particularly important to both a cloud provider as well as a
cloud consumer. For example, in a resource-constrained
environment, a cloud consumer would be interested in know-
ing the computation time (and resources) that would produce a
particular optimal solution. The reader can refer to our previous
work for details on evaluating key metrics for optimal
deployment of services to the cloud.

9.3 Optimal Decisions related to the Size
and Nature of Cloud- hosted Service
The size of the cloud-hosted service is also an important
consideration when making optimal decisions. This size could
be based on the number of existing components (i.e., a small or
large number of components), or the number of data generated
as a result of executing the cloud-hosted service. In the case of
a large cloud-hosted service, the DSS will take on a large input
dataset (for example, an instance file consisting of 500 groups
of components, 20 components per group and supported by
four resource types) together with an accompanying service
demand file, and a workload file). Without bias, our DSS is able
to produce the optimal value that corresponds to a suitable
multitenancy pattern out of the three possible patterns, which
also points to the associated degree of tenant isolation. Results
presented in Section VII show that the decision support
algorithm is scalable and can be applied to small or large
decision-making problems.

9.4 Optimal Decisions related to Aspects of
Isolation to im- prove in cloud-hosted
services
There are considerations for practitioners regarding the na- ture
of improvements to make to the cloud-hosted service us- ing
the DSS. Previous experimental work shows that the com-

ponents of cloud-hosted service deployed based on the shared
component pattern changed significantly for performance-
related parameters (e.g., response times, error%, and through-
put), while the dedicated component pattern changed sig-
nificantly for the system’s resource-related parameters (e.g.,
CPU, memory, and disk I/O) [6]. Therefore, the DSS can be
fine-tuned to make recommendations regarding the parameters
that support the deployment of components with the shared
pattern in order to improve the systems resource consumption
and vice versa for the deployment of components with the
dedicated pattern to improve the performance of the cloud-
hosted service.

9.5 Optimal Decisions requiring multiple
criteria
Our decision support system allows practitioners to perform
some degree of parameter tuning depending on the required
degree of isolation. For example, a cloud customer may want
to deploy components experiencing frequent workload changes
while at the same time enhancing the sharing of resources
between the components (and the whole system). In this case,
an optimal value between 0 and one-third of the difference
between the lowest and highest optimal value can be specified
as an input allowing the algorithm to produce an optimal
solution for the required degree of isolation. A slight
modification can be made to obtain the optimal solutions when
the isolation value or an average number of requests is
provided. Also, when a set of optimal solutions is given, it is
also possible to use the decision support system to estimate the
type of degree of isolation (and hence the type of multitenancy
pattern to use) and the average number of requests that can be
allowed to access the components or the whole systems.

10. SCOPE AND LIMITATIONS OF
THE STUDY
The focus of this work was to provide a framework for
developing a decision support system for providing an optimal
solution for deploying components of a cloud-hosted applica-
tion in a way that guarantees the required degree of multite-
nancy isolation. They can be adopted and implemented in a
flexible way to suit the particular deployment environment that
is required. The results in the previous work by Ochei et al. [7]
focused on an extensive evaluation of the optimization model
and a metaheuristic solution to provide a near-optimal solution
for deploying components of a cloud-hosted application in a
way that guarantees multitenancy isolation. Although the
results presented in this paper reflect solutions evaluated by
combining optimalDep with the Hill Climbing algorithm and
Simulated Annealing algorithm to find an optimal solution to
the optimization problem, other metaheuristics (e.g., genetic
algorithm, particle swamp optimization) can also be used.

The results presented in this paper are a significant extension to
the previous work by Ochei et al. [7] where the focus is on using
the data provided by the optimization model to assist decision-
makers in analyzing cloud deployment situations to guarantee
the required degree of multitenancy isolation. The algorithm
that drives the decision analyzer component of the framework
has been included in the paper. This is followed by a simple
example of the analyzer component provided in the result

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

36

section as part of experimentation.

The evaluation of results in our previous work focused on
comparing the solutions obtained from our approach with the
optimal results obtained first from an exhaustive search of the
entire solution space for a small problem and secondly with the
target solution. Although our previous work used hill climbing
and simulated annealing algorithm for illustra- tion purposes,
any recent and advanced meta heuristic (e.g, memetic
algorithm, particle swarm Optimization Algorithm) can also be
combined with optimalDep to produce optimal solutions as
explained and so will not be repeated in this study. This current
work focuses on how to further analyse the optimal solutions
and other related information produced by the optimalDep
algorithm using a decision support system. The paper describes
a component which is fed with data obtained from realistic
experiments conducted with real cloud- hosted software
development tools. We previously conducted separate case
studies to empirically evaluate the degree of tenant isolation in
three real-life cloud-hosted software devel- opment process
tools: continuous integration (with Hudson), version control
(with File SCM Plugin and Subversion), and bug/issue tracking
(with Bugzilla). The addition of modelling, simulation, and a
framework for implementing a decision support system,
constitutes a novel contribution to knowledge. [35], [36], [37].

11. CONCLUSION
In this paper, we have presented a framework that can be used
to develop a decision support system for users (e.g., cloud
deployment architects) to make decisions regarding the optimal
deployment of components of a cloud-hosted service for
guaranteeing multitenancy isolation. This work contributes to
the literature on multitenancy isolation and optimization of the
deployment of components of cloud-hosted services.

Multitenancy has become a key concept in the deployment of
cloud-based services. The challenge of implementing mul-
titenancy is not only how to ensure that there is isolation
between multiple components of a cloud-hosted service when
one of the components experiences high load, but also to
guarantee that the required degree of isolation between tenants
is attained [4], [6]. To address this challenge, this paper has
presented a novel decision support model algorithm (i.e.,
optimalDSS), together with a system architecture (i.e., op-
timalDssArch) for making decisions regarding the deployment
of components of a cloud-hosted service with a guarantee for
multitenancy isolation. In addition, a novel algorithm for
creating input files (i.e., instance file, service demand file and
workload files) for running the decision support system.

The study has revealed after extensive experimental evalu-
ation of the framework that it can be used by cloud providers
and users to make decisions regarding the optimal deployment
of components of a cloud-hosted service. Such decisions
include but are not limited to - the required degree of isolation
(i.e., lowest degree or highest degree of isolation, or even a set
of optimal solutions with a specific isolation value), resource
utilization, of components or tenants accessing the system,
performance issues (e.g., the best possible (optimal) solution
that can be within a limited or specified time interval.

In future, we plan to develop a decision support model for
predicting the availability of components of cloud-hosted
services based on the required degree of multitenancy iso-
lation. Availability can be used to indicate the uptime of a
system (or components of a system) over a sufficiently long
duration. In a cloud environment, the MTTR of different fault
recovery techniques can be explored to compute how long it

takes to bring the backup copy up to speed, and hence predict
the availability of components. In our study, we applied our
approach to optimise the deployment of components of cloud
services. We plan to apply our approach to optimise the profit
of virtualized cloud data centres (VCDCs) in a way that
guarantees varying degrees of isolation between the various
applications running in VCDCs. This is similar to the work of
[17], [19] where the authors presented an approach to optimize
the profit of VCDCs based on the service-level agreements
(SLAs) between service providers and customers.

12. REFERENCES
[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P.

Arbitter, Cloud Computing Patterns, Springer,
London, United Kingdom, 2014.

[2] K. Roche, J. Douglas, Beginning java google app
engine, 1st Edition, Apress, New York, United
States, 2009.

[3] J. Fiaidhi, I. Bojanova, J. Zhang, L.-J. Zhang,
Enforcing multitenancy for cloud computing
environments, IT professional (1) (2012) 16–18.

[4] S. Walraven, T. Monheim, E. Truyen, W. Joosen,
Towards performance isolation in multi-tenant saas
applications, in: Proceedings of the 7th Workshop
on Middleware for Next Generation Internet
Computing, 2012, pp. 1–6.

[5] E. Bauer, R. Adams, Reliability and availability of
cloud computing, John Wiley & Sons, 2012.

[6] L. C. Ochei, J. M. Bass, A. Petrovski, Degrees of
tenant isolation for cloud-hosted software services:
a cross-case analysis, Journal of Cloud Computing 7
(1) (2018) 22.

[7] L. C. Ochei, A. Petrovski, J. M. Bass, Optimal
deployment of compo-nents of cloud-hosted
application for guaranteeing multitenancy isola-tion,
Journal of Cloud Computing 8 (1) (2019) 1.

[8] S. Martello, P. Toth, Knapsack problems:
algorithms and computer implementations, John
Wiley & Sons, Inc., 1990.

[9] J. Legriel, C. Le Guernic, S. Cotton, O. Maler,
Approximating the pareto front of multi-criteria
optimization problems, in: Tools and Algorithms for
the Construction and Analysis of Systems, Springer,
2010, pp. 69– 83.

[10] M. Pathirage, S. Perera, I. Kumara, S. Weerawarana,
A multi-tenant architecture for business process
executions, in: 2011 IEEE International Conference
on Web Services, IEEE, 2011, pp. 121–128.

[11] H. Cai, N. Wang, M. J. Zhou, A transparent
approach of enabling saas multi-tenancy in the
cloud, Proceedings - 2010 6th World Congress on
Services, Services-1 2010 (2010) 40–
47doi:10.1109/SERVICES.2010.48.

[12] J. M. Calero, N. Edwards, J. Kirschnick, L. Wilcock,
M. Wray, Toward a multi-tenancy authorization

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

37

system for cloud services, IEEE Security and
Privacy 8 (6) (2010) 48–55.
doi:10.1109/MSP.2010.194.

[13] Z. I. M. Yusoh, M. Tang, Composite saas placement
and resource optimization in cloud computing using
evolutionary algorithms, in: Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, IEEE, 2012, pp. 590–597.

[14] F. Shaikh, D. Patil, Multi-tenant e-commerce based
on saas model to minimize it cost, in: Advances in
Engineering and Technology Research (ICAETR),
2014 International Conference on, IEEE, 2014, pp.
1–4.

[15] D. Westermann, C. Momm, Using software
performance curves for dependable and cost-
efficient service hosting, in: Proceedings of the 2nd
International Workshop on the Quality of Service-
Oriented Software Systems, ACM, 2010, p. 3.

[16] D. Candeia, R. A. Santos, R. Lopes, Business-driven
long-term capacity planning for saas applications,
IEEE Transactions on Cloud Computing 3 (3)
(2015) 290–303.

[17] H. Yuan, J. Bi, M. Zhou, Geography-aware task
scheduling for profit maximization in distributed
green data centers, IEEE Transactions on Cloud
Computing.

[18] H. Yuan, J. Bi, W. Tan, B. H. Li, Cawsac: Cost-
aware workload scheduling and admission control
for distributed cloud data centers, IEEE
Transactions on Automation Science and
Engineering 13 (2) (2015) 976–985.

[19] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang,
J. Li, Application-aware dynamic fine-grained
resource provisioning in a virtualized cloud data
center, IEEE Transactions on Automation Science
and Engineering 14 (2) (2015) 1172–1184.

[20] M. L. Abbott, M. T. Fisher, The art of scalability:
Scalable web architecture, processes, and
organizations for the modern enterprise, Pearson
Education, 2009.

[21] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, S.
Dustdar, Moving applications to the cloud: an
approach based on application model enrichment,
International Journal of Cooperative Information
Systems 20 (03) (2011) 307–356.

[22] A. Aldhalaan, D. A. Menascé, Near-optimal
allocation of vms from iaas providers by saas
providers, in: Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on, IEEE,
2015, pp. 228–231.

[23] T. Vanhove, J. Vandensteen, G. Van Seghbroeck, T.
Wauters, F. De Turck, Kameleo: Design of a new
platform-as-a-service for flexible data management,
in: Network Operations and Management

Symposium (NOMS), 2014 IEEE, IEEE, 2014, pp.
1–4.

[24] R. Krebs, Performance isolation in multi-tenant
applications, Ph.D. thesis, Karlsruhe Institute of
Technology (2015).

[25] R. Krebs, M. Loesch, Comparison of request
admission based per-formance isolation approaches
in multi-tenant saas applications., in: CLOSER,
2014, pp. 433–438.

[26] A. Aldhalaan, D. A. Menascé, Near-optimal
allocation of vms form iaas providers by saas
providers, Tech. rep., George Mason University
(2015).

[27] R. L. Sri, N. Balaji, Speculation based decision
support system for efficient resource provisioning in
cloud data center, International Journal of
Computational Intelligence Systems 10 (1) (2017)
363–374.

[28] V. Andrikopoulos, S. Strauch, F. Leymann,
Decision support for ap-plication migration to the
cloud, Proceedings of CLOSER 13 (2013) 149–155.

[29] M. Menzel, R. Ranjan, Cloudgenius: decision
support for web servercloud migration, in:
Proceedings of the 21st international conference on
World Wide Web, 2012, pp. 979–988.

[30] J. O. Grady, System engineering planning and
enterprise identity, Vol. 7, CRC Press, 1995.

[31] A. T. Bahill, A. M. Madni, et al., Tradeoff decisions
in system design, Springer, 2017.

[32] J. E. Beasley, Or-library: distributing test problems
by electronic mail, Journal of the operational
research society 41 (11) (1990) 1069–1072.

[33] Z. Eckart, L. Marco, Test problems and test data for
multi-objective optimizers, [Online: accessed in
December, 2018 from
https://sop.tik.ee.ethz.ch/download/supplementary/t
estProblemSuite/].

[34] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P.
Arbitter, Cloud computing patterns: fundamentals to
design, build, and manage cloud applications,
Springer, 2014.

[35] L. C. Ochei, J. Bass, A. Petrovski (a), Evaluating
degrees of multitenancy isolation: A case study of
cloud-hosted gsd tools, in: 2015 International
Conference on Cloud and Autonomic Computing
(ICCAC), IEEE, 2015, pp. 101–112.

[36] L. C. Ochei, A. Petrovski, J. Bass, Evaluating
degrees of isolation be-tween tenants enabled by
multitenancy patterns for cloud-hosted version
control systems (vcs), International Journal of
Intelligent Computing Research 6, Issue 3 (2015)
601 – 612.

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

38

[37] L. C. Ochei, J. Bass, A. Petrovski (b), Implementing
the required degree of multitenancy isolation: A case
study of cloud-hosted bug tracking system, in: 13th
IEEE International Conference on Services
Computing (SCC 2016), IEEE, 2016.

13. APPENDIX A SAMPLE DATASET
The sample dataset files used in the experiments have
been made available online6 to improve readability and
re- producibility. The sample files included are - a small
problem instance (i.e., C(10, 20,4) and a large problem
instance file (i.e., C(500, 20,4). The service demand files
and workload files associated with the instance files have
also been included.

APPENDIX B - SAMPLE OPTIMAL SOLUTIONS FOR

LARGE DATASET (C(500,20,4) WHEN ARRIVAL

RATES IN THE WORKLOAD FILE ARE THE SAME.
DATASET IS APPLIED ON SA(GREEDY)

ALGORITHM

Best optimal solution for workload with an arrival rate
of 2.7 per second applied to a large dataset defined as
C(500,20,4) is shown below. The specification of this
dataset means that there are 500 groups of components,
20 components per group and supported by 4 resource
types -CPU, memory, disk space and bandwidth. The
array shown below which contains 500 elements
represents an optimal solution. The array is
automatically created by the decision support system by
selecting one component from each of the 500 groups
for deployment in a way that meets the resource
constraints of the system and maximises the optimal
function G.
[2, 8, 7, 11, 11, 4, 17, 9, 8, 9, 13, 0, 12, 8, 3, 10, 16,
16, 9, 5, 14, 14, 7, 10, 17, 5, 9, 14, 0, 16, 17, 11, 12,
15, 8, 11, 15, 8, 9, 18, 8, 8, 19, 14, 15, 0, 15, 18, 5, 0,
8, 6, 17, 19, 18, 12,14, 0, 1, 3, 14, 15, 6, 11, 0, 13, 18,
6, 17, 19, 6, 13, 10, 9,19, 17, 12, 11, 11, 13, 3, 8, 13,
9, 18, 19, 7, 13, 17, 16, 9,15, 12, 1, 18, 5, 7, 8, 18, 13,
7, 7, 1, 1, 11, 10, 18, 4, 13, 18,19, 19, 13, 1, 9, 1, 18,
8, 9, 8, 16, 1, 17, 1, 5, 12, 12, 4, 17,11, 5, 1, 19, 15, 2,
8, 12, 14, 5, 6, 19, 13, 18, 17, 19, 14, 15,1, 4, 12, 2, 6,
19, 8, 19, 16, 13, 16, 3, 7, 19, 6, 18, 18, 19,17, 17, 5,
16, 18, 16, 19, 14, 14, 5, 10, 13, 13, 6, 15, 10, 16,19,
9, 8, 6, 13, 18, 12, 9, 1, 11, 17, 7, 3, 0, 10, 6, 6, 14,
13,3, 13, 7, 17, 9, 10, 19, 2, 19, 11, 3, 16, 5, 5, 2, 17,
7, 3, 1,3, 12, 2, 17, 15, 11, 12, 17, 11, 8, 17, 1, 5, 11,
12, 13, 5, 15,10, 17, 4, 6, 18, 7, 10, 19, 17, 10, 3, 8,
11, 6, 0, 18, 16, 6,14, 3, 5, 2, 0, 13, 13, 10, 12, 3, 7,
15, 1, 15, 14, 9, 5, 0, 10,8, 14, 17, 18, 1, 19, 10, 9, 4,
19, 16, 10, 9, 15, 5, 16, 4, 6, 0,6, 15, 8, 14, 17, 16, 14,
1, 18, 2, 2, 4, 18, 17, 1, 7, 18, 8, 11,11, 5, 8, 3, 6, 19,
16, 8, 17, 12, 10, 7, 13, 15, 1, 2, 12, 9, 3,17, 3, 15, 16,
16, 3, 14, 17, 7, 1, 17, 10, 10, 12, 0, 9, 10, 13,8, 10, 7,
3, 12, 19, 14, 2, 10, 0, 13, 4, 18, 3, 7, 9, 15, 16, 3,9,
18, 6, 5, 13, 18, 3, 19, 6, 3, 12, 9, 19, 10, 7, 11, 9, 13,
4,17, 13, 3, 8, 11, 8, 17, 13, 6, 4, 18, 1, 3, 0, 4, 3, 12,
11, 1,16, 5, 12, 15, 9, 11, 16, 6, 12, 9, 19, 7, 5, 3, 5, 11,
2, 17, 17,14, 10, 9, 17, 7, 7, 14, 2, 17, 16, 14, 10, 7,
10, 5, 7, 5, 14,12, 11, 18, 16, 18, 5, 13, 18, 19, 13,

18, 9, 13, 2, 6, 4, 17,13, 17, 8, 14, 9, 17, 13, 19, 8,
12, 9, 16, 6, 7, 19, 11, 3, 4,13, 0, 15, 16, 18, 12, 1, 4,
2, 6, 4, 10, 4, 6, 12, 16, 0, 12, 1,13, 7]

APPENDIX C
SAMPLE OPTIMAL SOLUTIONS FOR LARGE

DATASET (C(500,20,4) WHEN ARRIVAL RATES IN

THE WORKLOAD FILE ARE THE SAME. DATASET IS

APPLIED ON SA(GREEDY) ALGORITHM

Worst optimal solution for workload with an arrival
rate of 2.7 per second applied to a large dataset
defined as C(500,20,4) is shown below. The
specification of this dataset means that there are 500
groups of components, 20 components per group
and supported by 4 resource types -CPU, memory,
disk space and bandwidth. The array shown below
which contains 500 elements represents an optimal
solution. The array is automatically created by the
decision support system by selecting one component
from each of the 500 groups for deployment in a way
that meets the resource constraints of the system and
maximises the optimal function G.
[8, 8, 7, 11, 0, 4, 17, 9, 8, 9, 13, 0, 12, 8, 3, 10, 16, 16,
9, 5, 14, 14, 7, 17, 17, 5, 9, 14, 0, 16, 17, 11, 12, 15, 8,
11, 15, 8,9, 18, 8, 8, 19, 14, 15, 0, 13, 18, 5, 0, 8, 6,
17, 19, 18, 12,14, 0, 10, 3, 14, 15, 6, 11, 0, 13, 18, 6,
17, 19, 6, 13, 10, 9,19, 17, 12, 11, 11, 13, 3, 8, 13, 9,
7, 19, 7, 13, 17, 16, 9, 15,12, 1, 18, 5, 7, 8, 18, 13, 12,
2, 1, 1, 11, 3, 15, 4, 13, 18, 19,19, 13, 1, 9, 1, 18, 8,
14, 8, 16, 1, 17, 1, 5, 12, 7, 4, 17, 11,5, 1, 19, 15, 2,
8, 12, 14, 5, 6, 19, 13, 18, 17, 19, 14, 15, 1,4, 12, 2, 6,
19, 8, 19, 16, 13, 16, 3, 7, 19, 6, 18, 18, 19, 17,17, 5,
16, 18, 16, 19, 14, 14, 5, 10, 13, 13, 6, 15, 10, 16, 19,9,
8, 6, 12, 18, 12, 18, 1, 11, 17, 7, 3, 0, 18, 6, 6, 14, 13,
3,13, 7, 17, 9, 10, 19, 2, 5, 11, 3, 16, 5, 5, 2, 17, 7, 3,
1, 3, 12,2, 17, 15, 11, 12, 17, 11, 8, 2, 1, 5, 11, 3, 13,
19, 15, 10, 17,4, 6, 18, 7, 10, 19, 17, 10, 3, 8, 11, 6, 0,
3, 16, 6, 14, 3, 5, 2,0, 13, 13, 10, 12, 3, 7, 15, 18, 15,
14, 9, 5, 0, 10, 8, 14, 17,5, 1, 19, 10, 9, 12, 19, 16,
10, 9, 15, 13, 10, 4, 6, 0, 6, 15,8, 14, 12, 16, 15, 1,
18, 2, 2, 4, 13, 17, 11, 7, 18, 8, 11, 11,5, 8, 3, 11, 19,
16, 8, 9, 12, 10, 7, 13, 15, 1, 2, 12, 9, 3, 17,3, 15, 16,
16, 10, 14, 17, 7, 1, 17, 10, 10, 12, 0, 9, 10, 13, 8,10,
7, 3, 12, 15, 14, 2, 10, 0, 13, 4, 18, 3, 7, 9, 15, 16, 3,
13,18, 6, 5, 13, 18, 3, 19, 6, 3, 12, 9, 19, 10, 7, 11, 9,
13, 4, 17,13, 3, 8, 11, 8, 17, 13, 6, 4, 18, 1, 3, 0, 4, 3,
12, 11, 1, 16,5, 12, 15, 10, 11, 16, 6, 8, 9, 13, 7, 5, 3,
5, 11, 2, 17, 17, 14,17, 9, 17, 7, 7, 14, 2, 17, 16, 14,
10, 7, 10, 5, 7, 5, 14, 12,11, 18, 16, 18, 5, 13, 18, 19,
13, 18, 8, 13, 2, 6, 4, 17, 9, 17,8, 14, 9, 17, 13, 19, 6,
12, 9, 16, 6, 7, 19, 11, 3, 0, 13, 0, 15,16, 18, 12, 1, 4,
2, 6, 4, 15, 4, 6, 4, 16, 0, 12, 1, 13, 7]

Rotimi Ogunsakin holds an MSc in advanced computing from
the school of computing at the University of Manchester, and
a PhD in Information Systems from the Alliance Manchester
Business School. His career journey has been in research and
innovation at the intersection of artificial intelligence and
business. Precisely in areas where changes are frequent and the
nature of these changes, to a large extent, are unpredictable –

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 40, April 2023– www.ijais.org

39

such as critical systems and businesses and technologies
operating in un- predictable environments. Also, he has
published research papers in peer-reviewed international
conferences and journals.

Laud Ochei holds a PhD in Computing from Robert Gordon
University, Aberdeen (UK). He has a broad range of research
and software development expe- rience in various academic
and industry collabora- tions. His research interests are in
software engineer- ing, distributed systems, the internet of
things, and cloud application architectures. He is also

interested in developing novel approaches for deploying cloud-
hosted services to guarantee multitenancy isolation. He has
published several research papers in peer- reviewed
international conferences and journals.

Nemitari Ajienka holds a doctorate in computer science from
Brunel University London (UK) where he was a member of the
Brunel Software Engineer- ing Lab (BSEL). He is currently
a senior lecturer in computer science at Nottingham Trent
University (UK) and a member of the computing and informat-
ics research centre within the school of science and technology

