

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

10

Significance of Security Metrics in Secure Software

Development

Shams Tabrez Siddiqui
Department of Computer Science,

College of Computer Science & Information Systems
Jazan University, KSA

ABSTRACT

With increasing advancement of technology in the past years

rise various security issues and problems. In this connected

world, security is a paramount and challenging issue in

software development and is the demand of time.

However usually engineers/developers think about it after the

development of the entire software and at that it’s too late.

Though, the software developers are aware of the importance

of security and its priority throughout software development

life cycle. Considering the security challenging issues right

from the early stages of software development and

incorporating it during software development indicates good

research and development.

 When the metrics considered during software development

process from the initial stage then it assess the security risks

more efficiently. One of the best known approaches to

develop security metrics is Goal/Question/Metric (GQM)

approach that assesses the security risks in various stages of

software development process. Software security can be

measured with the help of metrics derived from the source

available.

The main aim of this paper is to focus on numerous security

metrics of software development phases and some

standardized criteria is used for validation. Each and every

phase have different metrics as compared to other. Those

metrics are defined on the bases of their results and products.

The final product derived from the proposed security metrics

of the software will be secure and qualified.

General Terms

Security, software development phases, validation.

Keywords

Security risks, software development life cycle, metrics,

GQM.

1. INTRODUCTION
Rapid growth of technology in last few decades increases the

security related issues and now most of the researchers are

considering security problems seriously. Nowadays security

metrics are used in numerous fields and considering security

problems, issues and challenges from the early stage of

software development life cycle indicates the good research

and development [1]. Higher priority should be given to the

security related issues from the initial stage of the software

development. Secure software cannot deliberately force to fail

and remains correct and inevitable in spite of intentional

efforts. Regularizing software security metrics assures the

quality and security of the entire system. A secure system

avoids service failure and measures availability, reliability,

and maintenance of the system. Secure system does what it is

supposed to do and what is not supposed to do [2].

The enlisted aspects namely; availability, reliability, and

maintenance of the system are considered as secure software.

Security usually considered by the developers as a post

development activity. Most of the organizations, developers

or software engineers try to incorporate security as a patch

after software development, but security is not a feature, it is

an emergent property of a complete system [3]. Security will

be more effective and efficient if it is considered during pre-

development and development phases [1] [3]. Therefore,

security should be incorporated in each and almost every

phase from the initial stage of the software development

phase. Most of the organizations spend a huge amount on

purchasing firewalls and antivirus for the software, even

though there software’s are not secure [4]. Due to exploitation

of security flaws, they incur significant losses of data and

information in the organizations. Metrics are virtuous if it is

clearly specified, measurable, time dependent, repeatable and

understandable [5] [6].

This paper discusses numerous security metrics in almost all

software development phases and some standardized criteria

is been used for validation. Almost all the phase of the

software development lifecycle has different security metrics

as compared to other that are defined on the basis of their

results and products [6]. Using proposed security metrics

during software development cycle for secure and qualified

final product. The standard security metrics is used for

security measurement. In architecture design and secure

operations the security metrics are most significant factors.

These security metrics can be used effectively in quality and

security assurance applications [7] [8].

2. SECURITY METRICS
Security metrics can be defined as a standard terms as security

level, security indicators and security performance. Software

security can be measured with the help of the metrics derived

from the data or information of the software which is under

development phase.

It is clearly known that, when the metrics considered during

the initial phase of the software development process will

assess the security risks more effectively and efficiently.

Goal/Question/Metric (GQM) approach is one of the best

known approaches to develop security metrics and to assess

the security risks in the stages of software development

process [9] [10].

2.1 Software Security Metrics
 Software measures are troublesome (LOC, FPs,

Complexity etc.)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

11

 Metrics are context sensitive and environment-

dependent

 Aggregation may not lead to strength

 Architecture dependent

3. SECURITY METRICS IN SOFTWARE

 DEVELOPMENT PROCESS
A number of security metrics have been specified and

described in detail that portrays the security related issues in

the development stages of the software also given in table 2

[9] [10].

3.1 Pre-Requirement Phase
Security activities performed in pre initial phase set the

foundation for all the activities starting from the initial stage

to final stage such as requirements phase to the maintenance

phase [1] [12] [20]. The activities performed during pre-

requirement phase are:

 Is security required in the system: Before

assessing security requirement the study of the

system and its requirement should be done?

 Is security possible for the system: Before

considering security metrics we have to check

whether security requirement is possible for the

system or not.

 Number of possible security requirements in

each phases of Software Development Process

 Total Number of security requirement in

Software Development Process

3.2 Requirement Gathering and Analysis

 Phase
In this phase, software engineers assess security requirements

and evaluate it to consider properly. The metrics that makes

this phase more precise are [10]:

 Number of priority security requirements

(Npsr): This metrics is for the number of security

requirements that have more priority than the others

and consider the requirements which due to attacks

on the system will affect or destroy the system most.

 Number of least priority security requirements

(Nlsr): Number of security requirements that have

less priority than the other and the considered

requirements will not effect the system much or

their will be no effect on it.

 Total number of security requirements (Nsr):

This metrics assess the total number of security

requirements (priority and least priority security

requirements) identified through analysis phase of

the software development.

 Nsr = Npsr + Nlsr

 Ratio of security requirements (Rsr): Rsr can be

calculated as:

 R: Systems all requirements set.

 SR: Systems security requirements set.

 Even SR is said to be a subset of R.

 Number of omitted security requirements

(Nosr): Number of security requirements that have

been omitted or not considered due to any reason,

but have a high risk and possible impact of severe

attacks on the system.

 Ratio of the number of omitted security

requirements (Rosr): Rosr defined as :

 Rosr = Nosr/ (Nosr + Nsr)

3.3 Software Design Phase
In this phase, software engineers assess security requirements

and evaluate it to deal properly during design phase or not.

Metrics for design phase are [10]:

 Number of design decisions related to security

(Ndd): This security design metrics considers the

number of design decision that addresses the

security requirement of the system.

 Ratio of design decisions (Rdd): The purpose of

this metrics is to measures the ratio of design

decisions related to security of the system.

Rdd = Ndd / Nd

Nd is the total number of design decisions

of the complete system.

 Number of security algorithms (Nsa): This

metrics measures the number of security algorithms

found in the entire system.

 Number of design flaws related to security

(Nsdf): The aim of this security design flaws

metrics is to ruminate the number of security related

design flaws occurs due to improper planning with

improper consideration of security requirements

principles.

 Ratio of design flaws related to security (Rdf):

This metrics measures the ratio of design flaws

related security metrics of the system, considering

number of design flaws that are related to security

over design flaws relevant to the complete system.

Rdf = Nsdf / Ndf

Ndf is the number of design flaws

pertinent to the complete system.

3.4 Coding Phase
In this phase the metrics measure source code quality

properties that enhance program security are given below

[11]:

 Stall ratio (Sr): This measures, the delay of

program progress by frolicsome activities. In a

program, there are certain statements which may not

be severely essential for making the program

progress towards its desired goal. But in the

program there may be certain statements that do not

confer to the overall progress of the program [11]

[12]. The metrics given below measures the

progress of the program:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

12

 Critical element ratio (Cer): A security risk

appears if certain necessary data objects are altered

that may threaten the process as a whole.

Henceforth, the more critical elements in a class, the

higher are the security risk [11] [12]. This risk

enumerated in the following way:

 Coupling corruption propagation (Ccp): The

metrics coupling corruption propagation is destined

to assess the total number of methods that could be

affected by flawed instigating methods. Potential

security flaw fallouts when a critical parameter is

imposed to remain at a certain value, and the

fallouts remains the same as there is no matter what

other parameters are altered [11] [12]. The formal

definition of this proposed metric is:

3.5 Implementation Phase
The implementation metrics are given below:

 At the time of implementation; Number of errors

found in the system (Nerr): This metrics measures

the number of implementation errors of the system

[10] [13]. This metric is a baseline metric and is

used for defining the remaining metrics.

 Number of implementation errors associated to

security (Nserr) of the system: This metrics is

used for measuring the number of errors at the time

of implementation which has the direct impact of

security for the system [13] [14].

 Ratio of implementation errors that have impact

on security (Rserr): This metrics is for finding the

ratio of errors that have impact on security and can

be calculated by finding the number of errors at the

time of implementation related to the errors only

associated to security [13].

Rserr=Nserr / Nerr

 Number of exceptions implemented to handle

failure related to security (Nex) of the system:

This metric measures the number of exceptions

which are included in the code to handle possible

failures of the system due to an error that has impact

on security [10].

 Number of omitted exceptions for handling

execution failures related to security (Noex): This

metrics deals with the number of missing exceptions

which are omitted by developers while

implementing the system [10].

 Ratio of the number of omitted exceptions

(Roex): The ratio of the omitted exception

measurement metric is:

Roex = Noex / (Noex + Nex)

3.6 Testing Phase
In this phase the following metrics are used to test the security

of the system [10].

 Total number of security test cases (Ttc) of the

system: This is the total number of security related

all the tests of complete system.

 Number of security test cases of the system that

fails (Ntcp): This is for number of security errors,

faults and failure of the system while implementing.

 Ratio of security test cases (Rtc): This metrics

helps developers to determine the ratio of testing for

security that the system has undergone.

 T: Test cases of the systems set.

 TS: Test cases that address security

 issues set.

 Ratio of security test cases that fails (Rtcp): The

aim of the metrics is to detect implementation error

 TP: Is a set of security associated test

 cases of the system that passes.

 TF: Is a set of security associated test

 cases of the system that fails.

3.7 Maintenance Phase
This metrics considers security during evolution and

maintenance phase.

 Ratio of software changes due to security

consideration (Rsc): In order to keep the

application secure this metrics helps in identify the

extent of work performed on the system [10].

Rsc = Nsc / Nc

Nc: Is the number of changes of complete

system.

Nsc: It is the number of changes that

triggered via a new security requirements.

 Ratio of patches issued to address security

vulnerabilities of the system (Rp): This metrics

measures the ratio of patches that are issued to

address security vulnerabilities that can be

calculated [10].

 Rp = Nsp / Np

 Np: The number of patches of the entire

 system.

 Nsp: The number of patches related to

 security of the system.

4. COMPARISION OF SECURITY

ACTIVITY WITH SECURITY

METRICS OF THE SOFTWARE

DEVELOPMENT PHASES
Security metrics can be defined as a standard terms as security

level, security indicators and security performance. Software

security can be measured with the help of the metrics derived

from the data [1].

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

13

Table 1 shows the security activities of the software

development phases whereas table 2 shows the security

metrics of each phases of the software development. Security

activities of each phase are important and calculating total

security related issues of each phases of the software

development is also crucial.

Table 1: Security Activities for Secure Software Development [10] [15-19] [21-23].

SOFTWARE DEVELOPMENT PHASES SECURITY ACTIVITIES

Pre-Requirements Phase Security Training, Plan and Develop Framework for Risk Management

Requirements Phase

Identify Security Requirements, Develop Use Cases, Develop Misuse Cases, Develop Security Use

Cases, Documentation of Requirements

Design Phase

Build Security Architecture, Identify Interaction Points, Assets and their Access Points, Minimize

Software Attack Surface, Describe Threat Models

Implementation Phase Write Secure Code, Static Analysis and Review of Code

Testing Phase Security Test Planning, Security Testing

Release and Deployment Phase Security Review, Security Audit, Security Deployment

Table 2: Security Metrics in Software Development Process [10] [13-14]

SOFTWARE DEVELOPMENT PHASES SECURITY METRICS

Pre requirement Is security possible for the system, Is security required in the system, Number of possible security

requirements in each phases of Software Development Process, Total Number of security requirement in

Software Development Process

Requirement Gathering

and Analysis

Number of priority security requirements (Npsr), Number of least priority security requirements (Nlsr),

Total number of security requirement (Nsr), Number of omitted security requirements (Nosr), Ratio of

security requirement (Rsr), and Ratio of the number of omitted security requirements (Rosr)

Software Design Number of design decisions related to security (Ndd), Number of security algorithms (Nsa), Ratio of

design decisions (Rdd), Number of design flaws related to security (Nsfd), and Ratio of design flaws

related to security (Rfd)

Coding Stall ratio (Sr), Critical element ratio (Cer),Coupling corruption propagation (Ccp)

Implementation Number of implementation errors found in the system (Nerr), Number of implementation errors

associated to security (Nserr), Ratio of implementation errors that have impact on security (Rserr),

Number of exceptions that have been implemented to handle failure related to security (Nex), Number of

omitted exceptions for handling execution failures related to security (Noex), and Ratio of the number of

omitted exceptions (Roex)

Testing Total number of security test cases (Ttc), Number of security test cases that fails (Ntcp), Ratio of

security test cases (Rtc) and Ratio of security test cases that fail (Rtcp)

Maintenance Ratio of software changes due to security consideration (Rsc), and Ratio of patches issued to address

security vulnerabilities (Rp)

Documentation Technical documentation using GQM approach for quality assessment.

Table 3 exemplifies the software projects in percentages that

failed or were over budget in the years (1994, 1998, 2000,

2004, 2006, 2008, 2010 and 2012). From the Table 3 it seems

that the crisis in SE due to security is also one of the

challenging issues. The results indicate that there is still work

to be done around achieving successful outcomes from

software development projects [24]. Software fails due to

security reasons is also included in Chaos report.

Table 3: Chaos Reports for Data of Software Projects [25]

[26] [27] [28]

Project cancelled

or failed DUE to

security and other

reasons (in

percentage)

Project Over Budget

(in percentage)

Report Year

and

Reference

31.1% 52.7% 1994

28% 46% 1998

23% 49% 2000

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

14

18% 53% (43% for small and

medium projects 82%

for large projects)

2004

19% 46% 2006

24% 44% 2008

21% 42% 2010

18% (4% small

projects and 38%

large projects)

43% (20% for small and

medium projects 52%

for large projects)

2012

Table 4 summarizes the outcomes of projects over the last five

years. Success factors on time, within budget with a

satisfactory result are shown below in the table 4. Most of the

projects that deal the security issues and perspective are

challenged projects.

Table 4: Chaos Reports success factors (on time, on

budget with a satisfactory result) [24].

YEAR SUCCESSFUL CHALLENGED FAILED

2011 29% 49% 22%

2012 27% 56% 17%

2013 31% 50% 19%

2014 28% 55% 17%

2015 29% 52% 19%

5. CONCLUSION
The aim of this paper is to focus on the security metrics of

each phase of the secure software development activities.

Careful consideration of security is required right from the

initial stage of the software development phases namely; pre-

requirements, requirements, design to the final stages of the

secure software development phases namely; implementation,

testing, deployment and maintenance. The main aim of this

paper is to focus and propose some security metrics that can

be used to assess and avoid the risks at different stages of the

software development processes. The proposed metrics for the

security of the system is considered as the framework and

should be incorporated right from the initial stage of the

software development process.

In this paper number of security metrics have been itemized,

specified and described in detail that portrays the security

related issues in software development stages. The given

security metrics calculates, number of possible security

requirements, total number of security requirements from all

the phases of software development process, omitted security

requirements, priority security requirements, design decisions

related to security, design flaws related to security, number of

implementation errors found in the system, implementation

errors associated to security, total number of security test

cases etc.

The metrics also calculates; ratio of security requirement,

implementation errors that have impact on security, ratio of

omitted exceptions, patches issued to address security

vulnerabilities, ratio of software changes due to security

consideration, etc.

6. REFERENCES
[1] S. T. Siddiqui, H. S. A. Hamatta and M. U. Bokhari,

“Multilevel Security Spiral (MSS) Model: NOVEL

Approach”, International Journal of Computer

Applications, vol. 65, no. 20, pp. 15-20, 2013.

[2] G. McGraw, “Software Security”, IEEE Security &

Privacy, vol. 2, no. 2, pp. 80-83, 2004.

[3] D. G. Firesmith, “Specifying reusable security

requirements”, Journal of Object Technology, vol. 3, no.

1, pp. 61-75, 2004.

[4] Dustin E, “The Secure Software Development

Lifecycle”, Dev Source (sponsored by Microsoft), 2006.

[5] A. Abdi, “Using Security Metrics in Software Quality

Assurance Process”, On 6'th International Symposium on

Telecommunications (IST'2012) IEEE, 2013.

[6] M. U. Bokhari and S. T. Siddiqui, “Metrics for

Requirement Engineering and Automated Requirement

Tools”, In Proceedings of the 5th National Conference;

INDIACom-2011, New Delhi, 2011.

[7] M. U. Bokhari and S. T. Siddiqui, “A Comparative Study

of Software Requirements Tools for Secure Software

Development”, BVICAM‟S International Journal of IT

(BIJIT), vol. 2, no. 2, pp. 207-216, 2010.

[8] Website: Https://techbeacon.com/9-metrics-can-

makedifference-todays-software-development-teams.

Accessed: January 27, 2017.

[9] M. A. Hadavi, H. M. Sangchi, V. S. Hamishagi and H.

Shirazi, “Software security; A vulnerability-activity

revisit”, In Proceedings of the 2008 Third International

Conference on Availability, Reliability and Security

(ARES’08), pp. 866-872, 2008.

[10] K. Sultan, A. E-Nouaary and A. H-Lhadj, “Catalog of

metrics for assessing security risks of software

throughout the software development life cycle”, In

Proceeding of International Conference on Information

Security and Assurance, IEEE Computer Society, pp.

461-465, 2008.

[11] I. Chowdhury, B. Chan and M. Zulkernine, “Security

metrics for source code structures”, In Proceedings of the

Fourth International Workshop on Software Engineering

for Secure Systems (ICSE’08), Leipzig, Germany: ACM,

pp. 57-64, 2008.

[12] S. T. Siddiqui, “Comparative Study and Design of

Software Requirement Tools for Secure Software

Development”, Ph. D Thesis, Department of Computer

Science, A. M. U., Aligarh, India, 2015.

[13] S. Jain and M. Ingle, “Review of security metrics in

software development process”, International Journal of

Computer Science and Information Technologies, vol. 2,

no. 6, pp. 2627-2631, 2011.

[14] G. Caldiera, V. R. Basili and H. D. Rombach, “The goal

question metric approach”, Encyclopedia of software

engineering, J. J. Marciniak(ed.), New York, USA: John

Wiley & Sons, vol. 2, pp. 528-532, 1994.

[15] S. R. Ahmed, “Secure software development -

Identification of security activities and their integration

in software development lifecycle”, Master’s Thesis,

School of Engineering, Blekinge Institute of Technology,

Sweden, 2007.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Athena%20Abdi.QT.&newsearch=true
https://techbeacon.com/9-metrics-can-makedifference-todays-software-development-teams
https://techbeacon.com/9-metrics-can-makedifference-todays-software-development-teams

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 6, August 2017 – www.ijais.org

15

[16] B.W. Boehm, “A spiral model of software development

and enhancement”, TRW Defense Systems Group, IEEE

Computer, vol. 21, no. 5, pp. 61-72, 1988.

[17] B. Potter, “Software security testing”, IEEE Security &

Privacy Magazine, IEEE Computer Society, vol. 2, no. 5,

pp. 81-85, 2004.

[18] M. Howard, “A Look Inside the Security Development

Lifecycle at Microsoft”, MSDN Magazine, USA, 2005.

[19] M. Howard, “A Process of performing security code

reviews”, IEEE Security & Privacy Magazine, vol. 4, no.

4, pp. 74-79, 2006.

[20] S. T. Siddiqui and M. U. Bokhari, “Selecting appropriate

Requirements Management Tool for developing Secure

Enterprises Software”, International Journal of

Information Technology and Computer Science, vol. 6,

no. 4, pp. 49-55, 2014.

[21] J. Whittaker, “Why secure applications are difficult to

write”, IEEE Security & Privacy Magazine, IEEE

Computer Society, vol. 1, no. 2, pp. 81-83, 2003.

[22] H. H. Thompson, “Why security testing is hard”, IEEE

Security & Privacy, vol. 1, no. 4, pp. 83–86, 2003.

[23] M. I. Daud, “Secure software development model: A

guide for secure software life cycle”, In Proceedings of

the International MultiConference of Engineers and

Computer Scientists (IMESC'10), Hong Kong, vol. 1, pp.

1-5, 2010.

[24] Website: https://www.infoq.com/articles/standish-chaos-

2015. Accessed: August 28, 2017.

[25] The Chaos Report, the Standish Group International,

Inc., [Online] 1994, Available online at:

http://www.standishgroup.com/sample_research_files/ch

aos_report_ 1994.pdf . Accessed: August 7, 2016.

[26] A. Aurum and C. Wohlin, “Requirements Engineering:

Setting the context”, In Engineering and Managing

Software Requirements, A. Aurum and C. Wohlin (Eds.)

Springer-Verlag, Berlin, Germany, pp. 1-15, 2005.

[27] S. Rosenberg, “Standish’s CHAOS Report and the

software crisis”, [Online] 2006, Available online at:

http://www.wordyard.com/2006/08/02/standishs-chaos-

report-and-the-software-crisis. Accessed: August 7,

2014.

[28] [Online] The Chaos Report – 1995. Parthenon

Consultancy Ltd, Available online at:

http://www.parthenon.uk.com/project-failure-chaos.htm.

Accessed: August 9, 2017.

https://www.infoq.com/articles/standish-chaos-2015
https://www.infoq.com/articles/standish-chaos-2015
http://www.standishgroup.com/sample_research_files/chaos_report_%201994.pdf
http://www.standishgroup.com/sample_research_files/chaos_report_%201994.pdf
http://www.wordyard.com/2006/08/02/standishs-chaos-report-and-the-software-crisis/
http://www.wordyard.com/2006/08/02/standishs-chaos-report-and-the-software-crisis/
http://www.parthenon.uk.com/project-failure-chaos.htm

