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ABSTRACT 

This study investigates global urban air pollution patterns 

across six continents using an extended version of the Global 

Air Pollution Data, covering major cities in Asia, Africa, 

Europe, Australia, North America, and South America. 

Building on our previously published work at the FMLDS2024 

Conference, which focused exclusively on Asian cities, this 

research broadens the geographic scope and integrates 

multivariate statistical techniques alongside six clustering 

algorithms: K-Means, Hierarchical Clustering, DBSCAN, 

Gaussian Mixture Models (GMM), Agglomerative Clustering, 

and Spectral Clustering. Cluster performance is evaluated using 

multiple metrics, including Silhouette Score, Davies-Bouldin 

Index, Calinski-Harabasz Index, WCSS, Cohesion, and 

Separation. The analysis identifies three distinct pollution 

clusters: ‘High Pollution,’ ‘Low Pollution,’ and ‘Ozone-

Dominated Pollution.’ South Asia and East Asia exhibit the 

highest concentration of cities with ozone-dominated pollution, 

while Western Europe shows the greatest prevalence of low 

pollution cities. North America has the largest number of cities 

classified in the high pollution cluster, primarily driven by 

particulate matter (PM2.5) and nitrogen dioxide (NO2). 

Additionally, a focused analysis of capital cities provides 

further insight into regional urban air quality variations. This 

global analysis offers critical understanding of spatial 

disparities in urban pollution and underscores the necessity for 

region-specific strategies to mitigate pollution sources. The 

findings aim to support policymakers and environmental 

agencies in developing targeted air quality management plans. 

Keywords 

Urban Air Pollution, Clustering Algorithms, Global Patterns, 

Multivariate Analysis, Capital Cities. 

1. INTRODUCTION 
Urban air pollution is a critical global environmental challenge, 

posing severe health risks and contributing to climate change. 

The United Nations Environment Program reported that indoor 

and outdoor air pollution caused 6.5 million premature deaths 

worldwide in 2016 [1], making it one of the leading preventable 

causes of death and disease globally. As urbanization and 

industrialization accelerate, the increased consumption of fossil 

fuels exacerbates air quality issues, leading to more frequent 

occurrences of hazy weather [2-4]. Air pollution has thus 

emerged as the single biggest environmental risk to human 

health, demanding immediate attention and effective 

management strategies. 

While many studies have focused on specific regions or 

pollutants, there remains a lack of comprehensive, global 

perspectives on urban air pollution patterns. This study seeks to 

bridge that gap by analyzing air quality across six continents— 

Asia, Africa, Europe, Oceania, North America, and South 

America—using an extensive dataset that includes major cities 

worldwide. Building upon our earlier research on air pollution 

in Asian cities, we aim to provide a broader understanding of 

pollution levels and patterns across different regions of the 

world. A preliminary version of this work focusing on urban air 

pollution patterns in Asian cities was published in the 

proceedings of the FMLDS2024 Conference [5]. This journal 

article extends the analysis to six continents and includes 

additional clustering algorithms, evaluation metrics, and policy 

discussions. Forecasting air pollution and understanding its 

spatial distribution is crucial for public health guidelines and 

government pollution management efforts [6]. 

This work adopts a systems-level view of global urban air 

pollution, where each urban region represents a component in 

a globally interacting environmental system. By treating cities 

and regions as interdependent subsystems within a broader 

planetary framework, we aim to understand not only individual 

pollutant levels but also the emergent global patterns of 

pollution behavior. Through multivariate analysis and 

clustering, we identify systemic trends and regional groupings 

that can inform cross-border cooperation, targeted 

interventions, and international policy-making strategies. 

To achieve this, we employ clustering algorithms, a robust and 

widely used technique for exploring complex data. Clustering 

enables the identification of hidden patterns and natural 

groupings in the dataset, allowing us to group cities with similar 

pollution characteristics. This approach provides a data-driven 

framework to classify cities into meaningful clusters, 

facilitating the development of targeted interventions and 

policies. Specifically, we applied six clustering algorithms: K-

Means, Hierarchical Clustering, DBSCAN, Gaussian Mixture 

Models (GMM), Agglomerative Clustering, and Spectral 

Clustering, to analyze urban air pollution patterns. These 

algorithms were chosen for their ability to handle diverse data 

characteristics and provide insights into the variability of 

pollution across global cities. 

For each clustering algorithm, we evaluated performance using 

various metrics, including Silhouette Score, Davies-Bouldin 

Index, Calinski-Harabasz Index, WCSS, Cohesion, and 

Separation. The four primary pollutants considered in this 

study are particulate matter (PM2.5), carbon monoxide (CO), 

nitrogen dioxide (NO2), and ozone. Our analysis identified 

three distinct pollution clusters—‘High Pollution,’ ‘Low 

Pollution,’ and ‘Ozone-Dominated Pollution.’ Notably, South 

Asia, East Asia, and parts of Africa exhibit the highest number 
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of cities in the ‘Ozone-Dominated Pollution’ cluster, driven by 

elevated levels of PM2.5 and NO2. In contrast, Western Europe 

hosts the highest number of cities in the ‘Low Pollution’ 

cluster, while North America contains the largest number of 

cities in the ‘High Pollution’ cluster. 

Beyond clustering analysis, this study incorporates region 

mapping for each continent to elucidate the spatial distribution 

of air pollution. Additionally, a detailed analysis of capital 

cities highlights the primary pollutants contributing to air 

quality issues in urban centers. The study also identifies the 

most polluted cities within specific countries across all 

continents, providing valuable insights into areas requiring 

urgent attention. These findings emphasize the need for 

targeted policies and interventions to address the unique air 

quality challenges faced by different regions. By offering a 

global perspective on urban air pollution, this work aims to 

inform and guide policymakers and environmental agencies in 

mitigating the adverse effects of air pollution on public health 

and the environment. 

2. RELATED WORK 
Over recent decades, air pollution in Asia has become a major 

threat to food security [7] and human health [8]. Wild-fire 

smoke, pollen-based aeroallergens, and climate change, 

primarily due to greenhouse gas emissions, heavily influence 

PM2.5 levels. Research highlights severe impacts on health and 

the environment, with 37 of the world’s 40 most polluted cities 

in South Asia [9]. Contaminated air in this region leads to 

millions of preventable deaths annually and harms crops 

essential for feeding many [10]. Biomass burning is a 

significant source of haze [11], accounting for up to 40–60% of 

haze events in Southeast Asia from 2003 to 2014 [12]. This 

worsening air quality presents significant challenges for 

sustainability and health. Considering these situations, 

forecasting air quality is becoming more and more important as 

air pollution becomes a serious environmental and social 

problem on a worldwide scale, preventing both health and 

financial damage [13]. At the moment, the majority of studies 

only offer air pollution projections for one or a few locations 

rather than data for the entire city and a collection of cities [14-

15]. The distribution of air quality within different cities can 

vary greatly due to the intricate the structure and spatial 

movement of air contaminants, making precise forecasting very 

difficult [16]. 

Different algorithms and methods are used for the analysis of 

big data. Clustering algorithms are widely utilized in data 

mining and analytics [17-18]. The clustering algorithm can also 

be used to decompose PM2.5 concentration forecasting data. 

The clustering technique can classify the original data based on 

various air pollution conditions [19]. Cluster analysis is a 

popular method for dividing chaotic data into many categories 

with high similarity in order to evaluate internal patterns [20]. 

A large number of NWP samples, which have a significant 

influence on forecasting accuracy, are chosen as inputs to the 

DBN model using clustering analysis to improve the model’s 

efficiency [21]. The clustering process can give model training 

examples that are highly comparable, which shortens the 

training period and improves generalization capacity [22]. In 

order to improve the data regularity, cluster analysis has been 

applied to air quality forecasting which is done by choosing or 

splitting the input variables [23]. 

However, in recent, other than clustering, machine learning and 

deep learning methods have also been used for air quality 

prediction. Several models have been created to forecast these 

potential consequences. However, making precise forecasts is 

very impossible. A hybrid intelligent model integrating LSTM 

and MVO has been created to forecast air pollution from 

Combined Cycle Power Plants [24]. A deep learning 

framework using a temporal sliding LSTM extended model has 

been created [25]. 

A model was built for buildings and pollution category labels 

in Beijing from 2013 to 2017 to train a convolutional neural 

network (CNN) [26]. Different machine learning-based models 

are used for air quality prediction systems by measuring the 

different gases present in the atmosphere [27]. 

3. METHODOLOGY 

3.1 Data Collection 
The dataset used in this study was obtained from Kaggle [28], 

containing over 21,294 rows and 12 columns, covering 157 

countries and more than 21,000 cities globally. For the 

purposes of this analysis, we focused on cities from diverse 

regions worldwide, including Asia, Africa, Europe, Australia, 

North America, and South America, in order to study global air 

pollution patterns. The dataset includes key columns such as 

country name, city name, AQI value, AQI category, CO AQI 

value, CO AQI category, ozone AQI value, ozone AQI 

category, NO2 AQI value, NO2 AQI category, PM2.5 AQI 

value, and PM2.5 AQI category. These columns provide a 

comprehensive view of the air quality in urban areas, capturing 

key pollutant levels and their associated categories across 

different countries and cities. This dataset served as the 

foundation for performing multivariate analysis, clustering, and 

the subsequent pollution pattern analysis. 

3.2 Data Preprocessing 
To ensure the quality and usability of the dataset, several 

preprocessing steps were undertaken using Python libraries 

including Pandas, NumPy, and Scikit-learn. 

3.2.1 Handling Missing and Invalid Data 
One record with a missing city name was removed. No other 

missing entries were observed. All numerical attributes were 

converted using pd.to_numeric() with invalid entries coerced to 

NaN, which were then imputed with column-wise mean values. 

3.2.2 Categorical Encoding 
Categorical attributes (e.g., AQI category, pollutant categories) 

were cast to the category datatype to optimize memory and 

allow efficient analysis.  

3.2.3 Outlier and Error Checking 
The dataset was validated for negative or nonsensical values; 

no invalid pollutant concentrations were found. 

3.2.4 Log Transformation 
Log transformation was applied to pollutant AQI values to: 

• Normalize skewed distributions 

• Reduce the effect of outliers 

• Improve algorithmic performance during clustering 

3.2.5 Duplicate Removal 
Duplicate entries were checked and none were found. 

These steps ensured a clean and standardized dataset, suitable 

for statistical and machine learning-based analysis. 
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3.3 Determining the Optimal Number of 

Clusters 
To determine the optimal number of clusters for our analysis, 

we employed two complementary methods: 

3.3.1 Elbow method 
We utilized the Elbow Method, which involves plotting the 

sum of squared distances between data points and their 

respective cluster centroids for varying numbers of clusters. 

The optimal number of clusters is identified at the “elbow” 

point of the curve, where the rate of decrease in the sum of 

squared distances slows significantly. This point indicates a 

balance between the number of clusters and the variance 

explained. 

3.3.2 Silhouette analysis 
In addition, we performed Silhouette Analysis, which measures 

how similar each data point is to its own cluster compared to 

other clusters. The average silhouette score was calculated for 

different cluster counts. The optimal number of clusters 

corresponds to the highest silhouette score, which indicates 

well-separated and cohesive clusters. 

By applying both the Elbow Method and Silhouette Analysis, 

we ensured a robust and reliable determination of the optimal 

number of clusters, enhancing the stability and interpretability 

of the clustering results. 

3.4 Clustering Algorithms 
We applied several clustering algorithms to analyze the dataset, 

each offering a unique approach to partitioning the data. 

• K-Means Clustering: This algorithm partitions the 

data into a predefined number of clusters by 

minimizing the within-cluster variance, ensuring that 

data points within each cluster are as similar as 

possible. 

• Hierarchical Clustering: Using both agglomerative 

and divisive methods, Hierarchical Clustering creates 

a tree-like structure (dendrogram) that visually 

represents the relationship between clusters. This 

approach does not require specifying the number of 

clusters in advance. 

• DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise): DBSCAN identifies 

clusters based on the density of data points, making 

it effective at detecting outliers and finding arbitrarily 

shaped clusters. 

• Agglomerative Clustering: A type of Hierarchical 

Clustering, Agglomerative Clustering iteratively 

merges clusters based on a chosen distance metric, 

providing a flexible approach to clustering. 

• Gaussian Mixture Models (GMM): GMM assumes 

that the data is generated from a mixture of Gaussian 

distributions. It provides probabilistic cluster 

assignments, allowing for soft clustering and 

accommodating clusters of varying shapes and sizes. 

• Spectral Clustering: This algorithm uses eigenvalues 

of a similarity matrix to reduce the dimensionality of 

the data and identify clusters, making it suitable for 

capturing complex structures. 

By applying these diverse clustering algorithms, we gained 

multiple perspectives on the dataset, improving the robustness 

and comprehensiveness of our analysis. 

3.5 Evaluation of Clustering Algorithms 
To evaluate the performance and effectiveness of the clustering 

algorithms, we utilized several metrics. 

• Silhouette Score: This metric measures how similar 

each data point is to its own cluster relative to other 

clusters. A higher silhouette score indicates better-

defined, well-separated clusters. 

• Davies-Bouldin Index: This index evaluates the 

validity of the clusters by comparing the average 

similarity between clusters. A lower Davies- Bouldin 

Index suggests better clustering, with more distinct 

and well-separated clusters. 

• Calinski-Harabasz Index: This metric assesses the 

clustering quality by comparing the dispersion 

between clusters with the dispersion within clusters. 

Higher values indicate more distinct and well-

separated clusters. 

• Within-Cluster Sum of Squares (WCSS):WCSS 

computes the sum of squared distances between data 

points and their respective cluster centroids. Lower 

values suggest more compact and cohesive clusters. 

• Cohesion and Separation: These two metrics measure 

the compactness within clusters (cohesion) and the 

distance between clusters (separation). The ideal 

clustering configuration maximizes both cohesion 

and separation, indicating well-defined clusters with 

clear boundaries. 

These metrics provided a comprehensive evaluation of the 

clustering algorithms, allowing us to select the most suitable 

algorithm for our dataset. 

3.6 Additional Analysis 
To deepen our understanding of global air pollution patterns, 

we conducted several additional analyses. 

3.6.1 Region Mapping and Region-Wise Analysis 
We mapped the clusters across different regions, performing a 

detailed analysis to identify patterns and trends in air quality 

across six continents: Asia, Africa, Europe, Australia, North 

America, and South America. This regional breakdown 

provided valuable insights into the variability of pollution 

levels and the underlying factors driving pollution in each 

region. 

3.6.2 Capital City Analysis 
We evaluated air quality in the capital cities of all countries 

worldwide. This analysis compared the pollution levels in 

capital cities with those in other cities and regions, highlighting 

specific urban pollution challenges faced by national capitals, 

which often experience higher pollution due to population 

density, industrialization, and vehicular emissions. 

4. RESULT ANALYSIS 

4.1 Optimal Numbers of Clusters 
4.1.1 Elbow Method Results 
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Fig 1: Elbow Method for Optimal Number of Clusters 

The Elbow Method indicated that the optimal number of 

clusters is three. This conclusion was drawn by plotting the sum 

of squared distances between data points and their respective 

cluster centroids. As illustrated in Figure 1, the “elbow” point 

appears at three clusters, where the rate of decrease in variance 

sharply levels off. This suggests that adding more clusters does 

not result in significant improvements in clustering quality. 

4.1.2 Silhouette Analysis Results  
Silhouette Analysis reinforced the choice of three clusters. The 

average silhouette score was highest when the number of 

clusters was set to three, indicating that the clusters are both 

well-separated and cohesive. Figure 2 presents the silhouette 

scores for varying cluster counts, with the peak score observed 

for three clusters. 

 

Fig 2: Silhouette Analysis for Optimal Number of Clusters  

The results from both the Elbow Method and Silhouette 

Analysis consistently point to three clusters as the optimal 

configuration for this dataset, demonstrating clear distinctions 

in the pollution patterns across cities worldwide 

4.2 Performance of Clustering Algorithms 
To assess the performance of the clustering algorithms applied 

to our dataset, we employed a comprehensive set of evaluation 

metrics: Silhouette Score, Davies-Bouldin Index, Calinski-

Harabasz Index, Within-Cluster Sum of Squares (WCSS), 

Cohesion, and Separation. These metrics provide insight into 

the quality of the clusters formed, with each highlighting 

different aspects of the clustering process, such as cohesion, 

separation, and the overall cluster validity. The results for each 

algorithm are summarized in Table 1. 

Table 1. Performance Metrics of Clustering Algorithms 

Algorithm 
Silhouette 

Score 

Davies-Bouldin 

Index 

Calinski-

Harabasz Index 
WCSS Cohesion Separation 

K-Means 0.271155 1.212684 9352.368310 45935.146133 28674.504398 3.192677 

Hierarchical 0.211006 1.383673 7507.943226 51735.863233 30267.741619 3.061031 

DBSCAN 0.050884 1.781540 924.892078 47511.267771 26928.810227 4.464837 

Gaussian 

Mixture Model 
0.080737 2.465604 

1442.023388 88489.810029 37216.996042 
3.108874 

Agglomerative 0.211006 1.383673 7507.943226 51735.863233 30267.741619 3.061031 

Spectral 0.195279 1.555455 5058.885801 62159.420724 30997.799106 2.466136 

The results indicate that K-Means consistently outperformed 

other algorithms in clustering the dataset. It achieved the 

highest Silhouette Score (0.271155), reflecting well-separated 

and cohesive clusters, and the lowest Davies-Bouldin Index 

(1.212684), which signifies distinct and nonoverlapping 

clusters. Additionally, K-Means had the best Calinski-

Harabasz Index (9352.368310), showing strong between-

cluster dispersion and low within-cluster variance. Its WCSS 

value was the lowest (45935.146133), highlighting compact 

clusters with minimal variance. K-Means also achieved 

excellent Cohesion (28674.504398) and a balanced Separation 

(3.192677), underscoring its effectiveness in clustering this 

dataset. 

In comparison, Hierarchical and Agglomerative Clustering 

showed moderate performance. Both achieved a Silhouette 

Score of 0.211006 and a Davies-Bouldin Index of 1.383673, 

indicating reasonably cohesive clusters but with some overlap. 

Their Calinski-Harabasz Index (7507.943226) and Cohesion 

(30267.741619) were lower than KMeans, while their WCSS 

values (51735.863233) indicated higher within-cluster 

variance. These algorithms displayed decent separation 

(3.061031) but lagged behind K-Means in overall performance. 

Spectral Clustering also demonstrated moderate results, with a 

Silhouette Score of 0.195279 and a Davies-Bouldin Index of 

1.555455. Its Calinski-Harabasz Index (5058.885801) and 

WCSS (62159.420724) were weaker, indicating less effective 

clustering. The Cohesion value (30997.799106) and Separation 

(2.466136) were also inferior to K-Means, emphasizing its 

limitations for this dataset. 

DBSCAN and Gaussian Mixture Models (GMM) struggled to 

define and separate clusters effectively. DBSCAN achieved the 

lowest Silhouette Score (0.050884) and a high Davies- Bouldin 

Index (1.781540), indicating significant overlap among 

clusters. Its Calinski-Harabasz Index (924.892078) and 
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Cohesion (26928.810227) were the lowest, though it recorded 

a high Separation value (4.464837). GMM had the lowest 

Silhouette Score among model-based approaches (0.080737) 

and the highest Davies-Bouldin Index (2.465604), reflecting 

poorly defined and highly overlapping clusters. Its Calinski-

Harabasz Index (1442.023388) and WCSS (88489.810029) 

highlighted weak performance in cluster dispersion and 

compactness. 

In conclusion, K-Means emerged as the most effective 

algorithm, forming cohesive, distinct, and compact clusters. 

Hierarchical, Agglomerative, and Spectral Clustering 

performed moderately well but did not match the quality of 

clusters formed by K-Means. DBSCAN and GMM were less 

effective for this dataset, showing significant limitations in 

clustering performance. These findings strongly recommend 

K-Means as the most suitable algorithm for clustering this 

dataset. 

4.3 Cluster Analysis and Interpretation 
The clustering analysis revealed distinct patterns in urban air 

pollution, categorized into three clusters: High Pollution, Low 

Pollution, and Ozone- Dominated Pollution. The interpretation 

of the clusters is based on the average values of AQI, CO, 

Ozone, NO2, and PM2.5 within each cluster as shown in Figure 

3. 

 

Fig 3: Cluster Feature Means 

• Cluster 0 (High Pollution): This cluster is 

characterized by the highest average values for key 

pollutants, indicating severe air quality issues. The 

average values for AQI, CO, Ozone, NO2, and 

PM2.5 in this cluster are 4.48, 1.23, 2.60, 2.31, and 

4.48, respectively. Regions represented in this cluster 

face significant challenges due to elevated levels of 

particulate matter and nitrogen dioxide. 

• Cluster 1 (Low Pollution): Cities in this cluster 

exhibit the lowest pollutant levels, reflecting 

comparatively better air quality. The average values 

are 3.80 for AQI, 0.57 for CO, 3.35 for Ozone, 0.68 

for NO2, and 3.68 for PM2.5. These cities are 

predominantly located in regions with effective air 

quality management practices or naturally favorable 

conditions. 

• Cluster 2 (Ozone-Dominated Pollution): This cluster 

displays a unique profile with high Ozone levels 

dominating the pollution pattern. The average values 

are 4.96 for AQI, 0.99 for CO, 4.08 for Ozone, 0.73 

for NO2, and 4.92 for PM2.5. This indicates that 

while other pollutants are relatively moderate, Ozone 

significantly influences the air quality in these cities. 

The distribution of cities across the clusters further highlights 

the global air pollution disparities. 

• Low Pollution: 13,871 cities (largest cluster, 

indicating a majority of cities experience relatively 

low pollution levels). 

• High Pollution: 3,752 cities (regions with severe air 

quality challenges). 

• Ozone-Dominated Pollution: 3,671 cities (locations 

where Ozone variability is the primary concern). 

 

Fig 4: Distribution of Pollution Levels Across Different 

Clusters 

A subsequent pie chart as shown in Figure 4 will visually depict 

the proportion of cities in each cluster, emphasizing the 

prevalence of low pollution but also underscoring the critical 

issues in high pollution and ozone-dominated regions. This 

analysis provides actionable insights into the geographical 

distribution and dominant pollution characteristics, aiding in 

targeted air quality management strategies. 

4.4 Cluster Analysis by Continents 
To provide a clearer understanding of the geographical 

distribution of the dataset, Figure 5 presents the percentage of 

unique countries from each continent. The dataset includes a 

total of 157 unique countries, with Africa contributing the 

highest proportion at 51 countries (32.5%), followed by Europe 

with 39 countries (24.8%), and Asia with 31 countries (19.7%). 

North America includes 18 countries (11.5%), South America 

contributes 12 countries (7.6%), and Australia has 6 countries 

(3.8%). 
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Fig 5: Distribution of Unique Countries by Continent 

This distribution highlights the global scope of the study, with 

substantial representation from Africa, Europe, and Asia. The 

pie chart offers a visual representation of how each continent is 

represented in the dataset, providing context for the subsequent 

analysis of urban air pollution patterns across these diverse 

regions. 

 

Fig 6: Distribution of Pollution Levels Across Different 

Continents 

Figure 6 presents a bar chart illustrating the distribution of 

cities in each cluster across six continents, providing insights 

into the global air quality patterns. Africa has a total of 1,829 

cities in the dataset, with 324 cities (17.71%) classified as High 

Pollution, 1193 cities (65.23%) falling under the Low Pollution 

cluster, and 312 cities (17.06%) affected by Ozone-Dominated 

Pollution. These findings indicate regional variability, with 

substantial air quality challenges in certain areas.  

Asia, with 6,196 cities, has 726 cities (11.72%) in the High 

Pollution cluster, 2560 cities (41.32%) in the Low Pollution 

cluster, and the largest number of cities (2910, 46.97%) in the 

Ozone- Dominated Pollution cluster. This highlights Asia’s 

unique air quality issues, particularly its susceptibility to ozone 

pollution in urban regions. 

Australia’s dataset includes 125 cities, of which the vast 

majority (119 cities, 95.2%) are classified as Low Pollution. 

Only five cities (4.0%) fall into the High Pollution category, 

and a single city (0.8%) is affected by Ozone-Dominated 

Pollution, reflecting one of the best air quality profiles globally. 

Europe, with 6,748 cities, has 392 cities (5.81%) in the High 

Pollution cluster, 6046 cities (89.6%) in the Low Pollution 

cluster, and 310 cities (4.59%) in the Ozone-Dominated 

Pollution cluster. This distribution showcases Europe’s success 

in maintaining better air quality, with most cities exhibiting low 

pollution levels. 

North America has 4,058 cities in total, with 1731 cities 

(42.66%) classified as High Pollution, the highest proportion 

globally. The Low Pollution cluster contains 2209 cities 

(54.44%), while 118 cities (2.91%) fall into the Ozone-

Dominated Pollution category, indicating a mixed urban air 

quality profile. 

South America’s 2,338 cities display a majority (1744 cities, 

74.59%) in the Low Pollution cluster, with 574 cities (24.55%) 

in the High Pollution cluster, and 20 cities (0.86%) affected by 

Ozone-Dominated Pollution. This balance highlights regional 

variations in air quality challenges. 

These findings provide a comprehensive overview of global air 

pollution patterns, supporting region-specific strategies to 

address urban region-specific pollution challenges effectively. 

4.5 Cluster Distribution by Cities 
In this section, we analyze the distribution of cities across 

different clusters within each continent based on their pollution 

levels. The data highlights the varying extent of high pollution, 

low pollution, and ozone-dominated pollution in cities from 

different regions. Six bar charts are included for each continent, 

showing the number of cities in each cluster for all countries 

represented in the dataset. The clusters represent different 

levels of air pollution, as determined through the analysis of 

pollutants such as PM2.5, CO, NO2, and Ozone. 

For Africa, as shown in Figure 7, the distribution of cities 

reveals that the majority of cities are classified under Low 

Pollution, with countries like South Africa (116 cities) and 

Nigeria (62 cities) showing high pollution levels. In contrast, 

only a few cities in Democratic Republic of the Congo (27 

cities) and Egypt (31 cities) fall under the Ozone-Dominated 

Pollution cluster. This pattern suggests that while low pollution 

is prevalent across much of Africa, high pollution is 

particularly concentrated in certain countries, especially South 

Africa and Nigeria, contributing to air quality concerns in these 

regions
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Fig 7: Cluster Distribution by Cities Across Africa 

Figure 8 shows the situation differs significantly in Asia. A 

substantial number of cities in India (1687 cities), China (504 

cities), and Bangladesh (46 cities) are in the Ozone- Dominated 

Pollution cluster. Countries such as China and India also have 

considerable numbers of cities in the High Pollution cluster, 

with China leading with 168 high pollution cities. The spread 

of pollution in Asia highlights the severity of air quality issues, 

particularly related to ozone levels, especially in urban centers. 

Fig 8: Cluster Distribution by Cities Across Asia 
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Fig 9: Cluster Distribution by Cities Across Australia 

Australia, with countries like Australia and New Zealand, 

shows a distinct profile in Figure 9. The majority of cities fall 

under the Low Pollution category, with only a small number in 

the Ozone-Dominated Pollution cluster. This suggests that air 

quality is relatively good in this continent compared to others, 

with only a minimal number of cities facing significant 

pollution challenges. 

The European continent also has a dominant presence of Low 

Pollution cities, especially in countries like Germany, France, 

and the United Kingdom, with large urban populations 

exhibiting low pollution levels as shown in Figure 10. 

However, countries such as Italy (127 cities), Spain (15 cities), 

and Poland (35 cities) show significant numbers of cities in the 

Ozone-Dominated Pollution cluster. The prevalence of low 

pollution cities in Europe can be attributed to the robust 

environmental policies and regulations in place across many 

European countries, which have led to improved air quality in 

urban areas. 

 

Fig 10: Cluster Distribution by Cities Across Europe 

North America is home to a large number of High Pollution 

cities, with the United States (1212 cities) and Mexico (273 

cities) contributing the highest numbers. Despite this, the Low 

Pollution cluster still contains a significant portion of cities, 

with countries like Canada and Costa Rica showing relatively 

better air quality in Figure 11. The Ozone-Dominated Pollution 

cluster in North America, while present, is notably smaller in 

comparison to the other two clusters. 
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Fig 11: Cluster Distribution by Cities Across North America

Fig 12: Cluster Distribution by Cities Across South America 

In South America, the Low Pollution cluster is also the most 

prevalent, with countries like Brazil (1249 cities) and 

Argentina (61 cities) contributing to this trend. However, Brazil 

(3 cities) and Colombia (8 cities) have a few cities in the 

Ozone-Dominated Pollution cluster as shown in Figure 12, 

highlighting regional challenges related to specific pollutants. 

The relatively low number of cities in the High Pollution cluster 

in South America suggests that the continent does not face the 

same level of air pollution challenges as others. 

Overall, the cluster distribution across continents reveals both 

global and regional disparities in air quality. Low Pollution 

remains the most dominant cluster across all continents, but 

Asia, Africa, and North America face notable challenges with 

High Pollution, while Asia is particularly impacted by Ozone-

Dominated Pollution. These findings underscore the need for 

targeted policy interventions that consider the regional 

variations in pollution levels, with a focus on reducing high and 

ozone-related pollution in urban centers across continents. 
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4.6 Region Mapping and Findings 
In this section, we present the regional mapping of air pollution 

data across six continents, categorizing cities based on 

pollution levels. The regions in six continents have been 

defined based on geographical proximity and political 

boundaries, and the clustering results are summarized.  

4.6.1 Asia 
The Central Asia region, characterized by countries such as 

Kazakhstan and Kyrgyzstan, has a significant number of cities 

in the High Pollution and Ozone-Dominated Pollution clusters, 

with 9 and 83 cities in each category, respectively. East Asia, 

which includes countries like China, Japan, and Korea, has a 

large number of cities in all three clusters, with 278 cities in the 

High Pollution cluster, 714 in Low Pollution, and 515 in 

Ozone-Dominated Pollution. The Middle East region, which 

encompasses countries like Saudi Arabia, Iran, and the UAE, 

shows a notable concentration of cities in the Low Pollution 

category (245), with a smaller number of cities in the High 

Pollution (11) and Ozone-Dominated Pollution (68) clusters. 

South Asia, which includes densely populated countries like 

India, Bangladesh, and Pakistan, displays a high concentration 

of cities in the Ozone-Dominated Pollution category, with 276 

cities in High Pollution, 642 in Low Pollution, and a substantial 

2037 in Ozone-Dominated Pollution. The South Caucasus 

region, including Armenia, Azerbaijan, and Georgia, shows 

fewer cities in the Ozone-Dominated Pollution cluster (10), 

while the Southeast Asia region, including countries like 

Thailand, Indonesia, and Malaysia, has 152 cities in the High 

Pollution cluster, 810 in Low Pollution, and 197 in Ozone-

Dominated Pollution. Table 2 summarizes the pollution levels 

across different regions of Asia. 

 

 

 

Table 2. Cluster Distribution by Region in Asia 

Region 
High 

Pollution 
Low Pollution 

Ozone-

Dominated 

Pollution 

Central Asia 9 79 83 

East Asia 278 714 515 

Middle East 11 245 68 

South Asia 276 642 2037 

South 

Caucasus 
0 70 10 

Southeast 

Asia 
152 810 197 

 

This regional mapping provides valuable insights into the 

geographical distribution of air pollution across Asia, 

highlighting regions that require more focused air quality 

management interventions. 

Figure 13 shows the distribution of High Pollution, Low 

Pollution, and Ozone-Dominated Pollution across different 

regions and countries in Asia. The data covers regions such as 

Central Asia, East Asia, South Asia, Southeast Asia, South 

Caucasus, and the Middle East. The pollution levels are 

classified into three categories: 

• High Pollution: Indicates regions and countries with 

significant pollution levels. 

• Low Pollution: Represents areas with relatively low 

pollution. 

• Ozone-Dominated Pollution: Highlights regions 

where ozone is a major contributor to air pollution. 
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Fig. 13 Heatmap of Pollution Level Distribution Across Different Regions and Countries in Asia 

South Asia emerges as a major region with high pollution 

levels, particularly India, which stands out with a significantly 

high level of high pollution (227) and ozone-dominated 

pollution (1687). Other South Asian countries such as 

Bangladesh and Pakistan also show notable pollution levels. 

East Asia has a varied distribution of pollution, with China 

exhibiting high levels of both high pollution (168) and ozone-

dominated pollution (504). Japan also shows a considerable 

level of ozone-dominated pollution (11) despite a relatively 

lower level of high pollution (110). 

Southeast Asia has a mix of high and low pollution levels. For 

instance, Thailand (30 for high pollution, 4 for ozone-

dominated pollution) and Indonesia (62 for high pollution, 131 

for ozonedominated pollution) display a significant level of 

both high and ozone-dominated pollution. On the other hand, 

countries like Singapore and Bahrain have minimal pollution. 

Middle Eastern countries such as Saudi Arabia, Qatar, and 

United Arab Emirates report low to zero pollution levels across 

all categories, indicating a better air quality situation compared 

to other regions. 

Central Asia countries like Kazakhstan, Kyrgyzstan, and 

Uzbekistan show varying pollution levels, with some countries 

like Kazakhstan exhibiting a relatively higher level of high 

pollution (2) and ozone-dominated pollution (11), while others 

show minimal pollution levels. South Caucasus countries, 

including Armenia and Georgia, have relatively low levels of 

high pollution, but still experience some ozone-dominated 

pollution, particularly Azerbaijan (6 for ozone-dominated 

pollution). 

The heatmap visualizes these findings, helping identify regions 

with significant pollution and those in need of further 

monitoring and management. Figure: Heatmap of Pollution 

Level Distribution Across Different Regions and Countries in 

Asia. 

These observations suggest that South Asia, particularly India, 

and East Asia, notably China, require more attention in terms 

of pollution control and management. Countries in the Middle 

East and South Caucasus, however, exhibit relatively lower 

pollution levels and may be on a more sustainable path in terms 

of air quality. 

4.6.2 Africa  
This section presents a detailed analysis of pollution 

distribution across Africa. Table 3 provides a region-wise 

summary of pollution levels across Africa. Southern Africa 

exhibits the highest levels of High Pollution (125), with South 

Africa as a significant contributor (116). West Africa follows 

with a notable level of high pollution (97), largely driven by 

Nigeria (62). East Africa has the highest count of Low Pollution 

(568), indicating better air quality across most of the region. 

However, some countries like Uganda and Kenya show 

moderate levels of High Pollution (18 and 12, respectively). 
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Central Africa and North Africa display moderate pollution 

levels, with North African countries like Egypt and Libya 

showing higher contributions to Ozone-Dominated Pollution 

(31 and 15, respectively). 

Table 3. Cluster Distribution by Region in Africa 

Region 
High 

Pollution 
Low Pollution 

Ozone-

Dominated 

Pollution 

Central 

Africa 
40 154 56 

East Africa 52 568 63 

North Africa 10 101 69 

Southern 

Africa 
125 82 11 

West Africa 97 288 113 

 

The data is categorized into High Pollution, Low Pollution, and 

Ozone-Dominated Pollution, providing insights into pollution 

trends across different regions and countries. The information 

is summarized in Figure 14 to visualize these patterns 

effectively. 

Fig 14: Heatmap of Pollution Level Distribution Across Different Regions and Countries in Africa 

South Africa has the highest level of High Pollution in Africa 

(116), reflecting the industrialization and urbanization 

challenges in the region. 

Nigeria stands out in West Africa, with significant 

contributions to both High Pollution (62) and Ozone-

Dominated Pollution (46). Countries like Egypt and Libya in 

North Africa show higher levels of Ozone-Dominated 

Pollution, indicating a specific type of pollution concern in the 

region. 

Many countries in East Africa and Central Africa report low 

levels of High Pollution, with nations like Eritrea, Madagascar, 

and Mozambique showing minimal pollution across all 

categories. Small island nations such as Mauritius, Comoros, 

and Seychelles exhibit low pollution levels, suggesting a better 

environmental state in these regions. 

Regions such as North Africa and West Africa have noticeable 

ozone-dominated pollution levels, with Egypt (31) and Nigeria 

(46) standing out as significant contributors. Southern Africa 

has minimal ozone-dominated pollution (11), possibly 

reflecting the specific industrial and urbanization patterns in the 

region. 

These findings emphasize the need for targeted pollution 

control measures in Southern Africa, particularly in South 

Africa, and West Africa, with a focus on Nigeria. The relatively 

cleaner regions, such as East Africa and Central Africa, offer 

examples of potentially effective environmental policies and 
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practices. The heatmap further provides a visual guide to 

policymakers for prioritizing regions and countries for 

pollution management efforts. 

4.6.3 Europe  
Table 4 presents the pollution levels across European regions, 

categorized into High Pollution, Low Pollution, and Ozone-

Dominated Pollution. The heatmap provides additional insights 

into country-specific distributions. 

Table 4. Cluster Distribution by Region in Europe 

Region 
High 

Pollution 
Low Pollution 

Ozone-

Dominated 

Pollution 

Eastern 

Europe 
27 1043 68 

Northern 

Europe 
5 360 0 

Southern 

Europe 
142 1588 199 

Western 

Europe 
218 3055 43 

 

Table 4 highlights the pollution distribution in European 

regions. Western Europe shows the highest count of both high 

and low pollution cases, whereas Southern Europe leads in 

ozone-dominated pollution. Conversely, Northern Europe has 

the lowest levels of high pollution. These patterns are further 

detailed in the heatmap presented in Figure 15. The heatmap 

showcases pollution level distributions across European 

countries, categorized by High Pollution, Low Pollution, and 

Ozone-Dominated Pollution. 

Western Europe dominates with both the highest low pollution 

counts, notably in countries like France, Germany, and the 

United Kingdom. It also exhibits notable levels of high 

pollution, particularly in France (111) and Germany (53). 

Southern Europe has significant ozone-dominated pollution, 

with Italy (127) and Greece (26) contributing prominently. This 

region also records considerable high pollution levels, notably 

in Italy (112) and Spain (15). 

Eastern Europe reflects moderate levels of high pollution, with 

Poland (21) standing out. The region also has relatively high 

ozone-dominated pollution counts, such as Poland (35). 

Northern Europe demonstrates the lowest pollution levels 

overall, with minimal contributions to high pollution. Countries 

like Finland, Sweden, and Ireland primarily report low 

pollution cases, emphasizing the region’s cleaner air quality. 

The pollution patterns in Europe highlight the stark contrasts 

between its regions. Western and Southern Europe grapple with 

significant high and ozone-dominated pollution levels, 

reflecting industrial activities and urbanization. In contrast, 

Northern Europe exemplifies successful environmental 

management with its predominantly low pollution levels. These 

findings underscore the need for tailored strategies to address 

region-specific pollution challenges and promote sustainable 

practices across Europe. 

Fig 15: Heatmap of Pollution Level Distribution Across Different Regions and Countries in Europe 
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4.6.4 Australia 
The Oceania region mapping covers six countries: Australia, 

New Zealand, Palau, Papua New Guinea, Solomon Islands, and 

Vanuatu. This diverse group of nations includes large 

developed countries and smaller island states, reflecting a mix 

of urbanized and rural areas. 

The heatmap analysis in Figure 16 reveals that Australia is the 

dominant contributor to pollution within Oceania, with the 

highest count of high pollution cases (5) and the only recorded 

instance of ozone-dominated pollution (1). In contrast, the 

remaining countries predominantly report low pollution cases, 

with New Zealand showing a notable count of low pollution 

(22), followed by Papua New Guinea (15). Smaller island 

nations like Palau, Solomon Islands, and Vanuatu report only 

isolated instances of low pollution, emphasizing their generally 

pristine air quality. 

The Oceania region demonstrates overall low pollution levels, 

with Australia being an outlier due to its higher pollution 

contributions. This analysis underscores the need for localized 

interventions in Australia to address pollution concerns, while 

efforts should also be made to preserve the exceptional air 

quality in the smaller island nations. 

 
Fig 16: Heatmap of Pollution Level Distribution Across 

Different Regions and Countries in Australia 

4.6.5 North America  
Table 5 highlights the pollution distribution across three major 

regions in North America: the Caribbean, Central America, and 

North America. It shows the counts for three pollution types: 

high pollution, low pollution, and ozonedominated pollution. 

North America leads in both high and low pollution levels, 

reflecting significant urban and industrial contributions. The 

Caribbean region exhibits notable ozonedominated pollution, 

whereas Central America shows moderate high pollution with 

relatively lower ozone-dominated cases. 

Table 5. Cluster Distribution by Region in North America 

Region 
High 

Pollution 
Low Pollution 

Ozone-

Dominated 

Pollution 

Caribbean  50 88 33 

Central 

America 
179 106 2 

North 

America 
1502 2015 83 

The heatmap in Figure 17 provides a detailed breakdown of 

pollution levels across countries within North America. 

In Caribbean, Cuba (11) and the Dominican Republic (23) 

stand out for high pollution levels, while ozone-dominated 

pollution is significant in Cuba (10) and the Dominican 

Republic (12). Other nations like Haiti (10) contribute 

marginally to high pollution levels but exhibit notable ozone-

dominated pollution (7). 

 

Fig 17: Heatmap of Pollution Level Distribution Across 

Different Regions and Countries in North America 

In Central America, Guatemala leads high pollution levels with 

92 cases, followed by El Salvador (29) and Costa Rica (24). 

The region records minimal ozone-dominated pollution, with 

Guatemala contributing marginally (2). Low pollution cases are 

distributed across countries, with Nicaragua (33) and 

Guatemala (27) showing the highest counts. In North America, 

The United States and Mexico dominate high pollution counts, 

with 1212 and 273, respectively. Canada has relatively lower 

high pollution (17). Ozone-dominated pollution is notable in 

the United States (43) and Mexico (40), reflecting industrial 

and urban contributions. Low pollution levels are highest in the 

United States (1617), followed by Mexico (274). 

North America demonstrates significant diversity in pollution 

patterns. The United States dominates pollution metrics, with 

high levels across all categories. Mexico contributes notably to 

high and ozone-dominated pollution. The Caribbean region 

showcases moderate high pollution but a significant share of 

ozone-dominated pollution, particularly in Cuba and the 

Dominican Republic. Central America reflects a balanced 

distribution, with Guatemala leading high pollution counts. 

4.6.6 South America  
Table 6 presents the pollution distribution in South America 

across four main regions: the Andean Region, the Caribbean, 

Northern South America, and the Southern Cone. Southern 

Cone exhibits the highest counts of low pollution, reflecting 

cleaner air quality, with Brazil contributing significantly. 

Conversely, it also has the highest high pollution levels, 

indicating localized industrial or urban influences. The Andean 

Region shows moderate pollution levels across all categories, 

while Northern South America displays notable high and low 
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pollution. The Caribbean records minimal pollution metrics, 

maintaining relatively pristine air quality. 

Table 6. Cluster Distribution by Region in South America 

Region 
High 

Pollution 
Low Pollution 

Ozone-

Dominated 

Pollution 

Andean 

Region  
217 332 9 

Caribbean 0 7 0 

Northern 

South 

America 

33 49 8 

Southern 

Cone 
324 1356 3 

 

The heatmap in Figure 18 gives a detailed view of pollution 

levels in South American countries. In Southern Cone, Brazil 

dominates high pollution levels (310), followed by smaller 

contributions from Argentina (8) and Paraguay (5). The region 

leads in low pollution, with Brazil (1249) standing out, 

reflecting its vast geographic area and urban-industrial 

variations. In Andean Region, Colombia (135) and Chile (50) 

show significant high pollution levels. Peru (117) and 

Colombia (107) contribute notably to low pollution levels, 

while Colombia (8) and Chile (1) exhibit moderate ozone-

dominated pollution.  

 
Fig 18: Heatmap of Pollution Level Distribution Across 

Different Regions and Countries in South America 

In Northern South America, Venezuela records all high 

pollution cases (33) in this region, along with notable ozone-

dominated pollution (8). It also reflects moderate low pollution 

levels (49). Caribbean, this region, represented by countries 

like Guyana and Suriname, shows minimal pollution cases, 

indicating relatively cleaner air quality. South America’s 

pollution levels reveal contrasting regional patterns. The 

Southern Cone, dominated by Brazil, shows significant high 

and low pollution levels due to its large urban and industrial 

hubs. The Andean Region reflects diverse pollution types, with 

Colombia and Chile being the primary contributors. Northern 

South America and the Caribbean maintain relatively lower 

pollution metrics, emphasizing cleaner environments, though 

Venezuela shows some significant pollution levels. Overall, the 

region exhibits notable variability in air quality, influenced by 

geography and industrialization. 

4.7 Region Mapping and Findings 
4.7.1 Asia 
The analysis of air pollution patterns across Asian capital cities 

reveals significant insights into the clustering of urban air 

quality. The cities are grouped into three distinct clusters based 

on pollution characteristics: High Pollution, Low Pollution, and 

Ozone-Dominated Pollution. Each cluster exhibits unique 

average feature values for air quality index (AQI), particulate 

matter (PM2.5), carbon monoxide (CO), nitrogen dioxide 

(NO2), and ozone, reflecting the varying pollution dynamics 

across the region.  

The High Pollution cluster is characterized by elevated levels 

of PM2.5, CO, and NO2, indicative of cities facing severe air 

quality challenges. Figure 19 represents Islamabad and Tokyo 

belong to this cluster, with Islamabad displaying an AQI value 

of 5.19, substantially above the cluster average of 4.48. The 

city’s most deviating feature is ozone, exceeding the average 

by 1.17 units. Similarly, Tokyo shows a notable deviation in 

ozone, highlighting its significant contribution to the city’s 

pollution profile. 

 
Fig 19: Heatmap of Air Quality Indicators for Asian 

Capital Cities 

 
Fig 20: Cluster Plot of Asian Capital Cities 
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In contrast, cities in the Low Pollution cluster, such as 

Colombo, Bangkok, and Ulaanbaatar as shown in Figure 20, 

exhibit relatively lower pollutant concentrations. Colombo, for 

example, has an AQI of 4.04 and almost negligible NO2 levels, 

deviating by -0.68 units from the cluster average. Ulaanbaatar 

and Ankara share similar patterns, with NO2 being the most 

underrepresented feature, reflecting the lower industrial and 

vehicular emissions in these cities. 

The Ozone-Dominated Pollution cluster includes cities like 

Dhaka, New Delhi, and Jakarta, where ozone and PM2.5 are 

the predominant pollutants. Dhaka’s AQI is notably high at 

5.46, with ozone deviating from the cluster average by 0.99 

units. Jakarta, similarly, shows significant deviations in ozone, 

emphasizing its role as the primary pollutant. These deviations 

suggest strong contributions from photochemical reactions, 

which are influenced by sunlight and emissions of volatile 

organic compounds (VOCs) and NO2.  

Notably, some cities lack sufficient data to be included in the 

clustering analysis, such as Mal´e, Bishkek, and Naypyidaw. 

Addressing these gaps is crucial for a comprehensive 

understanding of pollution patterns across Asia. Additionally, 

certain cities like Baghdad exhibit a mixed pollution profile, 

where NO2 exceeds the cluster average by 1.47 units, 

indicating localized industrial or traffic related emissions as 

significant contributors. 

This clustering-based analysis provides a nuanced 

understanding of urban air pollution in Asia, highlighting 

regional differences and specific pollutant contributions. Such 

insights can inform targeted air quality management strategies, 

focusing on the predominant pollutants and their sources to 

mitigate health and environmental impacts in these urban 

centers. 

4.7.2 Africa 
The clustering analysis for African capital cities revealed three 

distinct pollution patterns: High Pollution, Low Pollution, and 

Ozone-Dominated Pollution. The clusters were analyzed based 

on AQI values for PM2.5, CO, NO2, and Ozone. Key 

observations for each cluster are summarized below:  

Cities in High Pollution cluster exhibited elevated AQI values 

for PM2.5 and NO2. The average AQI for PM2.5 was 

approximately 4.48, while NO2 had an average AQI of 2.31. 

Figure 21 shows Algiers had the highest deviation in NO2 AQI, 

with a value of 4.25 compared to the cluster average of 2.31, 

highlighting NO2 as the major contributor to its overall 

pollution. 

Low Pollution cluster represented cities with relatively lower 

AQI values across pollutants. The average AQI for PM2.5 was 

3.68, while ozone levels were moderately low at 3.35. CO and 

NO2 levels were significantly lower, with averages of 0.57 and 

0.68, respectively. For example, Tripoli showed a distinct 

pattern with an ozone AQI of 3.81, slightly above the cluster 

average of 3.35, making it a primary contributor.  

Ozone-Dominated Pollution cluster was characterized by high 

ozone AQI levels averaging 4.08, along with a relatively high 

PM2.5 AQI of 4.92. NO2 and CO levels were low, averaging 

0.73 and 0.99, respectively. For example, Nouakchott had a 

notable deviation in ozone levels, with an AQI of 3.14, slightly 

below the cluster average, but PM2.5 remained high at 5.12, 

indicating a significant impact of particulate matter in the city’s 

pollution profile. 

 

Fig 21: Heatmap of Air Quality Indicators for African 

Capital Cities 
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Fig 22: Cluster Plot of African Capital Cities 

In Algiers (High Pollution) showed in Figure 22, NO2 

contributed significantly to pollution, with a deviation of 1.94 

from the cluster average. In Cairo (Ozone-Dominated 

Pollution), NO2 levels were slightly elevated with an AQI of 

1.79, deviating by 1.06 from the cluster average. In Tripoli 

(Low Pollution), NO2 AQI was 0.00, far below the cluster 

average of 0.68, making it a distinctive feature. In Rabat (High 

Pollution), Ozone levels deviated positively by 0.58, indicating 

an emerging contribution to the pollution profile. 

The results showed a diverse pollution profile across African 

capitals, with PM2.5 consistently contributing to elevated AQI 

levels in all clusters. Ozone pollution emerged as a significant 

factor in many cities, particularly in the Ozone-Dominated 

Pollution cluster. Meanwhile, CO and NO2 levels were 

relatively lower across clusters, with some exceptions where 

localized contributions caused significant deviations. This 

analysis provides a foundation for targeted interventions, 

highlighting cities and pollutants requiring immediate attention 

for air quality management. 

4.7.3 Europe 
The clustering analysis for European cities reveals three 

distinct clusters: High Pollution, Low Pollution, and Ozone-

Dominated Pollution. The High Pollution cluster exhibits an 

average AQI value of 4.48 as shown in Figure 23, characterized 

by elevated contributions from PM2.5 (average AQI of 4.48) 

and significant NO2 levels (average AQI of 2.31). The Low 

Pollution cluster, with an average AQI value of 3.80, shows 

lower values for most pollutants, particularly CO (average AQI 

of 0.57) and NO2 (average AQI of 0.68). In contrast, the 

Ozone-Dominated Pollution cluster, with the highest average 

AQI value of 4.96, is primarily influenced by ozone levels 

(average AQI of 4.08) and PM2.5 (average AQI of 4.92). 
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Fig 23: Heatmap of Air Quality Indicators for European Capital Cities 

Fig 24: Cluster Plot of European Capital Cities 

In Tallinn, classified in the High Pollution cluster as shown in 

Figure 24, the city’s most contributing feature is the ozone AQI 

value, which deviates by 0.66 from the cluster average, 

indicating a localized influence of ozone. Helsinki, another city 

in this cluster, stands out for its PM2.5 AQI value, which 

exceeds the cluster average by 0.62, emphasizing significant 

particulate matter pollution. Conversely, London, although part 

of the High Pollution cluster, has an overall AQI value 0.76 

below the cluster average, reflecting comparatively lower 

contributions from multiple pollutants. 
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Cities like Reykjavik, Dublin, Riga, and Vilnius are part of the 

Low Pollution cluster. Reykjavik shows a notable deviation in 

its NO2 AQI value, which is 0.68 below the cluster average, 

indicating minimal nitrogen dioxide pollution.  Similarly, 

Vilnius and Amsterdam also exhibit significantly lower NO2 

AQI values, aligning with the region’s cleaner air profile. On 

the other hand, Vienna and Paris show higher NO2 

contributions, deviating by 0.71 above the cluster average, 

highlighting localized nitrogen dioxide sources. 

Budapest, representing the Ozone-Dominated Pollution cluster, 

has slightly lower AQI values for ozone and PM2.5 compared 

to the cluster averages. Still, it emphasizes the prominence of 

ozone in shaping pollution dynamics. This cluster’s distinct 

signature underscores the role of regional and seasonal factors 

in elevating ozone levels. 

The analysis underlines the diverse pollution patterns across 

European cities, driven by local sources and regional 

influences. Policymakers can leverage these findings to address 

specific pollutants dominating each city’s air quality profile 

and develop targeted strategies for sustainable urban 

management. 

4.7.4 Australia 
The analysis of air pollution patterns in Australia reveals 

significant regional variations across its cities. Three distinct 

clusters emerge: High Pollution, Low Pollution, and Ozone-

Dominated Pollution. Figure 25 shows that the High Pollution 

cluster has an average AQI of 4.48, heavily influenced by 

elevated PM2.5 levels (average AQI of 4.48) and significant 

NO2 contributions (average AQI of 2.31). The Low Pollution 

cluster, with an average AQI of 3.80, is marked by lower 

overall pollutant levels, particularly CO (average AQI of 0.57) 

and NO2 (average AQI of 0.68). The Ozone-Dominated 

Pollution cluster has the highest average AQI of 4.96, driven 

primarily by ozone (average AQI of 4.08) and PM2.5 (average 

AQI of 4.92). 

 

Fig 25: Heatmap of Air Quality Indicators for Australian 

Capital Cities 

 
Fig 26: Cluster Plot of Australian Capital Cities 

Among the cities analyzed, Canberra, classified under the Low 

Pollution cluster in Figure 26, demonstrates a unique profile. 

Its AQI value of 3.22 is lower than the cluster average of 3.80, 

primarily due to a PM2.5 AQI value of 2.48, which deviates 

significantly by -1.20 from the cluster average. Wellington, 

also in the Low Pollution cluster, exhibits a similar pattern with 

a PM2.5 AQI value of 2.89, deviating by -0.79. These 

deviations highlight relatively low particulate matter levels in 

these cities compared to the cluster norms. 

Port Moresby, another city in the Low Pollution cluster, shows 

a notable deviation in its overall AQI value of 3.18, which is 

0.62 below the cluster average. This deviation underscores 

generally low pollution levels across all contributing pollutants. 

Honiara, also part of this cluster, has an AQI value of 2.94, 

significantly lower than the cluster average, driven by a PM2.5 

AQI value of 1.95, deviating by -1.74. This sharp contrast 

points to exceptionally clean air in the region, with minimal 

particulate pollution. 

Cities like Ngerulmud and Port Vila lack sufficient data, which 

limits their inclusion in the clustering analysis. Nonetheless, the 

findings underscore the varied pollution dynamics across 

Australian cities, where local sources and atmospheric 

conditions strongly influence air quality. By addressing the 

specific pollutants prevalent in each city, policymakers can 

implement targeted measures to maintain and improve air 

quality, ensuring sustainable urban development in the region. 

4.7.5 North America  
In North America, the clustering analysis reveals distinct 

patterns of air pollution characterized by three main clusters: 

High Pollution, Low Pollution, and Ozone-Dominated 

Pollution. Each cluster demonstrates unique air quality profiles, 

reflecting the diverse environmental and urban conditions 

across the continent. The High Pollution cluster is dominated 

by elevated levels of PM2.5, with an average AQI value of 

approximately 4.48. This cluster also exhibits higher 

contributions from NO2 (average AQI 2.31) and CO (average 

AQI 1.23), while ozone levels remain moderate at around 2.60 

as shown in Figure 27. Cities like San Salvador, Guatemala 

City, and Managua fall into this cluster, with notable 

deviations. For instance, San Salvador exhibits a slightly higher 

ozone AQI (+0.45), whereas Guatemala City and Managua 

show negative deviations in ozone and CO AQI, respectively. 
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Fig 27: Heatmap of Air Quality Indicators for North 

American Capital Cities 

 

Fig 28: Cluster Plot of North American Capital Cities 

Figure 28 shows the Low Pollution cluster, in contrast, is 

marked a significantly elevated NO2 AQI (+1.11) compared to 

the cluster average, while Tegucigalpa has a notably lower 

ozone AQI (-1.05). Such deviations highlight localized factors 

influencing air quality in these regions. 

The Ozone-Dominated Pollution cluster represents cities with 

the highest ozone contributions, averaging around 4.08, 

coupled with significant PM2.5 levels ( 4.92). Other pollutants, 

such as CO and NO2, are less pronounced in this cluster. 

Basseterre is an example of a city in this category, with its 

ozone AQI falling below the cluster average (-0.82), suggesting 

variability even within this distinct pollution profile. 

The analysis of individual cities provides further insights into 

pollution dynamics. For example, Santo Domingo, in the High 

Pollution cluster, exhibits a lower-than-average ozone AQI (-

1.21), emphasizing localized reductions in specific pollutants. 

Similarly, Castries, part of the Low Pollution cluster, 

demonstrates a positive deviation in PM2.5 AQI, reinforcing its 

contribution to the city’s air quality index. 

In summary, North America showcases a diverse range of air 

pollution profiles, with clusters defined by varying levels of 

pollutants such as PM2.5, ozone, NO2, and CO. The High 

Pollution cluster is primarily driven by particulate matter and 

nitrogen dioxide, the Low Pollution cluster balances modest 

ozone levels with reduced contributions from other pollutants, 

and the Ozone-Dominated Pollution cluster highlights 

significant ozone impacts. These findings underline the 

importance of targeted air quality management strategies 

tailored to the specific needs of each region and pollutant 

profile. 

4.7.6 South America  
In South America, the analysis of air pollution data reveals 

three primary clusters: High Pollution, Low Pollution, and 

Ozone-Dominated Pollution. Each cluster reflects distinct 

pollutant profiles that provide insight into the continent’s air 

quality dynamics. The High Pollution cluster is characterized 

by elevated PM2.5 levels, with an average AQI of 4.48. This 

cluster also shows significant contributions from NO2 (average 

AQI 2.31) and CO (average AQI 1.23) in Figure 29, while 

ozone levels are moderate at around 2.60. Cities such as 

Santiago, Lima, and Quito fall into this cluster. Santiago 

demonstrates a lower-than-average CO AQI (-0.54), suggesting 

localized reductions in this pollutant. Lima shows slightly 

higher CO levels (+0.38) than the cluster average, emphasizing 

its contribution to the overall air quality index. Quito, on the 

other hand, exhibits a notable deviation in ozone AQI (-2.60), 

highlighting the variability in pollutant levels even within this 

high-pollution category.  

 
Fig 29: Heatmap of Air Quality Indicators for South 

American Capital Cities 
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Fig 30: Cluster Plot of South American Capital Cities 

 Figure 30 represents the Low Pollution cluster cities with 

reduced pollutant levels, maintaining an average AQI of 3.80. 

PM2.5 levels are relatively low ( 3.68), while ozone levels are 

moderately high ( 3.35). CO and NO2 levels are minimal, 

averaging 0.57 and 0.68 AQI, respectively. Cities such as 

Buenos Aires, Sucre, Georgetown, Caracas, Paramaribo, and 

Montevideo are part of this cluster. Buenos Aires shows a 

significantly low NO2 AQI (-0.68), reflecting minimal nitrogen 

dioxide pollution. Sucre also exhibits a substantial reduction in 

ozone AQI (-1.41), indicating localized improvements in air 

quality. Caracas, however, has a higher PM2.5 AQI (+0.52), 

contributing to its slightly elevated pollution levels within this 

cluster. 

The Ozone-Dominated Pollution cluster features cities with the 

highest ozone contributions, averaging 4.08 AQI, along with 

notable PM2.5 levels ( 4.92). CO and NO2 levels are lower, 

averaging 0.99 and 0.73 AQI, respectively. However, specific 

cities belonging to this cluster were not highlighted in the 

current dataset, leaving room for further exploration. 

Individual city profiles provide further nuances. For example, 

Montevideo exhibits a significant reduction in NO2 AQI (-

0.68), aligning with the low nitrogen dioxide levels observed in 

the cluster. Paramaribo, with a lower overall AQI (-0.71), 

reflects minimal contributions from pollutants like CO and 

NO2. Meanwhile, Caracas shows a balanced yet slightly higher 

PM2.5 AQI, reinforcing its influence on the city’s air quality. 

In summary, South America exhibits diverse air pollution 

patterns across its clusters. The High Pollution cluster 

emphasizes particulate matter and nitrogen dioxide, the Low 

Pollution cluster balances moderate ozone levels with minimal 

contributions from other pollutants, and the Ozone-Dominated 

Pollution cluster underscores the impact of elevated ozone 

levels. These findings emphasize the need for region-specific 

air quality management strategies to address the unique 

challenges posed by different pollutants in South American 

cities. 

5. DISCISSION 
This study provides a comprehensive analysis of global urban 

air pollution patterns by examining air quality indicators, 

including PM2.5, CO, NO2, and Ozone, across cities from six 

continents. The analysis identified three distinct pollution 

clusters: High Pollution, Low Pollution, and Ozone- 

Dominated Pollution, which were observed across various 

regions, including Asia, Africa, Europe, North America, South 

America, and Australia. 

The High Pollution cluster, dominated by elevated levels of 

PM2.5 and NO2, was found in regions like Asia, Africa, and 

North America, signaling urgent air quality management needs. 

On the other hand, the Low Pollution cluster, with generally 

lower pollutant levels, was more common in Europe, Australia, 

and parts of South America. The Ozone-Dominated Pollution 

cluster, characterized by high ozone levels, was notably present 

in cities in Asia and Africa, highlighting the significant role of 

photochemical reactions in certain regions. 

While these findings provide valuable insights into regional 

disparities in air quality, there are several limitations to this 

study. One of the key challenges is the absence of data for 

several major capital cities, which could further enrich the 

analysis and provide a more complete picture of global air 

pollution trends. In future studies, efforts will be made to 

include more cities from these regions to address this gap and 

improve the robustness of the analysis. Further research can 

focus on longitudinal studies to track changes in air quality over 

time and assess the effectiveness of pollution control measures 

in different regions. Additionally, the integration of real-time 

data and the incorporation of other pollutants, such as Sulfur 

Dioxide (SO2) and Volatile Organic Compounds (VOCs), 

could provide a more comprehensive understanding of urban 

air pollution. Finally, expanding the clustering approach to 

include not only capital cities but also major industrial hubs and 

smaller cities would allow for a more nuanced understanding 

of air quality across diverse urban environments. 

In conclusion, while this study highlights important regional 

pollution patterns, future work will build on these findings by 

incorporating more cities, exploring the temporal dynamics of 

pollution, and refining the clustering methodology to provide 

deeper insights into global air quality challenges. 

6. CONCLUSION 
This study offers a comprehensive analysis of urban air 

pollution across six continents, revealing the varied 

contributions of PM2.5, NO2, CO, and Ozone to the overall air 

quality in capital cities worldwide. Through clustering, we 

identified distinct pollution patterns, which help to understand 

how different cities group together based on similar pollutant 

profiles. The clustering approach provided valuable insights 

into the similarities and differences between cities, offering a 

clear picture of regional pollution trends and helping to 

highlight cities that may require targeted intervention 

strategies. 

Cities in high-pollution clusters, particularly in Asia, Africa, 

and North America, are in urgent need of comprehensive air 

quality management strategies that target multiple pollutants, 

especially PM2.5, NO2, and Ozone. In contrast, cities in the 

Low Pollution Clusters across Europe, Australia, and South 

America provide valuable lessons in achieving cleaner air 

through strong policies and investments in sustainable 

infrastructure, including public transportation, emissions 

controls, and green spaces. 

The role of ozone in certain regions underscores the importance 

of addressing the unique challenges posed by photochemical 

reactions, which are influenced by both environmental 

conditions and emissions. In this context, targeted policies that 

address local sources of Ozone and PM2.5 are crucial for 
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reducing pollution in affected cities. 

This research emphasizes the need for region-specific 

approaches to air quality management and highlights the 

critical role of international collaboration in addressing the 

global challenge of urban air pollution. The use of clustering 

not only facilitated the identification of key pollution drivers 

but also provided a framework for creating effective, regionally 

tailored solutions. As cities worldwide continue to grow and 

industrialize, it is imperative that policymakers implement 

more effective and regionally tailored solutions to safeguard 

public health and the environment. 

7. LIMITATION 
Despite the comprehensive nature of this study, several 

limitations must be considered. First, the dataset used in this 

analysis relies on available air pollution data from urban areas, 

which may not fully represent pollution levels in smaller or 

rural cities. The lack of consistent and up-to-date data from 

some countries, particularly in regions with limited monitoring 

infrastructure, could affect the robustness of the clustering 

results. Additionally, missing data from certain cities, such as 

Maldives and Kyrgyzstan, may have influenced the overall 

patterns observed. 

Second, while clustering provides valuable insights into 

pollution trends, it is important to note that the method is 

inherently dependent on the selected variables. Other factors, 

such as seasonal variations, specific local sources of pollution, 

and socioeconomic conditions, were not considered in this 

study but could have provided further context to the observed 

patterns. Lastly, the study focuses mainly on urban areas and 

the findings may not fully capture the dynamics of rural 

pollution, which may differ significantly from those in urban 

centers. 

Future research could expand on this analysis by incorporating 

more diverse geographical data and additional environmental 

and health-related variables. 
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