

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

1

Remote Performance Monitoring System for Managed

Service Providers

Adam Ball
Graduate Apprenticeship,

School of Science and Engineering,
University of Dundee, UK

Laud Charles Ochei
Graduate Apprenticeship,

School of Science and Engineering,
University of Dundee, UK

ABSTRACT
Remote Performance Monitoring Systems (RPMS) are a

critical method and resource for Managed Service Providers

and IT departments in businesses. These systems, however, are

either non-existent or out of date in many small and medium-

sized businesses. However, these systems are either non-

existent or are out of date in small and medium-sized

businesses. They are also difficult to read with many

unresolved bugs. In addition, similar solutions on the market

offer limited functionality and do not meet the stakeholder’s

requirements. The aim of this paper is to design a remote

performance monitoring system for providing performance

bandwidth history reports for small and medium-sized

businesses. This paper also provides a review of related work

and similar solutions used for remote performance monitoring.

The system is developed with a DevExtreme design using a

Golang API that reads from an InfluxDB database. The new

system provides the user with a modern, readable user interface

as well as a modern, readable chart with the metrics selected by

the user. The new system is recommended for small and

medium-sized businesses since it enables users to extend its

functionality and customise several modules (e.g., dynamically

altering the order and size of graphs displayed).

Keywords
Remote, Performance, Remote Performance Monitoring

System, Managed Service Providers

1. INTRODUCTION
Remote Performance Monitoring Systems (RPMS) stand as

indispensable tools for Managed Service Providers (MSPs) and

IT departments in small and medium-sized businesses.

However, a prevalent challenge persists in the form of either

outdated or non-existent RPMS in many small and medium-

sized businesses. Existing solutions often suffer from

readability issues and unresolved bugs, while their limited

functionalities fail to align with stakeholder requirements.

The absence of effective RPMS in small and medium-sized

businesses underscores a pressing need for a tailored solution.

Currently, available systems not only lack readability but also

fail to provide comprehensive functionalities.

Motivated by this problem, this paper aims to develop and

integrate a novel performance and bandwidth history reporting

system into remote performance monitoring systems for

managed service providers and IT departments in small and

medium-sized businesses.

The main contributions of the paper are:

1. Presenting a review of related work and similar

solutions for performance monitoring of remote

computers and networks in the MSP industry.

2. Designing and implementing a new performance and

bandwidth history reporting system for managed

service providers and IT departments in small and

medium-sized businesses.

3. Presenting a range of testing strategies specifically

tailored for the evaluation of remote performance

monitoring systems, particularly when end-user

participation is limited due to the non-client-facing

nature of the system.

4. Providing recommendations and guidelines for how

a user would use the system to monitor and

historically view the performance and bandwidth

data

This research bridges this gap by presenting a modern, user-

friendly RPMS. This system, developed using a DevExtreme

design and a Golang API reading from an InfluxDB database,

not only offers a contemporary user interface but also

introduces a customizable reporting feature. This adaptability

empowers users to extend the system's functionality and

customize various modules, providing dynamic control over

the display of graphs.

The rest of the chapter is organised as follows: Section two is

the background of the study. Section three is the literature

review and related concepts. Section four is the methodology.

Section five is the analysis and design of the study while section

six is the implementation and testing of the system. Section

seven is the result and discussion. Section eight concludes the

study with future work.

2. BACKGROUND AND STATEMENT

OF THE PROBLEM
XYZ Ltd is an IT service management company, whose goal is

to empower Managed Service Providers (MSPs) to help small

and medium companies manage their IT infrastructure. The

MSPs offer the service to manage these systems to companies

that may not have the ability to do so themselves.

The XYZ company is responsible for offering the software to

support this service. One of the most important components of

the software by XYZ Ltd is the N-sight RMM which is the

remote monitoring and management system. This system

allows MSPs to manage devices and servers, remote access,

and automate billing. Figure 1 shows N-sight RMM.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

2

Figure 1. N-sight RMM

Company XZY Ltd has a long history of providing this

industry-leading software to MSPs they have been ranked the

number 1 platform for MSPs and are used by over 25,000

MSPs. With the world's increasing demand for IT infrastructure

MSPs are having to offer more and more services to the end

users and the pressure is on to compete for this business.

Company XYZ Ltd is working to increase the standard of its

current system as well as implementing new features and

device support.

One of the key components of the remote service monitoring

system is the RMM device dashboard which is the area of the

product that the end users such as the support staff and

engineers would use. This area of the application is built up of

an RMM Wrapper built in angular.

Another important component is the RMM all-devices view

which is imported into the application wrapper from its own

RMM server repository. Within component, there are many

different features that can be provided, one of which is the

reporting software, more specifically the Performance and

bandwidth history report. There are several different features

that can be supplied inside this component, one of which is the

reporting software, particularly the Performance and bandwidth

history report.

Currently, N-sight RMM offers the users a performance and

bandwidth history report, which shows the results of the

performance monitoring of the client's servers and

workstations, or the bandwidth monitoring checks for the

client's servers. This can be on individual devices over the last

24 hours and 8 days. The current charts for each check show

both the average and maximum values to help easily identify

when and where the performance tailbacks occur.

Currently, this report dialogue can be opened either via the

report’s menu or from the more information section for the

checks. After the user selects the report, they can select what

checks to include within the report for both the last 24 hours

and or the last 8 days. These checks include the processor,

memory, and network utilization. as well as the disk space

check and bandwidth monitoring for the servers. Currently, this

module shows serval static graphs that are not easy to read and

cannot be adjusted. This has also been identified as a problemed

area by our customers as they are continuing to discover many

different bugs, such as incorrect data, loading issues and blank

graphs being displayed. This is starting to become a bigger

issue for N-able and the customers are getting progressively

more frustrated.

3. REVIEW OF LITERATURE AND

RELATED CONCEPTS
This presents a review of the literature and related concepts.

3.1 Overview of Related Concepts
A performance monitoring and reporting system is an

application that collects the health status data and performance

metrics of a system or device (SolarWinds, 2023). As described

by SolarWinds these systems work “by continuously gathering

data on system resources” (SolarWinds, 2023).

Network monitoring systems provide the information used by

network administrators to gauge if a network is running

optimally (Cisco, 2023). Margaret Rouse an award-winning

technical writer talks about how these systems enable

administrators, organizations, and end users to evaluate the

performance of a system (Rouse, 2013)

When it comes to Network performance monitoring there are

several different metrics used to access this such as bandwidth

usage, latency, and throughput. Bandwidth usage is the

maximum data transmission rate at a certain time. (DNSstuff,

2022)

Throughput is a metric that allows you to measure the data

transmission rate through the network. Latency is the amount

of time it takes to transfer data. (SolarWinds, 2023) Each

application uses different metrics to monitor the network

performance of certain devices. The metrics discussed all N-

able to monitor network performance effectively (N-able,

2023).

3.2 Examples of Similar Solutions for

Remote Performance Monitoring

System (RPMS)
There are several examples of remote performance monitoring

systems for managed service providers and IT departments for

small and medium-sized businesses. These include NinjaOne,

DataDog, SolarWinds and JAMF.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

3

One of the significant differences between the N-sight RMM

and other solutions is that it provides an exclusive offering of

device support for Windows, Mac, and Linux. They allow users

to manage and protect their devices without taking away from

the Apple experience. (JAMF, 2022)

Another solution on the market Is SolarWinds NetFlow Traffic

Analyzer, a tool that makes it easy to view bandwidth used by

the application, protocol and IP address” (SolarWinds, 2023).

The tool can identify bandwidth bottlenecks very quickly. It

also offers the ability to set up alerts when bandwidth utilization

drops and can automatically turn the usage data into charts,

tables, and network bandwidth reports.

Another similar solution is DataDog, described as end-to-end

visibility into on-prem, cloud, or hybrid networks (DataDog,

2023). This tool is more focused on network usage rather than

network performance. This solution offers many different

benefits such as an out-the-box dashboard and a feature that

will autonomously find anomalies in the environment.

DataDog also offers deeper visibility into the DNS performance

as well as a feature to be able to analyse the network traffic

between meaningful endpoints rather than just IP addresses.

(DataDog, 2023)

JAMF, another similar solution is one of the most widely used

Apple mobile device management software. Their goal is to

help their customers empower their workforce by removing the

hassles of managing technology. As of December 2022, they

manage over 30 million devices. (JAMF, 2022) However,

JAMF does not offer support for Windows devices and instead

limits its target audience to Mac devices.

One of the main differences between the N-sight RMM and

other similar solutions is in terms of compatibility. In addition

to network monitoring functionality, the N-sight RMM tool

provides the ability to add custom checks and patch critical

updates.

The N-sight RMM does report on the performance of the device

and does have the option to monitor the bandwidth performance

at a client, site, or device level, and also support Windows

devices. (JAMF, 2022).

3.3 Related Work on Remote Performance

Monitoring Systems for MSP
The following section discusses recent research in remote

performance monitoring systems. The areas that have been

highlighted include - integration of AI and machine learning,

cloud and IoT Integration, predictive analytics and capacity

planning, security and compliance enhancements,

customization and user experience, and benchmarking and

comparative studies.

Incorporating artificial intelligence (AI) and machine learning

(ML) techniques into RPMS has gained traction. These

technologies augment anomaly detection, predictive analytics,

and decision automation. Wang et al. (2022) have developed an

AI-driven RPMS utilizing ML algorithms for continuous

analysis of historical performance data, facilitating proactive

issue resolution and system reliability.

The advent of cloud computing and the proliferation of the

Internet of Things (IoT) have spurred research into seamless

RPMS integration with these technologies. Huang et al. (2023)

have pioneered an approach to integrate RPMS with cloud

services, extending monitoring capabilities to cloud-based

resources effectively. This integration affords a comprehensive

view of the entire IT ecosystem.

RPMS research has honed predictive analytics and capacity

planning capabilities. Chen et al. (2021) proposed a predictive

analytics framework within RPMS to aid MSPs in data-driven

decisions for capacity planning, optimizing resource allocation,

and reducing costs.

Elevating security and compliance within RPMS has been a

focal point. Kim et al. (2019) have delved into secure data

handling practices within RPMS, introducing encryption and

access control mechanisms to protect sensitive data, aligning

with regulatory requirements.

Customization features have been augmented within RPMS to

cater to diverse client needs. Gao et al. (2017) have introduced

a customizable RPMS, allowing MSPs to create personalized

dashboards, reports, and alerting rules to enhance the user

experience.

Benchmarking and comparative studies have been instrumental

in evaluating RPMS performance and reliability. Savvopoulos

et al. (2019) conducted a comparative study of alerting

mechanisms within RPMS, providing insights to aid MSPs in

selecting the most suitable solution.

4. METHODOLOGY
The research methodology adopted for this study is the Build

methodology. This resolves around creating a model such as a

software application. Easterbrook describes this methodology

as the combination of practical implementation and theoretical

knowledge. (Easterbrook S, et al., 2008). The Build

methodology mostly focuses on the practical aspect of the

implementation. However, it does still require conducting an

extensive literature review, analysis of current solutions and

justify their decision with evidence. This is built around the

guidelines and examples of conducting case study research

within the software engineering industry (Runeson, et al.,

2012).

The software development methodology used is the agile

methodology which involves breaking down the project into

different phases and focuses on collaboration and

improvement. (Atlassian, 2023) This methodology promotes

practices such as daily catch-up meetings (known as stand-ups),

planning sessions, sprints, and pair programming (Alliance,

2023).

The project chose the Scrum framework, an incremental and

iterative software development framework that manages

project development (Sachdeva, 2016).

5. ANALYSIS AND DESIGN
The section presents the analysis and design of the study.

5.1 Requirements gathering
For this project, created a Jira Board, this will be the single

source of truth for the work and requirements. This will show

the breakdown of all the tasks including what is known as epics.

An epic is a large body of work broken down into several

smaller stories Fields (Atlassian, 2022). These stories will then

be displayed in an ordered list within the TODO column on the

Jira Board. This board will contain several different columns

such as TODO, in progress, Ready for Review, In Review,

RFT, Testing and Done. This board will show the progress of

each task, how long it has been at that stage and who is working

on it. In this project, the primary developer responsibilities will

be carried out by a designated individual who will also assist

the Test Engineers employed by N-able. Figure 2 shows the

project Jira board.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

4

Figure 2. JIRA Board for the project.

Several functional and non-functional requirements were also

gathered for this project. This is summarised in the table below.

Table 1. Summary of functional and non-functional requirements of the system

Functional Requirements Non-Functional Requirements

The user must be able to select the required metrics The user interface must have a modern and consistent look

Graphs must load in under five seconds The user must be able to switch between light and dark mode

The application must be module and built using the

DevExtreme library

The application must be secure from unauthorized users

The Golang API must read from the InfluxDB database and

present the information to the data source

The code must be readable with comments

5.2 User Interface Design
1. Viewing selected metrics over different time periods

Another feature of this application is the ability to view the

selected metrics over different time periods. When the users

open the application, they are presented with the option to

select the client, site, or device. They can then select the report

they want to view as well as the timeframe. Figure 3 shows the

dialogue where the users will make this selection.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

5

Figure 3. Metrics Dialog for the project.

2. Displaying of reporting graphs

The design of the tools allows for splitting the graphs into

separate graphs and then toggling between the timeframes. The

user will have the option to tick whether to show the processor

graph, memory graph, network graph or physical disk graph.

Then within these graphs, the user can toggle the more detailed

metrics such as the processor queue and processor utilization.

Figure 4 shows the graph after selecting one of the metrics at

the bottom while the others are hidden.

Figure 4. Graph displayed with One metric hidden.

5.3 Architecture Design
The Performance and bandwidth history report follows a

Client-Server architecture built up of multiple components.

Joseph Molloy describes Client-Server architecture as a

“network where multiple clients request and receive files and

services from a centralized server over a local or internet

connection" he then moves on to discuss how typically the

client will use an application as an interface to connect to the

server (Molloy, 2023).

This form of software architecture offers many benefits such as

increased scalability, flexibility, and a high level of

performance. Vikram Joshi from Forbes discusses how this

type of architecture means that it is easier to scale the

application. He also talks about how this separation can offer

faster deployments and optimization of resources (Joshi, 2018).

These reasons were previously discussed and to keep this

application consistent with others at N-able, it was decided that

Client-Server architecture be used. Figure 5 shows the

software’s architecture.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

6

Figure 5. Client-Server architecture for the system

As shown in the diagram above the Backend of the application

is built up of a read-and-write API written in Golang, an open-

source, compiled, and statically typed programming language

designed by Google. It is built to be simple, high-performing,

readable, and efficient (Chris, 2023). In this project, they are

responsible for pushing and pulling the required data to and

from the Influx database. They are stored within the main

directory within the CMD folder in a main.go file. The Angular

Application is built up of several different components. The

first is the main components, which show the features of the

main page and then call the other components when requested

such as the metric dialogue and each of the charts.

The application also contains a package.json file. This is

responsible for all the dependencies and imports for the

application, such as the Angular Dev kit and the nebular

common repository that holds the styles for each of the Apex

Charts.

5.4 Application structure
The application structure is split up into front-end and back-end

folders (Figure 6). Within the CMD folder is the Golang

read/write APIs. Following on from this within the source

folder are the main Angular components, The app components

hold the main application page, and the “performance-history-

line-graph components” hold the graphs.

The software structure also contains a package.json file where

the dependencies are imported as well as a docker-

compose.yml file which contains the docker configurations.

Figure 6. Application structure with front-end and back-end folders.

6. IMPLEMENTATION AND TESTING

6.1 System Implementation
This application is built up of a front-end Angular-based

module built with the Apex Design system this will be the user

interface that allows the user to view the performance and

history data of their devices. It is built up of the Apex-styled

DevExtreme graphs that read data from that data source.

In terms of the backend, the system has a read-and-write API

that is written in Golang. The write API will push the data and

store the performance and bandwidth history report metrics

within the database. The Read API will be responsible for

running the query to pull the requested data from the database

and will store them within the data source that will be used to

show the data within the Apex chart.

Another development tool used during the implementation of

the application is Docker. Docker is an open platform for

developing, shipping, and running various applications in a

faster way. Docker enables the applications to run separately

from the host infrastructure and treat the infrastructure like a

managed application. Docker does this by combining a

lightweight container virtualization platform with workflows

and tooling that help to manage and deploy applications (Preeth

et al, 2015). In this project, a docker-compose file was created

within the main file directory. Via one command this will then

build the container based on the configuration within the docker

compose YAML. The Docker compose file created runs the

InfluxDB service. The YAML files define the contains name,

ports, and environment variables such as the database

username, password, organisation, bucket name and also admin

token. Figure 7 shows the configuration within the Docker

compose YAML file.

Front end Back end

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

7

Figure 7 - Docker composes YAML configuration.

The database used for this application is the Influx DB. This is

a database built specifically for time series data. It is written in

Go and is responsible for storing and retrieving time series data

(Influx, 2023). Influx DB also offers several different benefits

such as a UI that allows the developers to edit scripts and view

the collected metrics. This type of database also offers low-

latency queries and acts as a single data source for all-time

series data.

6.2 Testing
The application is not client-facing, and therefore end users

were not involved in its testing. As a result, the application was

tested using several software testing tools. The performance

testing tool known as Apache JMeter was employed during the

execution of the test. This tool provides a comprehensive

feature set for assessing the behaviour of software applications

under various load conditions. This is designed to load test

functional behaviour and measure performance. (Apache,

2023) This testing tool will simulate multiple users sending

requests to the system.

The Performance and Bandwidth reporting system is not client-

facing, and therefore end users were not involved in its testing.

As a result, the system was tested using different techniques

and software testing tools. This testing includes API testing to

ensure that the read and write APIs connect to the InfluxDB

successfully. Data Validation testing was also performed to

check that the data pulled via the API was accurate.

In addition to this, performance testing was carried out to

ensure that the API can handle high-volume requests and that

the response time is as expected (below five seconds). The user

interface was tested to ensure that it displays the expected

results correctly and that the application can scale to different

screen sizes and orientations. As well as checking the

application is compatible with different browsers. Several

functional tests were carried out to ensure that the application

meets the requirements.

6.3 API tests
One of the tests that were conducted ensured that the read and

write APIs connected successfully to the Application

Programming Interface (API). For this test, Postman was

utilized to successfully test the API connections. Two tests

were created to run against the local port for the API and

database connection, testing that the API connected and that the

API body was valid. See Figure 8 for the tests and Figure 9 for

the test results.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

8

Figure 8 - Postman Test Configuration

6.4 Data Validation
As part of the data validation testing process, tests were

conducted using the write API written in Golang. These tests

involved pushing data to the InfluxDB database, followed by

using the read API to pull the same data from the database into

the data source for the front end.

To verify the accuracy of the data being pulled, a data

comparison tool was employed to compare the pushed and

pulled data. This approach ensured that the data being displayed

on the front end was an accurate representation of the data

stored within the database.

6.5 Performance Testing
In the context of the testing plan, performance assessments

were conducted to ascertain the ability of the application's APIs

to manage a considerable volume of data input and output

simultaneously. This evaluation was carried out utilizing

JMeter as the testing tool. The objective was to gauge the

performance of the system in handling requests from twenty

virtual users and to measure response times under this load.

Figure 9 shows the results of the JMeter Tests.

Figure 9. JMeter Table Results

6.6 User Interface Testing
As previously agreed upon the testing strategy encompasses

user interface checks. While carrying out the UI tests, several

checks were selected from the list on the left-hand side and

tested in different combinations of time frames. Additionally, it

was verified that the toggles would display or conceal the

chosen graphs.

(I) Displaying the correct result

To ascertain the accuracy of the information displayed on the

user interface, the local dashboard of InfluxDB was accessed.

Subsequently, a specialized tool known as Winmerge was

employed to compare the data presented on the interface with

the data stored in the database. This approach ensured that the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

9

displayed data accurately reflected the underlying database

information.

(II) Scaling to different sizes and orientations

Another type of test carried out during the verification process

of this application was functional testing. For this test, the size

of the browser windows was changed across different screens

and resolutions as well as changing the orientations from

horizontal to landscape to ensure the application displayed as

expected.

(III) Browser testing

During the testing process, the application was accessed using

various web browsers, including Google Chrome, Microsoft

Edge, Firefox, and Safari. Subsequently, multiple tests were

conducted to verify the functionality of the check selection

feature. The goal of these tests was to ensure that users could

successfully select the necessary checks and that the

corresponding data would be displayed accurately.

Additionally, the functionality of the toggle feature was

evaluated to confirm that the checks would be hidden when

unchecked.

7. RESULTS AND DISCUSSION

7.1 Summary of Results
A test plan was during the testing and verification stage of the

application, which contains various test scenarios. The

performance requirement specified that the graphs should load

data within five seconds. During testing, the graphs were found

to load significantly faster, taking less than one second.

Additionally, JMeter testing revealed that the application could

seamlessly handle multiple users connected to the database,

demonstrating its scalability and stability under increased load.

The API testing using Postman showed that the API connected

successfully and returned a valid result. To ensure that the

application met the requirements of the project, it was evaluated

by comparing the requirements and features to the requirements

list.

The performance and bandwidth reporting system will be

deployed to the cloud for use on desktops and laptops via the

browser. The application can be accessed by selecting the

performance and bandwidth history report from the report

menu as shown below (see Figure 10).

Figure 10. How to access the performance and bandwidth history report.

In undertaking this project, the decision was made to adhere to

the principles of continuous integration and continuous

delivery, thereby ensuring the efficient and seamless

development and deployment of the software. The “developer's

changes are validated by creating a build and running

automated tests against the build”. (Pittet, 2023). Jenkins was

used for the builds and deployment. The Jenkins file within the

root of the application is detected when changes are pushed to

the repository and then Jenkins will run the configuration from

that file. This file is used to configure the build pipeline, Figure

11 shows the build pipelines and the steps it takes throughout

the build process.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

10

Figure 11. Build pipeline and stages.

An in-house feature flag service was used to manage the

deployment of new features and releases. Brian Rinaldi

describes a feature flag as a “concept that allows you to enable

or disable a feature without modifying the source code or

requiring a redeploy” (Rinaldi, 2020). Figure 12 shows the

feature flag toggle used to control these feature flags.

Figure 12 - RMM feature preview toggle.

7.2 Product Evaluation
The application meets the requirement of allowing the user to

select the checks to be displayed and toggle between viewing

the eight-hour or twenty-four-hour timeframe. The API

correctly reads the information from the database and outputs

it to the user interface via a DevExtreme chart. The application

as required can be accessed via the N-able sight application by

logging in and selecting the performance and bandwidth history

report. The application has been designed in a way that will

allow it to be extended to further improve the graphs make it

clearer and allow the user to customize the layout of each chart

individually.

The source code has also been designed to make it easier to

refactor, maintain and improve the code quality, fox ample, by

renaming some of the components and classes to improve the

ease of maintenance throughout the application. The source

code of the application has been developed to facilitate easier

refactoring and maintenance, with a focus on enhancing overall

code quality. For example, various components and classes

have been renamed to streamline maintenance tasks and

improve the application's manageability.

7.3 Process Evaluation
The process of developing this application using agile

methodology was appropriate. The stakeholders were kept

informed and valuable support was gained from others in the

company. Concerning the techniques used for gathering

requirements, there is an opportunity for improvement.

Employing different methods, such as user observation or

surveys, may lead to better results. The testing of the

application was conducted successfully. By utilizing tools such

as JMeter and Postman, vital data was collected, including the

maximum load of the application and its load time. The use of

these tools also proved helpful in verifying that the API

returned accurate data.

8. CONCLUSION AND FUTURE WORK
In this study, we have developed and integrated a novel

performance and bandwidth history reporting system into

remote performance monitoring systems for managed service

providers and IT departments in small and medium-sized

businesses. This research contributes to the literature on remote

performance monitoring systems.

The study revealed a prevalent deficit of effective RPMS in

small and medium-sized businesses (SMBs), characterized by

either their absence or outdated and challenging-to-read

interfaces fraught with unresolved bugs. Existing solutions in

the market further compound this issue by offering limited

functionality and falling short of stakeholder requirements.

The primary objective of this paper was to address this void by

designing a novel RPMS tailored explicitly for SMBs, with a

focus on providing comprehensive performance and bandwidth

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 12– No. 43, March 2024 – www.ijais.org

11

history reports. The developed system, utilizing a DevExtreme

design and a Golang API interfacing with an InfluxDB

database, presents users with a modern and readable interface.

Notably, users can customize the system, dynamically altering

the order and size of displayed graphs, enhancing its

adaptability to specific user needs.

This research not only addresses the identified gaps in RPMS

but also sets a precedent for user-centric, customizable

solutions. It is anticipated that the outcomes of this study will

not only benefit SMBs by offering an effective RPMS but will

also contribute significantly to the broader field of remote

performance monitoring, fostering innovation and

improvement in industry practices.

9. REFERENCES
[1] Alliance, A. (2023). [Online] Available at:

https://www.agilealliance.org/agile101/.

[2] Apache. (2023). Apache JMeter. [Online] Available at:

https://jmeter.apache.org/. [Accessed 22 July 2023].

[3] Atlassian. (2022). What is an Epic? [Online] Available at:

https://support.atlassian.com/jira-software-

cloud/docs/what-is-an-epic/.

[4] Atlassian. (2023). Jira. [Online] Available at:

https://www.atlassian.com/software/jira.

[5] Chen, W., et al. (2021). A Novel Remote Performance

Monitoring System for Managed Service Providers.

International Journal of Network Management, 31(2),

e2139.

[6] Chris, K. (2023). What is GO? Golang Programming

Language Explained. [Online] Available at:

https://www.freecodecamp.org/news/what-is-go-

programming-language/.

[7] Cisco. (2023). What is Network Monitoring. [Online]

Available at:

https://www.cisco.com/c/en_uk/solutions/automation/wh

at-is-network-monitoring.html. [Accessed 22 July 2023].

[8] DataDog. (2023). Network Monitoring. [Online]

Available at:

https://www.datadoghq.com/dg/monitor/network/networ

k-

new/?utm_source=advertisement&utm_medium=search

&utm_campaign=dg-google-network-emea-

networkcapacity&utm_keyword=network%20bandwidth

%20monitoring&utm_matchtype=p&utm_campaignid=1

5832880555&utm_adgroupid=.

[9] DNSstuff (2022). What Is Bandwidth Usage – How to

Check, Measure, and Monitor it. [Online] Available at:

https://www.dnsstuff.com/bandwidth-usage. [Accessed

18 July 2023].

[10] Easterbrook, S., Storey, J., & M.A, D. (2008). "Selecting

Empirical Methods for Software Engineering Research."

Guide to Advanced Empirical Software Engineering.

Springer Science & Business Media.

[11] Gao, Y., et al. (2017). Customizable Remote Performance

Monitoring System for MSPs. Journal of Cloud

Computing: Advances, Systems and Applications, 6(1), 1-

14.

[12] Huang, L., et al. (2023). Integrating RPMS with Cloud

Services for Scalable Managed Services. Future

Generation Computer Systems, 129, 112-125.

[13] Influx. (2023). Influx Data. [Online] Available at:

https://www.influxdata.com/.

[14] Influxdata. (2023). Comparison to SQL. [Online]

Available at:

https://docs.influxdata.com/influxdb/v1.3/concepts/cross

walk/#.

[15] Joshi, V. (2018). Seven Reasons Why A Website's Front-

End And Back-End Should Be Kept Separate. [Online]

Available at:

https://www.forbes.com/sites/forbestechcouncil/2018/07/

19/seven-reasons-why-a-websites-front-end-and-back-

end-should-be-kept-separate/?sh=2e27d1144fca

[Accessed 12 July 2023].

[16] Kim, J., et al. (2019). Secure Data Handling in Remote

Performance Monitoring for MSPs. Journal of

Information Security and Applications, 47, 1-10.

[17] Molloy, J. (2023). A Comprehensive Overview of the

Client-Server Model. [Online] Available at:

https://www.liquidweb.com/blog/client-server-

architecture/ [Accessed 12 July 2023].

[18] N-able. (2023). [Online] Available at: https://www.n-

able.com/lp/it-

solutions?utm_medium=cpc&utm_source=google-

brand&utm_campaign=rm-glbl-lt-dgd-

google_brand_core-2021-01-

01&utm_term=n%20able_kwd-

319841733353_e_575867562472&utm_content=g_1593

9739634_132568308419&cq_src=GOOGLE&cq_cmp=7

170000008. [Online].

[19] Preeth, E. N., Mulerickal, F. J. P., Paul, B., & Sastri, Y.

(2015, November). Evaluation of Docker containers based

on hardware utilization. In 2015 international conference

on control communication & computing India (ICCC) (pp.

697-700). IEEE.

[20] Savvopoulos, I., et al. (2019). Alerting Mechanisms in

RPMS: A Comparative Study. Computers & Electrical

Engineering, 76, 175-188.

[21] Wang, Y., et al. (2022). Leveraging Machine Learning for

Anomaly Detection in Remote Performance Monitoring

Systems. IEEE Transactions on Network and Service

Management, 19(1), 454-466.

