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ABSTRACT 
One of the challenges of optimizing the deployment of 
components of cloud-hosted services for guaranteeing 
multitenancy isolation is how to make optimal decisions that 
involve resolving the trade-off between a lower degree of 
isolation versus the possible interference that may occur 
between components or a higher degree of isolation versus the 
challenge of high resource consumption and the running cost 
of the components. Although, many cloud providers offer some 
functionality in the form of rule-based algorithms, such as 
Amazon’s Auto-Scaling and Microsoft’s Windows Azure 
Traffic Manager. These functionalities are deployed to 
configure the scaling function of the cloud-hosted services but 
do not implement the varying degrees of multitenancy isolation 
for individual components. The aim of this paper is to present 
a framework for developing a decision support system for 
optimizing the deployment of components of cloud-hosted 
services for guaranteeing multitenancy isolation. The 
framework comprises of a decision support model algorithm, a 
system architecture, and an algorithm for creating the input 
files for implementing the decision support system. Extensive 
experimental evaluation of the framework with a decision 
support model algorithm shows that it can be used by cloud 
providers and users to guarantee varying degrees of isolation 
between tenants. 
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Cloud Deployment, Optimization, Multitenancy, Tenant 
Isolation. 

 

1. INTRODUCTION 
Applications and services are increasingly being deployed to 
the cloud to be used by multiple tenants/ users, and there is 
therefore a need to isolate tenants, processes, and components, 
and thus implement multitenancy. Multitenancy architectures 
are typically used for deploying components of cloud-hosted 
services for multiple tenants/users. This is based on the 
assumption that when tenants share resources, it would lead to 
a reduction in resource consumption and running costs per 
tenant. 

Multitenancy is a software architecture where one instance of a 
cloud offering is used to serve multiple tenants and/or 
components [1] [2]. Figure 1 (adopted from Fiaidhi et al. [3]) 
represents general architecture for multitenancy cloud en- 
vironments employing customer integration in three layers: 
application, infrastructure and data-centre layer. A similar view 
is shared by Walraven et al. [4] who emphasized that 
multitenancy can be achieved at three levels: infrastructure 
level1, middleware level2 and at the application level3. 

Two of the most important challenges to address when 
implementing multitenancy are: (i) how to ensure that there is 
isolation between multiple components of a cloud-hosted 
application when one of the components experiences high load; 
(ii) how to guarantee the varying degrees of isolation between 
tenants and components of the cloud-hosted services [1], [5]. 
Varying degrees of tenant isolation are possible, depending on 
the type of component being shared, the process supported by 
the component and the location of the component on the cloud 
application stack (i.e., application level, platform level, or 
infrastructure level) [6], [1]. 

 
Fig. 1: Overview of a Generic Multitenancy Cloud Architec- ture, adopted from [3] 
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A high degree of isolation can be achieved by deploying an 
application component exclusively for one tenant. This would 
ensure that there is little or no performance interfer- ence 
between the components when the workload changes. 
However, because components are not shared (e.g., in a case 
where there are strict laws and regulations preventing them 
from being shared), it implies duplicating the components for 
each tenant, which leads to high resource consumption and 
running costs. Overall, this will limit the number of requests 
allowed to access the components. A low degree of isolation 
may also be required for a component, for example, to allow 
sharing of the component’s functionality, data, and resources. 
This would reduce resource consumption and running costs, 
but the performance of other components may possibly be 
affected when one of the components experiences a change in 
workload [7]. 

This leads to an optimal decision-making issue with regard to 
the trade-off between a lower degree of isolation versus 
possible interference that may occur between components or a 
high degree of isolation versus the challenge of high resource 
consumption and the running cost of the component. In other 
words, this is a decision-making problem that requires an 
optimal decision to be taken in the presence of a trade-off 
between two or more conflicting objectives [8], [9]. 

Existing approaches to address this problem often look at it 
from the perspective of the cloud provider (i.e., SaaS, PaaS or 
IaaS). For example, many cloud providers offer some 
functionality in the form of rule-based algorithms, such as 
Amazon’s Auto-Scaling and Microsoft’s Windows Azure Traf- 
fic Manager. In addition, some optimization models have been 
proposed for use by SaaS providers such as Salesforce.com. 
Although these tools and models can be deployed to configure 
the scaling function of the cloud-hosted services, they do not 
implement the varying degrees of multitenancy isolation for 
individual components. 

Motivated by this problem, this paper presents a framework for 
developing a decision support system for: (i) optimiz- ing the 
deployment of components of cloud-hosted services for 
guaranteeing multitenancy isolation; (ii) making optimal 
decisions when faced with the trade-off between a lower degree 
of isolation versus the possible interference that may occur 
between components or a high degree of isolation versus the 
challenge of high resource consumption and the running cost 
of the components. The framework comprises of a decision 
support model algorithm, a system architecture, and an 
algorithm for creating the input files for implementing the 
decision support system. 

The framework has been extensively evaluated by com- paring 
the solutions obtained from our framework with the optimal 
results obtained from an exhaustive search of the entire solution 
space for a small problem. The main research question to 
address in this paper is: “How can we make optimal decisions 
that involve resolving trade-offs between conflicting objectives 
to support the deployment of components of a cloud-hosted 
service for guaranteeing multitenancy isola- tion?”. To the 
best of our knowledge, this study is the first to present a 
framework for developing a decision support system for 
making optimal decisions for resolving trade-offs between 
conflicting objectives when deploying components of a cloud-
hosted system to guarantee multitenancy isolation. This paper 
looks at the problem from the perspective of a tenant who 
knows in advance the number of tenants or users to grant 
access to its service or components, owns software 
components and is responsible for configuring them to design 

and deploy its cloud-hosted application on a shared cloud 
platform not controlled by the cloud provider. Many cloud 
providers offer runtime information of components and mon- 
itoring information, for example, information about network 
availability and utilisation of components deployed on their 
cloud infrastructure. It is the responsibility of the customer to 
extract, deduce and interpret these values and then provide 
important decisions regarding, for example, the availability 
of components, provisioning of required components and 
decommissioning of unused components. 

This paper extends and expands on the previous work 
conducted by Ochei et al. [7]. We summarise the additions to 
the previous work as follows. Firstly, a framework is provided 
that can be used by cloud providers and users to develop a 
decision support system for optimizing the deploy- ment of 
components of cloud-hosted services for guaranteeing 
multitenancy isolation. Secondly, we modified the previous 
decision support model algorithm to include a module to further 
evaluate the results of the optimization model. Thirdly, the 
system architecture for Decision Support System has also been 
modified in line with the inclusion of the module to evaluate 
the decisions support systems. Fourthly, we include an 
algorithm for creating input files for running the decision 
support system. The instance file represents a typical structure 
of components of a cloud-hosted service. Fifthly, an extensive 
experimental evaluation of the decision support system with 
two variants of a metaheuristic which are based on a simulated 
annealing algorithm and hill climbing. Lastly, recommenda- 
tions and best practice guideline for using the decision support 
system has been provided. 

The main contributions of this paper are: 

1) Creating a novel decision support model algorithm 
called optimalDSS, together with a system 
architecture called optimalDssArch for making 
decisions regarding the deployment of components of 
a cloud-hosted service with guaranteed multitenancy 
isolation. The paper also includes a novel 
evaluateDSS algorithm for analysing optimal 
solutions and other related information for mak- ing 
the best decisions for the optimal deployment of 
components. 

2) Presenting a novel algorithm for creating input files 
(i.e., instance file, service demand file and workload 
files) for running the decision support system. The 
algorithm can generate input files all at once. In 
particular, the instance file represents a typical 
structure of components of a cloud-hosted service. 

3) Extensive experimental evaluation of the decision 
sup- port system with two variants of a metaheuristic 
which are based on a simulated annealing algorithm 
and hill climbing. 

4) Presenting recommendations and implications for 
prac- titioners for using the decision support system 
to deploy optimal components to the cloud for 
guaranteeing mul- titenancy isolation. 

The rest of the paper is structured as follows: Section 

II reviews prior related studies to the work presented in the 
paper. Section IV described the guaranteed multitenancy 
decision support system framework while Section V described 
the Decision Support Model Algorithm called optimalDSS to 
assist decision makers (e.g., software architects and cloud 
developers). Section VI describes the dataset, and experimental 
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setup while Section VII describes the derived results from the 
experiments. The results are then discussed in Section VIII and 
the implications of the study for practitioners (e.g., cloud 
engineers) are discussed in Section IX. Finally, the study is 
summarised and concluded in Section XI with plans for further 
work outlined therein. 

2. REVIEW OF RELATED WORK 
In this section of the paper, we review some of the related work 
to this study. To the best of our knowledge, this study presents 
a novel decision support algorithm for cost-effective cloud 
component deployment while guaranteeing multitenancy 
isolation. 

2.1 Related Work on Multitenancy 
Isolation 
Multitenancy isolation has recorded considerable traction in the 
cloud computing domain in the past years. Multitenancy 
Isolation is paramount to ensure each user accessing a cloud- 
hosted service is insulated from the interference that may occur 
as a result of the activities of other cloud users, and that each 
cloud user’s data are not visible to other cloud users. 

Pathirage et al. [10] argued that multitenancy could en- able 
cloud middleware that maximizes sharing and supports near-
zero costs for unused applications. According to Fiaidhi et al. 
[3], the three main ways of achieving multitenancy in cloud 
environments are: using databases, virtualization or physical 
separation. Walraven et al. [4] emphasized that multitenancy 
can be achieved at three levels: infrastructure level using 
virtualization; middleware level using shared OS and 
middleware; and at the application level where maximum cost 
efficiency is achieved by sharing the underlying infras- 
tructure, database, OS, middleware and application between 
different tenants. The authors explored the challenges of 
performance isolation in view of multitenant software-as-a- 
service (SaaS) cloud applications and proposed a middleware 
architecture prototype which enforces performance isolation 
based on tenant-specific SLAs using a tenant-aware profiler 
and scheduler. Differently from the study in [4], our decision 
support algorithm does not rely on the tenants’ SLAs. Cai et al. 
[11] on the other hand proposed and developed a 3-step 
transparent approach to enable an existing web application to 
support multitenancy when migrated to the cloud. Calero et al. 
[12] proposed an authorization model for controlling access to 
resources in a multitenancy cloud environment. The basic 
authorization model that takes into cognizance a 3-tuple, which 
are the subject, its privilege, and the object of interest, was 
extended to enable multitenancy support. 

Hence, Ochei et al. [6] resolve to analyze the degree of tenant 
isolation for cloud-hosted software services. The authors posit 
that guaranteeing multitenancy isolation requires making 
optimal decisions regarding the trade-off between a lower 
degree of isolation versus the possible interference that may 
occur between components or a high degree of isolation versus 
the challenge of high resource consumption and the running 
cost of the components. 

2.2 Related Work on Optimal Deployment 
of cloud-hosted Services 
Research work on optimal deployment and allocation of cloud 
resources on the cloud is quite significant. However, there has 
been little or no work on providing an optimal solu- tion for 
deploying components of a cloud-hosted application in a way 
that guarantees the required degree of multitenancy isolation. 
In [13], the authors used an evolutionary algorithm to minimize 

resource consumption for SaaS providers and improve 
execution time. The authors in [14] and [15] used a multitenant 
SaaS model to minimize the cost of cloud infrastructure. 
Heuristics were not used in this work. The authors in [16] 
developed a heuristic for capacity planning that is based on a 
utility model for the SaaS. This utility model mainly considers 
the business aspects related to offering a SaaS application with 
the aim of increasing profit. 

The authors in [17] proposed a geography- aware task 
scheduling (GATS) approach by considering spatial variations 
in a cloud environment (e.g., a distributed green data center 

- DGDCs) to maximize the total profit of the cloud provider by 
intelligently scheduling tasks of all applications. Also, [18] 
proposes a revenue-based workload admission control method 
to judiciously admit requests by considering factors including 
priority, revenue and the expected response time. Then, this 
paper presents a cost-aware workload scheduling method to 
jointly optimize the number of active servers in each CDC, and 
the selection of Internet service providers for the CDCs 
provider. In [19] a new approach to optimize the profit of 
VCDC based on the service-level agreements (SLAs) between 
service providers and customers. Heuristics based on simulated 
annealing and particle swamp optimization were used in this 
work. 

In [20], the authors described how the optimal configuration of 
a virtual server can be determined, for example, the amount of 
memory to host an application through a set of tests. Fehling et 
al [21], considered how to evaluate the optimal distribution of 
application components among virtual servers. A closely 
related work to ours is that of Aldhalaan and Menasce [22], 
where the authors used a heuristic search technique based on 
hill climbing to minimize the SaaS cloud provider’s cost of 
using VMs from an IaaS with response time SLA constraints. 
Related work on multitenancy isolation has largely focused on 
isolation at the data tier [23]. The main aspect of isolation is 
usually performance isolation. For example, the authors in 

[24] mainly focus on performance isolation in a multitenant 
application in the cloud. The varying degrees of multitenancy 
isolation based on multitenancy patterns and the different 
aspects of isolation are described in [25]. 

Most work on optimal deployment and allocation of cloud 
resources on the cloud focuses on minimising the cost of using 
the cloud infrastructure resources [13]. Previous work concern- 
ing the optimization of cloud resources does not use heuristics 
at all, although a few use simple heuristics. For example, the 
authors in [26], [22] used a heuristic based on hill climbing for 
minimising the cost of SaaS cloud providers with response time 
SLAs constraints. This study, unlike others, focuses on 
providing an optimal solution for deploying components of a 
cloud-hosted application in a way that guarantees the required 
degree of multitenancy isolation. 

2.3 Related work on Decision Support 
System for Optimal Deployment of Cloud-
hosted services 
There are several works on developing decision support 
systems for performing different kinds of cloud operations. For 
example, Sri and Balaji [27] developed a speculation-based 
decision support system for efficient resource provisioning in 
the cloud data centers. The decision support system guaranteed 
to dodge over/under utilization of resources and minimized the 
cost economically without compromising the Quality of 
Service. 
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Mathirajan et al [27] developed a cloud-based decision support 
system (C-DSS) for transport analytics. The C-DSS is based on 
an intelligent model on location of depots for opening new 
depots and/or closing a few existing depots and allocation of 
city-buses to depots. Andrikopoulos et al. developed decision 
support for application migration to the cloud [28]. Menzel and 
Ranjan developed CloudGenius, a decision support for web 
server cloud migration [29]. 

This study, unlike other decision support systems, focuses on 
providing a decision support system for providing an optimal 
solution for deploying components of a cloud-hosted service in 
a way that guarantees the required degree of multitenancy 
isolation. 

3. PROBLEM FORMALIZATION AND 
NOTATION 
Before we describe the framework, it is important to un- 
derstand the formalisation of the problem that motivated the 
development of the framework. The reader is referred to the 
previous work conducted by Ochei et al. to understand the 
problem formalization and notation including the system model 
and description of the problem, the optimal function of the 
problem, and the mapping of the problem to a multi- choice 
multidimensional knapsack problem (MMKP) [7]. It is 
important to note that the model for the optimal component 
deployment problem assumes that CPU, RAM, Disk, and 
Bandwidth service demands are known or easily measured. The 
cloud provider can provide third-party tools to measure this, or 
the SaaS customer can extract and measure the data. These 
sections will not be repeated in this paper. 

The problem that motivated the development of the frame- 
work has several application areas such as optimal allocation in 
a resource-constrained environment, monitoring runtime 
information of components, and controlling the provisioning 

and decommissioning of components in a cloud environment. 
As a specific example, consider a version control system (e.g., 
subversion) configure to record changes to a file or set of files 
(e.g., source code) over time so that you can recall specific 
versions later. In such a system, the shared component would 
be better for reducing resource consumption while the 
dedicated component would be better to avoid performance 
interference. However, this might not necessarily be so because 
as additional copies of the files are created in the repository, the 
disk space consumed continues to enlarge. Over time, 
performance begins to degrade as more time is spent searching 
across many files on the disk. This is a trade-off decision that 
required a decision support system to analyse the set of optimal 
solutions together with other related information to provide an 
optimal decision for deploying the components to the cloud. 

4. A FRAMEWORK TO DEVELOP A 
DECISION SUPPORT SYSTEM FOR 
GUARANTEEING MULTITENANCY 
ISOLATION 
The framework is first presented as part of an input- process-
output (IPO) model (see Figure 2). This approach is widely 
used in systems analysis and software engineering for 
describing the basic structure of a service or process [30], [31]. 
In our case, the model represents a cloud-hosted service that 
can be designed to use or integrate with several components 
and/or other services. In using the IPO model, the framework 
receives inputs from a user (that is, a cloud provider or a cloud 
user), sends it to the decision support system which carries out 
some analysis and optimization, and then returns decisions 
regarding multitenancy isolation. Such decisions could be, for 
example, the optimal solutions regarding the required degree of 
isolation; optimal solutions that would allow a certain number 
of requests to access a component; or a whole system, or a 
notification when a certain threshold is reached. 

 
Fig. 2: Framework for developing a decision support system to deploy cloud-hosted services for guaranteeing multitenancy 

isolation (as part of an Input-Process-Output Model) 

The main architecture for the decision support system is 
presented in Figure 3. It is important to note that the main 
addition to the architecture in our previous work [7] is the 
decision analyzer. In the previous architecture, the main output 
was the optimal solutions. This can be likened to the usual 
monitoring information provided by cloud providers. 
Although, many providers offer monitoring information, for 
example, information about network availability and utiliza- 
tion of components deployed on their cloud infrastructure. 
However, it is the responsibility of the customer to extract, 

deduce and interpret these values and then provide information 
regarding the availability of components. 

In our case, the optimal model will provide data regard- ing the 
optimal values and the associated optimal solutions. However, 
further analysis is required to provide information regarding the 
set of solutions that would guarantee a low degree of isolation 
and not just a high degree of isolation, or which optimal 
solution(s) would guarantee a certain level of resource 
consumption for certain components or the whole system. 

 
Fig. 3: Architecture for Decision Support System. 
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Finally, we present a sequence diagram in Figure 4 to illustrate 
the overall flow of tasks in using the components of the 
framework to develop a decision support system for deploying 

components of a cloud-hosted service for guaran- teeing 
multitenancy isolation. 

 
Fig. 4: Sequence Diagram for Implementing DSS 

5. DECISION SUPPORT MODEL 
ALGORITHM FOR OPTIMAL 
DEPLOYMENT OF COMPONENTS 
In this section, we describe the Decision Support Model 
algorithm, optimalDSS, to assist decision-makers (e.g., soft- 
ware architects, cloud developers) in analyzing different cloud 
deployment scenarios for deploying components of cloud- 
hosted software, to guarantee multitenancy isolation. In this 
paper, we provide the main algorithm which can be used to 
drive the decision support system (DSS). The DSS can be 
implemented in different ways such as a desktop application, 
web application or cloud-based hosted service, or embedded 
into other applications running on the cloud or distributed 
environment. 

It is important to note that the DSS provided in this paper can 
be seen as an abstract format that allows the implemen- tation 
of a decision support system for optimal deployment of 
components to the cloud in various ways. It captures the 
essential properties required for the successful implementation 
of DSS for optimal deployment of components of a multitenant 
cloud-hosted service while leaving large degrees of freedom to 
cloud deployment architects depending on the required degree 
of isolation between components, and the deployment 
environment. Furthermore, our approach can be applied at 
different levels of the application or cloud stack as long as the 
components can be represented as described in the optimization 
model. 

5.1 OptimalDSS: An algorithm for Decision 
Support Model 
This section describes the OptimalDSS algorithm first pre- 
sented in our previous work [7]. This algorithm is repeated here 
for ease of reference, and clarity, and to show how this 
algorithm fits into the Decision Support System. The 
optimalDep model presented in our previous work [7] maps to 
the optimizer module in the architecture for the decision sup- 
port system shown in Figure 3. The goal of the optimizer is to 
address the problem of providing optimal solutions and other 
related information (e.g., the number of function evaluations to 
produce the optimal value, the magnitude of deviation of the 
optimal value from the target solution) for deployment to the 
cloud in such a way that meets the system requirements and 
also provides the best value for the optimal function. The 
OptimalDSS algorithm is an extension of the optimalDep. In 
this algorithm, we have added a module referred to as: 
evaluateDSS, which can be embedded within the optimalDSS 
or implemented as a separate module. In short, Algorithm 2 is 
an implementation of the evaluateDSS module in line 21 of 
Algorithm 1. 

Algorithm 1 optimalDSS Algorithm 
1: optimalDep (workloadFile, mmkpFile) 
2: optimalSoln ← null 
3: optValue, isolValue, Req, Pen, optimalSoln ← null 
4: Accept workload from SaaS users 
5: Load workloadFile, mmkPfile; populate global 
variables 
6: repeat 
7: /*Compute No. of req. using QN Model*/ 
8:   for i ← 1, NoGroups do 
9: for j ← 1,GroupSize do 
10: Calculate Utilization 
11: Calculate No. of req. 
12: Calculate Total No. of req. 
13: Store fitValue, Isol, qLength of optimal soln. 
14: end for 
15: end for 
16: Update the mmkpFile with qLength 
17: /*Run Metaheuristic-SA(Greedy) or 
Hill(Greedy)*/ 
18: SA(GREEDY)( ) ← result 
19: /*Encapsulate all result properties in Result 
class*/ 
20: /*and return an object of Result class 
21: EVALUATEDSS(RESULT)(  ) 
22: /*Display results from DSS*/ 
23: /*regarding optimal deployment*/ 
24: until no more workload 
25: Return (DegreeIsoln, ResUtil, Perf) 

Decision Analyser of the OptimalDSS Algorithm 
The following example (Table III) shows the different ways of 
evaluating the results of the Decision Support System. In this 
paper, we look beyond the optimal value, which is an objective 
function that is optimized in the optimization model presented 
in our previous work [7]. That is, in addition to the optimal 
value, we show how the optimalDSS can be used to provide 
information regarding the degree of isolation of the 
components, resource consumption, performance, and security. 

Algorithm 2 evaluateDSS Algorithm 

1: evaluateDSS (optimalResult) 
2: worstOptVal, worstSoln ← null 
3: worstIsolVal, worstReqNo, worstPen ← null 
4: bestOptVal, bestSoln ← null 
5: bestIsolVal, bestReqNo, bestPen ← null 
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6: /*set worstOptVal, bestOptVal as first item in list*/ 
7: worstOptVal, bestOptVal ← first value in list 
8: for i ← 1,NoSimulations do 
9: for j ← 1,resultSize do 
10: if currenOptVal < worstOptVal then 
11: /*replace the initial worst values by*/ 
12: /*the current worst values*/ 
13: worstOptVal ← currentOptVal 
14: worstSoln ← currentWorstSoln 
15: worstIsolVal ← currentIsolVal 
16: worstReqNo ← currentReqNo 
17: worstPen ← currentPen 
18: end if 
19: Store worstOptVal, worstSoln 
20: Store worstIsolVal, worstReqNo, worstPen 
21: if currentOptVal > bestOptVal then 
22: /*replace the initial best values by*/ 
23: /*the current best values*/ 
24: bestOptVal ← currentOptVal 
25: bestSoln ← currentWorstSoln 
26: bestIsolVal ← currentIsolVal 
27: bestReqNo ← currentReqNo 
28: bestPen ← currentPen 
29: end if 
30: Store bestOptVal, bestSoln 
31: Store bestIsolVal, bestReqNo, bestPen 
32: end for 
33: end for 
34: /*Display worst and best values of DSS*/ 
35: Return (all required results from DSS) 

Every time there is a change in the workload, the op- timalDSS 
algorithm finds a new optimal solution for deploying 
components with the highest degree of isolation and the highest 
number of supported requests. This information is encapsulated 
in the optimal value. 

In line 18, the metaheuristic that runs to produce the optimal 
algorithm returns a class that encapsulates the result properties 
of the decision support system. In line 20, this result is then 
analyzed in EvaluateDecision module to produce several 
important pieces of information that can be used to make 
optimal decisions regarding the optimal deployment of 
components of cloud-hosted services. Such information may 
include, may include but is not limited to: (i) the degree of 
isolation of the components; (ii) resource utilization and 
consumption of the components; (iii) performance (e.g., the 
time required to produce optimal solutions for deployment ) 
computation time interference (iv) security interference (e.g., 
quality of optimal solutions, number and magnitude of penalty 
violations) ; (v) deployment rate (that is, the rate at which 
optimal components can be deployed). 

The evaluateDSS algorithm works as follows: the input to the 
algorithm is a group of objects 4 class object that encapsulates 
all variables (e.g., number of simulations) and methods (e.g, 
best and worse optimal solution) required to access the 
information required for evaluation by the decision analyser. 

After defining and initializing the variables and data struc- tures 
(line 2-5) to store the required values, set a loop to iterate (line 
8-9) and search through the optimal results based on the 
conditions/rules provided to the decision analyser (line 10 and 
line 20). In line 10, if the current worst value is lower 

previous/initial worst optimal value, then replace the worst 
optimal value with the current value. Other rules could be set 
for the decision analyser. For example, set rules to specify that 
a new set of components be selected for deployment once the 
arrival rate of requests exceeds a defined threshold. The loop 
continues until all the solutions are traversed. The selected 
values are then stored and later displayed to the user. 

We assume that the input of this algorithm (i.e., the optimal 
results) is stored in a linear data structure (e.g., array list) and 
the size of the data structure is N. The time complexity to find 
the worst or best optimal value in the data structure is linear 
O(N) and the space complexity is O(1). 

6. EVALUATION 
The decision support system is driven by the OptimalDSS 
algorithm shown in Algorithm 1. This algorithm combines an 
open Queuing Network model and a meta-heuristic to select a 
set of optimal solutions for deployment to the cloud in order to 
guarantee multitenancy isolation. 

6.1 Dataset 
The dataset used for simulation experiments on the opti- 
mization model was based on a simulation test bed. There 
are four types of datasets used in this study: 

(i) MMKP Instance file: This file represents the 
components and their properties.See section 6.2 for 
an algorithm to gener- ate the MMKP instance. 

(ii) Workload file: This file contains information about 
the varying workload that the system is exposed to. 

(iii) Service demand: This file contains information about 
the service demands of the system. 

(iv) MMKP Instance file: This file contains information 
about the updated instance based on workload 
changes. 

The dataset was generated and tailored on the MMKP instances 
widely cited in the literature: (i) OR benchmark Library [32] 
and other standard MMKP benchmarks, and (ii) the new 
irregular benchmarks used by Shojaei et al. [33]. 

4In most high-level programming languages like Java, this is 
equivalent to a class which is used to represent a group of 
objects which have common properties. Several MMKP 
instances of various sizes and densities were randomly 
generated following a Poisson distribution. The MMKP 
problem instances represent a repository of compo- nents (e.g., 
database, a database table, a message queue, VM or docker 
container) that can be deployed to design (or integrate with) a 
cloud-hosted service. The weight values generated in the 
MMKP instance could be normalised (or transformed) to 
represent different resources units (gigabytes of memory) of the 
components. 

6.2 createInstance: An algorithm for 
MMKP instance files 
This paper also provides the createInstance algorithm (see 
Algorithm 3), for creating all the input files required to run the 
decision support system. The decision support system requires 
three types of input files, namely, instance file, service demand 
file and workload file. The algorithm shows how the three input 
files can be created all at the same time, and once these files 
have been created, they can be used as input into the decision 
support system. 
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The createinstance algorithm works as follows: 

The algorithm starts by defining and initializing the vari- ables 
required for generating files for workload, service de- mand 
and problem instance (line 2-6). Thereafter a loop is set up to 
run from 0 to the number of workloads required (line 7-37). For 
each iteration, first, calculate the resource limit for each 
resource supporting the components (based on the specified 
rule), and for each component group, calculate values for 
isolation level, resource values, number of users, service 
demands, and arrival rate (based on a Poisson distribution as 
shown line 19), and write values to workload file and service 
demand file, an instance file. 

6.3 Experimental Settings and procedure 
Aim of the Experiment: The aim of the experiment is to 
evaluate the performance of the decision support system in 
terms of the quality of solutions obtained when there are 
varying workloads changes. 

The instance-generating program and the algorithms were 
written using Java programming with Apache Netbeans IDE 
11.3. All experiments have been carried out on the same 
computation platform, which is Windows 10 Pro running on a 
SAMSUNG Laptop with an Intel(R) CORE(TM) i7-3630QM 
at 2.40GHZ, with 8GB memory and 1TB swap space on the 
hard disk. 

In the experiment, we carried out 1000 function evaluations and 
20 runs. This implies that we take the best and worst optimal 
values out of 20000 solutions (1000 ˆ 20). This is a fairly large 
number of solutions with which to evaluate the metaheuristic 
that drives the decision support system. Table 2 shows the 
parameters used for the experiments. 

This study is novel and there are no existing approaches that 
can be used to make a direct comparison with our approach in 
terms of the quality of optimal solutions. This study is novel in 
the sense that the optimalDep algorithm combines a Queuing 
Network model and metaheuristics to find optimal solutions for 
component deployment while guaranteeing the required degree 
of multitenancy isolation. Because of this, the solutions 
obtained from our approach were compared with the optimal 
solutions obtained from an exhaustive search of a small 
problem instance. Thereafter, the obtained solutions are also 
compared with the target solution obtained from different 
problem instances of varying sizes and densities. 

Algorithm 3 createInstance Algorithm 

1: createInstance () 
2: NoWorkloadFiles, NoGroups, NoComp, NoConstr ← 
0 

3: CPUlimit, RAMlimit, Disklimit, BWlimit ← 0 
4: maxCPU, maxRAM, maxDisk, maxBW ← 0 
5: Create new instanceFile, worklaodFile, 
servicedemandFile 
6: ARate ← 0 
7: for i ← 1, NoWorkload do 
8: Calculate Resource limit 
9: Write instance, resource properties to workload 
file 
10: Write instance, resource properties to serv. 
demand file 
11: for i ← 1, NoWorkload do 
12: Write instance properties to instance file 
13: Write Resource limits to file 
14: end for 
15: Write instance properties to service demand 
file 
16: Write Resource limits to service demand file 
17: for i ← 1, NoGroups do 
18: Write group size to instance file 
19: Generate Arrival rate following Poisson 
distribution 
20: for i ← 1, NoWorkload do 
21: Write group size to workload file 
22: end for 
23: Write group size to service demand file 
24: end for 
25: for i ← 1, NoGroups do 
26: Generate isolnLevel, NoUsers, CPUlimit, 
27: RAMlimit, Disklimit, BWlimit 
28: Write isolnLevel, NoUsers, CPUlimit, 
29: RAMlimit, Disklimit, BWlimit to 
instance file 30: Create service demands for 
the components 31: Write service 
demands to file 
32: for i ← 1, NoWorkloadFiles do 
33: Write Arrival Rate and Service Demand 
34: to workload file 
35: end for 
36: end for 
37: end for 
38: Close all files 
39: Return (instanceFile, servicedemandFile, 
workloadFile) 

TABLE I: Experimental Parameters (based on Simulated An- nealing) 

Open Multiclass QN 

Model 

Value 

λ (offered load) [0,4] 

Isolation Value [1,2,3] 

No. of Requests [1,10] 

Resource consumption [1,10] 

Service Demands [0.15, 0.24] 

Metaheuristic  
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No. of Iterations 1000000 

Population size 1000 

No. of Runs 20 

Temperature T0 = st. dev of N randomly gener- 

ated solutions (N=no. of groups) 

Cooling Schedule Ti`1 “ T0 ̀  pA ´ T0q 

7. RESULTS 
This section presents the results of an extensive evaluation of 
the DSS to show how we can deduce more information 
regarding the optimal deployment of components of a cloud- 
hosted service. This section compliments the results about the 
quality of optimal solutions, robustness of solutions, and the 
computational effort required to produce optimal solutions for 
deploying components of cloud-hosted solutions discussed in 
[7]. Results are shown in Table I to Table IV. Column 1 shows 
the workload represented either as a single value for 
increasing(or decreasing) arrival rates or as a set of values for 
fluctuating(varying) arrival rates. Column 2 - 5 shows the 
results shown in the following format - (worst-case value/best- 
case value). The second column shows the worst and best set 
of optimal solutions selected for deployment. The third column 
shows the first optimal value associated with the worst or best 
solution. 

7.1 Small Problem Instance 
This section presents results for a small dataset that rep- resents 
a small problem instance. The small dataset has an instance file 
with the following dimensions - C(10, 20, 4), that is, the 
instance file has ten groups of components, 20 components per 
group and is supported by four resource types 

CPU, memory, disk space and bandwidth. The dataset also has 
an accompanying service demand file and a workload file. 

1) Components Experiencing the same workload: 
Table II shows the results of a decision support 
system for a workload (i.e., arrival rate) that 
increases (or may decrease over time). In this 
scenario, all the components in a particular group are 
exposed to the same arrival rate. 

 
Fig. 5: Workload Changes for increasing (or decreasing) arrival rates 

In order to evaluate the degree of isolation of each optimal 
solution we have to first obtain the solution with the lowest 
optimal value and the solution with the highest optimal value. 

For the results of HC(greedy) in Table II, when the system 
experiences a workload of 3.9 (request/second) the lowest and 
highest optimal value is 3036.34 and 3132.70, respectively. 

In this study, we assume there are three degrees of tenant 
isolation which also correspond to the three types of mul- 
titenancy patterns that can be used to deploy components to the 
cloud (shared pattern, tenant-isolated pattern and dedicated 
pattern). The shared pattern guarantees the lowest degree of 
isolation, and the dedicated guarantees the highest degree of 
isolation, while the tenant-isolated pattern is in the middle [34] 
[6]. 

The following computation shows how to deduce the required 
degree of isolation decision using the decision support system. 

1. Calculate the magnitude of the optimal solution for 
the workload 

𝑚𝑎𝑔 = 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡 −  𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑒𝑠𝑡           
(1)  

From the above equation, Mag = 3132.70 - 3036.34= 96.36 

2. Compute the range of values for a low degree of isolation 
(i.e., shared pattern), a middle-level degree of isolation, 
and the highest degree of isolation (i.e., the dedicated 
pattern used for deployment). We assume that each of the 
three degrees of isolation contains one-third of the 
magnitude of the optimal values (that is, 33% of the 
values) from the lowest degree to the highest degree of 
isolation. 

i. Low degree of isolation: 
𝑚𝑎𝑔 = 𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡 −  𝑂𝑝𝑡𝑉 𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑒𝑠𝑡

         (2) 

ii. Middle-level degree of isolation 
𝐼𝑠𝑜𝑙𝑛௛௜௚௛ = [(𝑀𝑎𝑔 − (𝑀𝑎𝑔 ∗ 0.33) −

𝑀𝑎𝑔]                   (3) 
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iii. High degree of isolation: 
𝐼𝑠𝑜𝑙𝑛௛௜௚௛ = [𝑀𝑎𝑔 ∗ 0.33) − (𝑀𝑎𝑔 −

(𝑀𝑎𝑔 ∗ 0.33)]         (4) 

Assuming a cloud deployment architect wants to deploy 
components of a cloud-hosted service that guarantee a low 
degree of isolation, maybe to improve the sharing of resources 
between the components and the system as a whole. Then the 
cloud architect would choose an optimal value between 0 – 

31.80. In this example, 31.80 (that is, 96.36 * 0.33) is the upper 
bound of the magnitude of the optimal values. Assuming again 

that this value is 25, then this will translate to an optimal value 
of 3061.34. The minimum optimal value for the required degree 
of isolation is therefore 3061.34 (that is, 3036.34 + 25) and the 
maximum optimal value for the required degree of isolation is 
3068.14 (that 3036.34 + 31.80). These two values become an 
input to the decision support system, and it produces the 
following optimal solutions: [18, 18, 1, 8, 4, 7, 

10, 9, 3, 10]. 

Assuming the required optimal value is L (that is, 3061.34) and 
the upper bound of the magnitude of the optimal values is 

TABLE II: Results of DSS based on HC(Greedy) for workload with increasing(or decreasing) arrival rates 

Workl
oad 

Optimal Solutions Optimal 
value 

Isolati
on 

value 

No. 
Request 

Penalt
y 

2.7 [9, 3, 1, 8, 13, 19, 2, 
15, 3, 4]/ 

[6, 3, 1, 6, 4, 7, 11, 
15, 14, 10] 

2937.20/30
38.38 

29/30 38.20/38.
38 

0/0 

2.9 [6, 18, 1, 3, 2, 7, 10, 
15, 1, 10]/ 

[6, 1, 1, 15, 12, 7, 18, 
5, 14, 19] 

2946.17/30
44.76 

29/30 44.76/48.
17 

0/0 

3.1 [6, 1, 1, 15, 4, 7, 9, 
15, 14, 10]/ 

[6, 1, 1, 15, 4, 7, 9, 
15, 14, 10] 

2949.90/30
45.85 

29/30 45.85/50.
90 

0/0 

3.3 [6, 18, 1, 3, 12, 7, 18, 
12, 14, 19]/ 

[6, 6, 1, 6, 12, 7, 2, 
12, 3, 19] 

2956.09/30
56.24 

29/30 56.24/58.
09 

0/0 

3.5 [6, 1, 1, 15, 4, 7, 9, 
15, 14, 10]/ 

[6, 1, 1, 15, 12, 7, 18, 
5, 14, 19] 

2971.89/30
78.24 

29/30 72.89/78.
24 

0/0 

3.7 [11, 3, 1, 8, 4, 10, 11, 
15, 18, 19]/ 

[6, 3, 1, 15, 7, 7, 18, 
12, 1, 4] 

3004.50/31
01.91 

29/30 101.91/10
6.50 

0/0 

3.9 [18, 18, 1, 8, 4, 7, 10, 
9, 3, 10]/ 

[6, 6, 1, 6, 12, 7, 2, 
12, 3, 19] 

3036.34/31
32.70 

29/30 132.70/13
7.34 

0/0 

U (that is, 3068.14). From an implementation point of view, 
this translates to inserting the following rule (Algorithm 4) in 
the EvaluteDecision module of the decision support system. 

Algorithm 4 Algorithm for producing Optimal 
Solution for specified Optimal Value 
1: INPUT: req. optimal value 
2: OUTPUT: optSoln, degofIsolation 
3: optSoln ← null 
4: if optSoln ≥ L  AND  optSoln ≤ U then 

5: return current best optimal solution 
6: end if 
7: return (optSoln, degofIsolation) 
3. Component Experiencing the Varying Workload: 

Table III shows the results of the decision support 
system for a cloud- hosted service that experiences 
varying workload changes. In this scenario, different 
components in the group experience varying 
workloads. That is, the arrival rates for these compo- 
nents follow a Poisson distribution. Figure 5 and 6 



 

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 12– No. 40, April 2023– www.ijais.org 

 

31 

represent the workload for the first workload file in 
Table III and V. In this workload file, the arrival 
rates to each component group are given in the 
following vector: [1,2,3,2,2,4,4,4,3,1,3]. We assume 

that each workload changes every 60 minutes. In 
some dynamic and real-time systems, these changes 
can be much faster, for example, in seconds and 
milliseconds. 

 
Fig. 6: Workload changes for fluctuating (or varying) arrival rates 

7.2 Large Problem Instance 
This section presents results for a large dataset that rep- resents 
a large problem instance. The large dataset has an instance file 

with the following dimensions - C(500, 20,4), that is, the 
instance file has 500 groups of components, 20 components per 
group and is supported by four resource types 

TABLE III: Results of DSS based on HC(Greedy) for work- load with fluctuating(varying) arrival rates 

Workload Optimal Solutions Optimal 
Value 

Isol. 

valu
e 

No. 
Request 

Pen. 

[1,2,3,2,2,4,
4,3,1,3] 

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/ 

[18 3 14 12 17 10 0 18
11 10] 

3047.48/3
052.48 

30/3
0 

47.48/5
2.48 

0/0 

[3,2,1,3,4,0,
2,2,4,2] 

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/ 

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10] 

3077.68/3
082.69 

30/3
0 

77.68/8
2.69 

0/0 

[3,1,2,4,4,2,
1,3,4,2] 

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/ 

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10] 

3069.01/3
074.01 

30/3
0 

69/01/7
4.01 

0/0 

[4,2,4,4,2,3,
3,4,2,3] 

[0, 3, 13, 12, 13, 10, 0,
18, 4, 4]/ 

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10] 

3061.04/3
066.04 

30/3
0 

61.04/6
6.04 

0/0 

[2,3,4,0,0,2,
2,1,2,3] 

[0, 6, 13, 19, 7, 16, 0,
18, 4, 4]/ 

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10] 

3039.13/3
043.13 

30/3
0 

39.13/4
3.13 

0/0 

[1,3,1,1,4,3,
3,3,2,0] 

[5, 3, 8, 19, 17, 10, 16,
18, 11, 10]/ 

[18 3 14 12 17 10 0 18
11 10] 

3025.71/3
030.71 

30/3
0 

30.25/3
0.71 

0/0 

[1,4,2,2,3,2,
2,4,1,1] 

[5, 6, 2, 12, 17, 16, 10,
18, 4, 4]/ 

[18, 3, 14, 12, 17, 10,
0, 18, 11, 10] 

3039.90/3
044.90 

30/3
0 

39.90/4
4.90 

0/0 
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TABLE IV: Results of DSS based on SA(Greedy) for work- load with increasing(or decreasing) arrival rates 

Workl
oad 

Optimal Solutions Optimal 
Value 

Isolation 
value 

No. 
Request 

Pen. 

2.7 [6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/ 

[6, 1, 1, 15, 4, 7, 9, 15,
14, 10] 

2837.21/3
040.40 

28/30 38.21/40.
40 

0/0 

2.9 [6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/ 

[6, 3, 1, 15, 7, 7, 18,
12, 1, 4] 

2945.17/
3047 

29/30 48.17/ 47 0/0 

3.1 [18, 18, 1, 12, 12, 12,
11, 5, 14, 19]/ 

[6, 18, 1, 3, 2, 7, 10,
15, 1, 10] 

2846.84/3
050.53 

28/30 46.84/50.
53 

0/0 

3.3 [9, 3, 1, 3, 16, 7, 10, 5,
3, 10]/ 

[6, 3, 1, 15, 7, 7, 18,
12, 1, 4] 

2956.09/3
062.16 

29/30 58.09/62.
16 

0/0 

3.5 6, 3, 1, 6, 4, 7, 11, 15,
14, 10]/ 

[6, 1, 1, 15, 12, 7, 18,
5, 14, 19] 

2881.41/
3086 

28/30 82.41/86 0/0 

3.7 [6, 3, 1, 3, 12, 1, 2, 12,
14, 7]/ 

[6, 1, 1, 15, 4, 7, 9, 15,
14, 10] 

2881.99/3
101.91 

28/30 81.98/101
.91 

0/0 

3.9 [6, 1, 1, 15, 4, 7, 9, 15,
14, 10]/ 

[6, 18, 1, 3, 12, 7, 18,
12, 14, 19] 

2945.65/3
177.79 

28/30 146.65/17
7.80 

0/0 

- CPU, memory, disk space and bandwidth. The 
dataset also has an accompanying service demand 
file and a workload file. 

Components Experiencing the same workload: In this 
scenario, all components in the group experience the same 
workloads. The length of the array containing the best and 
worst optimal solutions is very large. As a result, these optimal 
solutions for the different workloads will not be represented in 
a tabular form, as shown in Table II to V. Therefore, we will 
only show the optimal value, isolation value, and the number 

of requests for one workload with an arrival rate of 2.7 requests 
per second. 

Due to space limitation, we have shown sample optimal 
solutions (i.e., the best and worst optimal solutions) for a large 
problem instance (i.e., C(500,20,4)) when arrival rates in the 
workload file are the same (i.e., 2.7 requests per seconds) and 
also when arrival rates in the workload file vary is shown in 
Appendices B. The problem instance is applied on SA(Greedy) 
metaheuristics. 

TABLE V: Results of DSS based on SA(Greedy) for workload with fluctuating(varying) arrival rates 

Workload Optimal Solutions Optima
l value 

Isol. 

value 

No. 
Request 

Pen
. 

[1,2,3,2,2,4,4,
3,1,3] 

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/ 

[0, 3, 4, 19, 17, 10, 0, 11,
12, 16] 

2855.3
7/ 

3057.8
7 

28/3
0 

56.37/57.8
7 

0/0 

[3,2,1,3,4,0,2,
2,4,2] 

[18, 3, 16, 19, 7, 16, 0,
7, 9, 12]/ 

[0, 12, 16, 19, 7, 16, 0,

2831.3
7/ 

3083.4

28/3
0 

34.37/83.4
6 

0/0 



 

International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 12– No. 40, April 2023– www.ijais.org 

 

33 

18, 9, 12] 6 

[3,1,2,4,4,2,1,
3,4,2] 

[5 6 2 12 17 16 10 18 4]/

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4] 

2858.8
7/ 

3074.0
1 

28/3
0 

55.96/126.
73 

0/0 

[4,2,4,4,2,3,3,
4,2,3] 

[7, 6, 10, 19, 17, 10, 0,
11, 11, 16]/ 

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4] 

2864.1
8/ 

3076.9
9 

28/3
0 

65.18/76.9
9 

0/0 

[2,3,4,0,0,2,2,
1,2,3] 

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/ 

[4, 6, 8, 12, 17, 10, 0, 18,
18, 0] 

2822.4
6/ 

3043.1
3 

28/3
0 

25.46/43.1
3 

0/0 

[1,3,1,1,4,3,3,
3,2,0] 

[0, 6, 13, 19, 7, 16, 0, 18,
4, 4]/ 

[0, 3, 16, 6, 7, 16, 0, 18,
4, 12] 

2828.2
9/ 

3032.6
1 

28/3
0 

30.29/32.6
1 

0/0 

[1,4,2,2,3,2,2,
4,1,1] 

[0, 3, 2, 19, 7, 16, 0, 7,
13, 12]/ 

[0, 6, 13, 2, 11, 16, 0, 18,
4, 10] 

2842.7
1/ 

3044.9
0 

28/3
0 

43.71/44.9
0 

0/0 

TABLE VI: Summary of results of DSS based on Large Dataset - C(500,20,4) 

Meta- 

heuristic 

Workloa
d 

Arrival 

rate 

Optimal 

Soln 

Optima
l 

Value 

Isolatio
n 

value 

No. of 

Reque
st 

  Same 
arrival 

    

HC(Greedy
) 

2.7 
req/sec 
[Appendi
x A] 

rate for 
all 
compon
ents in 
all 
groups 

Append
ix B 

151627.
98/ 

152295.
57 

1488/1
494 

2834.9
8/ 

2895.5
7 

  Same 
arrival 

    

SA(Greedy
) 

2.7req/se
c 
[Appendi
x A] 

rate for 
all 
compon
ents in 
all 
groups 

Append
ix C 

151175.
40/ 

151865.
32 

1490/1
483 

2876.4
0/ 

2863.3
2 

Component Experiencing the Varying Workload: In this 
scenario, different components in the group experience varying 
workloads. In the workload file that represents varying arrival 
rates to each component group, this can also be represented as 
a vector whose length is 500. The reader can inspect the 
attached workload file to see the order of the arrival rates. As 
usual, it is assumed that each workload changes every 60 
minutes. The instance file is applied both to HC(Greedy) and 
SA(Greedy) metaheuristics. 

8. DISCUSSION 
In this section, the results derived from the evaluation of the 
decision support system are discussed. 

8.1 Degree of Isolation 
The isolation value of the DSS can be used to infer the degree 
of isolation of the systems. For the format used in computing 
the optimal function, we can know the number of isolation 
values. Best optimal values imply the highest combined value 
of isolation for the set of optimal solutions. The worst 
(minimum value) means the lowest combined value of 
isolation. This corresponds to a low degree of isolation which 
corresponds to a shared pattern. It has to be pointed out that this 
is not necessarily an undesirable solution, from a practical point 
of view. It simply means that the set of solutions allows 
resources to be shared more flexibly. This may be a valuable 
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option for a business that is not interested in the highest degree 
of isolation. These two options (i.e., low or high degree of 
isolation) are in some sense at opposite extremes of a spectrum. 
Between these extremes lies a third option, which translates to 
specifying an optimal value between a given range. 

8.2 Resource Utilization of the Components 
The number of requests that can be allowed to access a 
component is a very important parameter that can be used to 
study the behaviour of the cloud-hosted system and thus make 
a decision about the resources or capacity of the components 
and the resources. 

The decision support system provides information about the 
number of requests that can access a component. This gives an 
indication of the level of utilization of the components and the 
system as a whole. 

8.3 Performance Interference 
The decision about the performance of the system can be 
inferred from the decision support system. This is important  in 
a situation where there is a limitation in terms of time and 

resources required to produce a stable and robust optimal 
solution for deploying components of a large and complex 
cloud system. Another situation is in a case where there are 
limitations in the computation machine on which the decision 
support system is executed, or it is infeasible to obtain the 
optimal solution. 

The number of function evaluations can be used to 
answer this kind of question: Assuming there is a 
limitation in terms of time, what are the optimal 
solutions that can be provided for deployment to the 
cloud? 

8.4 Penalty violations 
The magnitude of penalty violations by the solutions for 
violating the constraints is an indication of the quality of the 
solutions. Solutions with lower penalty values are regarded as 
better solutions because the solutions had fewer violations of 
the constraints of the problem. From a practical point of view, 
it means that the solutions with fewer violations translate to a 
lower cost of deployment of the components to the cloud. 

TABLE VII: Summary of trade-offs, DSS parameters and effect on cloud-hosted service 

S
N 

Trade-offs for 
considera- 

tion 

DSS 
paramete

rs 

Effect on Cloud-hosted
Service 

1 tenant isolation 
versus re- 

source sharing 

Isolation 
value 

If the isolation value from the
DSS is low, then it 

means that the cloud consumer
has the ability to share 
resources. 

2 tenant isolation 
versus the 
number of users 

No. of 
requests 

If the isolation value from the

DSS is high 5 then it 

that the cloud consumer needs 
more scope of control of the 
cloud stack. 

3 tenant isolation 
versus 

customizability 

Isolation 
value 

If the isolation value from the
DSS is high then it 

will be more flexible to
customize the cloud service 

4 tenant isolation 
versus 

size of 
generated data 

Isolation 
value 

If the isolation value from the
DSS is high then it 

means it will be more difficult 
to achieve a high degree of 
isolation if a large volume of 
data is generated by the cloud 
service. 

5 tenant isolation 
versus 

scope of control 

Isolation 
value 

If the isolation value from the
DSS is high (on the 

upper one-third (of the 
difference between the lowest 
and highest optimal value) 
then it that the cloud 
consumer needs more scope of 
control of the cloud stack. The 
reverse is true for a low 
isolation value. 

6 tenant isolation No. ofIf penalty values are more, it
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versus 

business 
constraints 

requests, 

Penalty 
values 
(security) 

means that the com- 

ponent or system is more
vulnerable to security
breaches. 

 

9. RECOMMENDATIONS AND 
CONSIDERATIONS FOR 
IMPLEMENTATION OF DECISION 
SUPPORT SYSTEM 
This section discusses the recommendations and considera- 
tions for practitioners (e.g., cloud providers and users) to use 
the decision support system. 

9.1 Optimal Decisions related to Trade-offs 
for achieving the required degree of tenant 
isolation 
The DSS can be used to make trade-off decisions for con- 
sideration when deploying components of cloud-hosted service 
for guaranteeing multitenancy isolation. Table VII summarises 
some of the key trade-offs to consider, the parameters to tune 
on the DSS, and the effect on cloud-hosted service. 

9.2 Evaluation of the Optimal Solutions for 
the deployment of cloud-hosted services 
The DSS can be used to evaluate the optimal solutions to be 
deployed to the cloud. Specifically, the DSS can be used to 
evaluate the quality of the solutions, the robustness of the 
solutions, and the estimated computational time required to 
produce the required optimal solutions for deployment. This is 
particularly important to both a cloud provider as well as a 
cloud consumer. For example, in a resource-constrained 
environment, a cloud consumer would be interested in know- 
ing the computation time (and resources) that would produce a 
particular optimal solution. The reader can refer to our previous 
work for details on evaluating key metrics for optimal 
deployment of services to the cloud. 

9.3 Optimal Decisions related to the Size 
and Nature of Cloud- hosted Service 
The size of the cloud-hosted service is also an important 
consideration when making optimal decisions. This size could 
be based on the number of existing components (i.e., a small or 
large number of components), or the number of data generated 
as a result of executing the cloud-hosted service. In the case of 
a large cloud-hosted service, the DSS will take on a large input 
dataset (for example, an instance file consisting of 500 groups 
of components, 20 components per group and supported by 
four resource types) together with an accompanying service 
demand file, and a workload file). Without bias, our DSS is able 
to produce the optimal value that corresponds to a suitable 
multitenancy pattern out of the three possible patterns, which 
also points to the associated degree of tenant isolation. Results 
presented in Section VII show that the decision support 
algorithm is scalable and can be applied to small or large 
decision-making problems. 

9.4 Optimal Decisions related to Aspects of 
Isolation to im- prove in cloud-hosted 
services 
There are considerations for practitioners regarding the na- ture 
of improvements to make to the cloud-hosted service us- ing 
the DSS. Previous experimental work shows that the com- 

ponents of cloud-hosted service deployed based on the shared 
component pattern changed significantly for performance- 
related parameters (e.g., response times, error%, and through- 
put), while the dedicated component pattern changed sig- 
nificantly for the system’s resource-related parameters (e.g., 
CPU, memory, and disk I/O) [6]. Therefore, the DSS can be 
fine-tuned to make recommendations regarding the parameters 
that support the deployment of components with the shared 
pattern in order to improve the systems resource consumption 
and vice versa for the deployment of components with the 
dedicated pattern to improve the performance of the cloud- 
hosted service. 

9.5 Optimal Decisions requiring multiple 
criteria 
Our decision support system allows practitioners to perform 
some degree of parameter tuning depending on the required 
degree of isolation. For example, a cloud customer may want 
to deploy components experiencing frequent workload changes 
while at the same time enhancing the sharing of resources 
between the components (and the whole system). In this case, 
an optimal value between 0 and one-third of the difference 
between the lowest and highest optimal value can be specified 
as an input allowing the algorithm to produce an optimal 
solution for the required degree of isolation. A slight 
modification can be made to obtain the optimal solutions when 
the isolation value or an average number of requests is 
provided. Also, when a set of optimal solutions is given, it is 
also possible to use the decision support system to estimate the 
type of degree of isolation (and hence the type of multitenancy 
pattern to use) and the average number of requests that can be 
allowed to access the components or the whole systems. 

10. SCOPE AND LIMITATIONS OF 
THE STUDY 
The focus of this work was to provide a framework for 
developing a decision support system for providing an optimal 
solution for deploying components of a cloud-hosted applica- 
tion in a way that guarantees the required degree of multite- 
nancy isolation. They can be adopted and implemented in a 
flexible way to suit the particular deployment environment that 
is required. The results in the previous work by Ochei et al. [7] 
focused on an extensive evaluation of the optimization model 
and a metaheuristic solution to provide a near-optimal solution 
for deploying components of a cloud-hosted application in a 
way that guarantees multitenancy isolation. Although the 
results presented in this paper reflect solutions evaluated by 
combining optimalDep with the Hill Climbing algorithm and 
Simulated Annealing algorithm to find an optimal solution to 
the optimization problem, other metaheuristics (e.g., genetic 
algorithm, particle swamp optimization) can also be used. 

The results presented in this paper are a significant extension to 
the previous work by Ochei et al. [7] where the focus is on using 
the data provided by the optimization model to assist decision-
makers in analyzing cloud deployment situations to guarantee 
the required degree of multitenancy isolation. The algorithm 
that drives the decision analyzer component of the framework 
has been included in the paper. This is followed by a simple 
example of the analyzer component provided in the result 
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section as part of experimentation. 

The evaluation of results in our previous work focused on 
comparing the solutions obtained from our approach with the 
optimal results obtained first from an exhaustive search of the 
entire solution space for a small problem and secondly with the 
target solution. Although our previous work used hill climbing 
and simulated annealing algorithm for illustra- tion purposes, 
any recent and advanced meta heuristic (e.g, memetic 
algorithm, particle swarm Optimization Algorithm) can also be 
combined with optimalDep to produce optimal solutions as 
explained and so will not be repeated in this study. This current 
work focuses on how to further analyse the optimal solutions 
and other related information produced by the optimalDep 
algorithm using a decision support system. The paper describes 
a component which is fed with data obtained from realistic 
experiments conducted with real cloud- hosted software 
development tools. We previously conducted separate case 
studies to empirically evaluate the degree of tenant isolation in 
three real-life cloud-hosted software devel- opment process 
tools: continuous integration (with Hudson), version control 
(with File SCM Plugin and Subversion), and bug/issue tracking 
(with Bugzilla). The addition of modelling, simulation, and a 
framework for implementing a decision support system, 
constitutes a novel contribution to knowledge. [35], [36], [37]. 

11. CONCLUSION 
In this paper, we have presented a framework that can be used 
to develop a decision support system for users (e.g., cloud 
deployment architects) to make decisions regarding the optimal 
deployment of components of a cloud-hosted service for 
guaranteeing multitenancy isolation. This work contributes to 
the literature on multitenancy isolation and optimization of the 
deployment of components of cloud-hosted services. 

Multitenancy has become a key concept in the deployment of 
cloud-based services. The challenge of implementing mul- 
titenancy is not only how to ensure that there is isolation 
between multiple components of a cloud-hosted service when 
one of the components experiences high load, but also to 
guarantee that the required degree of isolation between tenants 
is attained [4], [6]. To address this challenge, this paper has 
presented a novel decision support model algorithm (i.e., 
optimalDSS), together with a system architecture (i.e., op- 
timalDssArch) for making decisions regarding the deployment 
of components of a cloud-hosted service with a guarantee for 
multitenancy isolation. In addition, a novel algorithm for 
creating input files (i.e., instance file, service demand file and 
workload files) for running the decision support system. 

The study has revealed after extensive experimental evalu- 
ation of the framework that it can be used by cloud providers 
and users to make decisions regarding the optimal deployment 
of components of a cloud-hosted service. Such decisions 
include but are not limited to - the required degree of isolation 
(i.e., lowest degree or highest degree of isolation, or even a set 
of optimal solutions with a specific isolation value), resource 
utilization, of components or tenants accessing the system, 
performance issues (e.g., the best possible (optimal) solution 
that can be within a limited or specified time interval. 

In future, we plan to develop a decision support model for 
predicting the availability of components of cloud-hosted 
services based on the required degree of multitenancy iso- 
lation. Availability can be used to indicate the uptime of a 
system (or components of a system) over a sufficiently long 
duration. In a cloud environment, the MTTR of different fault 
recovery techniques can be explored to compute how long it 

takes to bring the backup copy up to speed, and hence predict 
the availability of components. In our study, we applied our 
approach to optimise the deployment of components of cloud 
services. We plan to apply our approach to optimise the profit 
of virtualized cloud data centres (VCDCs) in a way that 
guarantees varying degrees of isolation between the various 
applications running in VCDCs. This is similar to the work of 
[17], [19] where the authors presented an approach to optimize 
the profit of VCDCs based on the service-level agreements 
(SLAs) between service providers and customers.  
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13. APPENDIX A SAMPLE DATASET 
The sample dataset files used in the experiments have 
been made available online6 to improve readability and 
re- producibility. The sample files included are - a small 
problem instance (i.e., C(10, 20,4) and a large problem 
instance file (i.e., C(500, 20,4). The service demand files 
and workload files associated with the instance files have 
also been included.  

APPENDIX B  - SAMPLE OPTIMAL SOLUTIONS FOR 

LARGE DATASET (C(500,20,4) WHEN ARRIVAL 

RATES IN THE WORKLOAD FILE ARE THE SAME. 
DATASET IS APPLIED ON SA(GREEDY) 

ALGORITHM 

Best optimal solution for workload with an arrival rate 
of 2.7 per second applied to a large dataset defined as 
C(500,20,4) is shown below. The specification of this 
dataset means that there are 500 groups of components, 
20 components per group and supported by 4 resource 
types -CPU, memory, disk space and bandwidth. The 
array shown below which contains 500 elements 
represents an optimal solution. The array is 
automatically created by the decision support system by 
selecting one component from each of the 500 groups 
for deployment in a way that meets the resource 
constraints of the system and maximises the optimal 
function G. 
[2, 8, 7, 11, 11, 4, 17, 9, 8, 9, 13, 0, 12, 8, 3, 10, 16, 
16, 9, 5, 14, 14, 7, 10, 17, 5, 9, 14, 0, 16, 17, 11, 12, 
15, 8, 11, 15, 8, 9, 18, 8, 8, 19, 14, 15, 0, 15, 18, 5, 0, 
8, 6, 17, 19, 18, 12,14, 0, 1, 3, 14, 15, 6, 11, 0, 13, 18, 
6, 17, 19, 6, 13, 10, 9,19, 17, 12, 11, 11, 13, 3, 8, 13, 
9, 18, 19, 7, 13, 17, 16, 9,15, 12, 1, 18, 5, 7, 8, 18, 13, 
7, 7, 1, 1, 11, 10, 18, 4, 13, 18,19, 19, 13, 1, 9, 1, 18, 
8, 9, 8, 16, 1, 17, 1, 5, 12, 12, 4, 17,11, 5, 1, 19, 15, 2, 
8, 12, 14, 5, 6, 19, 13, 18, 17, 19, 14, 15,1, 4, 12, 2, 6, 
19, 8, 19, 16, 13, 16, 3, 7, 19, 6, 18, 18, 19,17, 17, 5, 
16, 18, 16, 19, 14, 14, 5, 10, 13, 13, 6, 15, 10, 16,19, 
9, 8, 6, 13, 18, 12, 9, 1, 11, 17, 7, 3, 0, 10, 6, 6, 14, 
13,3, 13, 7, 17, 9, 10, 19, 2, 19, 11, 3, 16, 5, 5, 2, 17, 
7, 3, 1,3, 12, 2, 17, 15, 11, 12, 17, 11, 8, 17, 1, 5, 11, 
12, 13, 5, 15,10, 17, 4, 6, 18, 7, 10, 19, 17, 10, 3, 8, 
11, 6, 0, 18, 16, 6,14, 3, 5, 2, 0, 13, 13, 10, 12, 3, 7, 
15, 1, 15, 14, 9, 5, 0, 10,8, 14, 17, 18, 1, 19, 10, 9, 4, 
19, 16, 10, 9, 15, 5, 16, 4, 6, 0,6, 15, 8, 14, 17, 16, 14, 
1, 18, 2, 2, 4, 18, 17, 1, 7, 18, 8, 11,11, 5, 8, 3, 6, 19, 
16, 8, 17, 12, 10, 7, 13, 15, 1, 2, 12, 9, 3,17, 3, 15, 16, 
16, 3, 14, 17, 7, 1, 17, 10, 10, 12, 0, 9, 10, 13,8, 10, 7, 
3, 12, 19, 14, 2, 10, 0, 13, 4, 18, 3, 7, 9, 15, 16, 3,9, 
18, 6, 5, 13, 18, 3, 19, 6, 3, 12, 9, 19, 10, 7, 11, 9, 13, 
4,17, 13, 3, 8, 11, 8, 17, 13, 6, 4, 18, 1, 3, 0, 4, 3, 12, 
11, 1,16, 5, 12, 15, 9, 11, 16, 6, 12, 9, 19, 7, 5, 3, 5, 11, 
2, 17, 17,14, 10, 9, 17, 7, 7, 14, 2, 17, 16, 14, 10, 7, 
10, 5, 7, 5, 14,12, 11, 18, 16, 18, 5, 13, 18, 19, 13, 

18, 9, 13, 2, 6, 4, 17,13, 17, 8, 14, 9, 17, 13, 19, 8, 
12, 9, 16, 6, 7, 19, 11, 3, 4,13, 0, 15, 16, 18, 12, 1, 4, 
2, 6, 4, 10, 4, 6, 12, 16, 0, 12, 1,13, 7] 
 
APPENDIX C  
SAMPLE OPTIMAL SOLUTIONS FOR LARGE 

DATASET (C(500,20,4) WHEN ARRIVAL RATES IN 

THE WORKLOAD FILE ARE THE SAME. DATASET IS 

APPLIED ON SA(GREEDY) ALGORITHM 

Worst optimal solution for workload with an arrival 
rate of 2.7 per second applied to a large dataset 
defined as C(500,20,4) is shown below. The 
specification of this dataset means that there are 500 
groups of components, 20 components per group 
and supported by 4 resource types -CPU, memory, 
disk space and bandwidth. The array shown below 
which contains 500 elements represents an optimal 
solution. The array is automatically created by the 
decision support system by selecting one component 
from each of the 500 groups for deployment in a way 
that meets the resource constraints of the system and 
maximises the optimal function G. 
[8, 8, 7, 11, 0, 4, 17, 9, 8, 9, 13, 0, 12, 8, 3, 10, 16, 16, 
9, 5, 14, 14, 7, 17, 17, 5, 9, 14, 0, 16, 17, 11, 12, 15, 8, 
11, 15, 8,9, 18, 8, 8, 19, 14, 15, 0, 13, 18, 5, 0, 8, 6, 
17, 19, 18, 12,14, 0, 10, 3, 14, 15, 6, 11, 0, 13, 18, 6, 
17, 19, 6, 13, 10, 9,19, 17, 12, 11, 11, 13, 3, 8, 13, 9, 
7, 19, 7, 13, 17, 16, 9, 15,12, 1, 18, 5, 7, 8, 18, 13, 12, 
2, 1, 1, 11, 3, 15, 4, 13, 18, 19,19, 13, 1, 9, 1, 18, 8, 
14, 8, 16, 1, 17, 1, 5, 12, 7, 4, 17, 11,5, 1, 19, 15, 2, 
8, 12, 14, 5, 6, 19, 13, 18, 17, 19, 14, 15, 1,4, 12, 2, 6, 
19, 8, 19, 16, 13, 16, 3, 7, 19, 6, 18, 18, 19, 17,17, 5, 
16, 18, 16, 19, 14, 14, 5, 10, 13, 13, 6, 15, 10, 16, 19,9, 
8, 6, 12, 18, 12, 18, 1, 11, 17, 7, 3, 0, 18, 6, 6, 14, 13, 
3,13, 7, 17, 9, 10, 19, 2, 5, 11, 3, 16, 5, 5, 2, 17, 7, 3, 
1, 3, 12,2, 17, 15, 11, 12, 17, 11, 8, 2, 1, 5, 11, 3, 13, 
19, 15, 10, 17,4, 6, 18, 7, 10, 19, 17, 10, 3, 8, 11, 6, 0, 
3, 16, 6, 14, 3, 5, 2,0, 13, 13, 10, 12, 3, 7, 15, 18, 15, 
14, 9, 5, 0, 10, 8, 14, 17,5, 1, 19, 10, 9, 12, 19, 16, 
10, 9, 15, 13, 10, 4, 6, 0, 6, 15,8, 14, 12, 16, 15, 1, 
18, 2, 2, 4, 13, 17, 11, 7, 18, 8, 11, 11,5, 8, 3, 11, 19, 
16, 8, 9, 12, 10, 7, 13, 15, 1, 2, 12, 9, 3, 17,3, 15, 16, 
16, 10, 14, 17, 7, 1, 17, 10, 10, 12, 0, 9, 10, 13, 8,10, 
7, 3, 12, 15, 14, 2, 10, 0, 13, 4, 18, 3, 7, 9, 15, 16, 3, 
13,18, 6, 5, 13, 18, 3, 19, 6, 3, 12, 9, 19, 10, 7, 11, 9, 
13, 4, 17,13, 3, 8, 11, 8, 17, 13, 6, 4, 18, 1, 3, 0, 4, 3, 
12, 11, 1, 16,5, 12, 15, 10, 11, 16, 6, 8, 9, 13, 7, 5, 3, 
5, 11, 2, 17, 17, 14,17, 9, 17, 7, 7, 14, 2, 17, 16, 14, 
10, 7, 10, 5, 7, 5, 14, 12,11, 18, 16, 18, 5, 13, 18, 19, 
13, 18, 8, 13, 2, 6, 4, 17, 9, 17,8, 14, 9, 17, 13, 19, 6, 
12, 9, 16, 6, 7, 19, 11, 3, 0, 13, 0, 15,16, 18, 12, 1, 4, 
2, 6, 4, 15, 4, 6, 4, 16, 0, 12, 1, 13, 7] 
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