

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 8, November 2017 – www.ijais.org

22

Improved Extended Dijkstra’s Algorithm for Software

Defined Networks

Abdul-hafiz Abdulaziz
Dept of Electrical & Computer

Engineering
Ahmadu Bello University, Zaria,

Kaduna State - Nigeria

Emmanuel Adewale
Adedokun

Dept of Electrical & Computer
Engineering

Ahmadu Bello University, Zaria,
Kaduna State - Nigeria

Sani Man-Yahya
Dept of Electrical & Computer

Engineering
Ahmadu Bello University, Zaria,

Kaduna State - Nigeria

ABSTRACT

The existing Extended Dijkstra's algorithm for Software

Defined Networks was developed to handle shortcomings

associated with the traditional shortest path routing used in

SDN. Today's SDN controllers route allocation mechanism is

mainly based on Dijkstra algorithm. However, both

approaches do not consider bandwidth utilization and do not

take knowledge of the topology into consideration. This may

result in network congestion and sub-optimal performance of

applications. This paper presents a modified Extended

Dijkstra's algorithm for Software Defined Networks using

REST APIs and introduces a congestion control component

responsible for handling traffic overhead in an SDN topology.

The Abilene network topology was used to evaluate the

performance of both approaches using throughput and latency

as performance metrics.

Keywords

Software Defined Networking, REST APIs, Load Balancing,

Congestion Control

1. INTRODUCTION
Software Defined Networking (SDN) is a newly emerging

field in computer networks. The main goal of SDN is for a

network to be open and programmable [2]. This brings many

new network applications realized by programming the SDN

controller. Typical examples include traffic engineering,

security, Quality of Service (QoS), routing, load balancing

and so on [6]. In recent years, various load balancing methods

for Data Center Networks (DCNs) using the SDN paradigm

have been introduced. A load balancing algorithm called

LABERIO (LoAd-Balancing Routing wIth OpenFlow), to

minimize latency and maximize the network throughput was

proposed by Hui et al., (2013). A Plug-n-Serve system

implementing a load balancing algorithm called LOBUS

(Load-Balancing over Unstructured networks), using

OpenFlow for unstructured networks was proposed by

Handigol et al., (2013). LOBUS maintains the network

topology and link status, and greedily chooses the client-

server pair that yields the lowest total response time for each

newly arriving request. Dijkstra algorithm, the classical

shortest path algorithm used by many routing protocols for

finding the shortest path two points in the networks was

extended by Jiang et al., (2014). With recent technology such

as tunneling, overlay network and virtualized network, it is

becoming increasingly difficult to find an appropriate path for

the application, as a shortest path is not necessarily always the

best path. The extended Dijkstra’s algorithm can be applied to

derive a pair of shortest path in an SDN topology. However,

most load balancing approaches in the context of SDN

allocate resources based on statically configured routes and

therefore may experience uneven load balancing. In this

paper, the Extended Dijkstra’s algorithm for SDN is modified

by utilizing REST API of the controller and introduces a

congestion control component to handle traffic overhead in an

SDN topology. The remainder of this paper is organized as

follows. Section II, introduces SDN, OpenFlow Switches,

REST APIs, OpenDaylight controller, Mininet and challenges

with the extended Dijkstra’s Algorithm for SDN. Section III

describes the proposed algorithm. Section IV shows the

simulation results and observations. Finally, this paper is

concluded with Section V.

2. PRELIMINARIES

2.1 Software Defined Networking
SDN is a new paradigm that breaks the vertical integration

between the network control plane and its data plane [2]. The

core idea of SDN is to decouple network control from data

transmission. OpenFlow switches implement data trans-

mission function, so as to simplify the design of switches, and

control functions are provided by controllers. The switches

implement data transmission function according to flow tables

allocated from controller [2]. Being the brain of SDN,

controller acquires application information from upper layer

through the unified northbound interface. Flow tables are

generated in controller and allocated to OpenFlow switches

through OpenFlow protocol.

Figure 1. Software-Defined Network Architecture [2]

By acquiring network topology information, SDN controller

provides the global network view for OpenFlow switches and

implements the flexible network configuration and network

management. SDN has gained a lot of attention in recent

years, because it addresses the lack of programmability in

existing networking architectures and faster network

innovation [10].

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 8, November 2017 – www.ijais.org

23

2.2 OpenFlow Switches
OpenFlow switches are like standard hardware switches with

a flow table performing packet lookup and forwarding. The

difference between OpenFlow switches and standard

switches, lies in how the flows rules are inserted and updated

inside the switch’s flow table [12]. A standard switch can

have static rules inserted into the switch or can be a learning

switch where the switch inserts rules into its flow table as it

learns on which interface (switch port) a machine is. The

OpenFlow switch on the other hand uses an external

controller to add rules into its flow table.

Figure 2. Components of an OpenFlow Switch [5]

2.3 OpenDaylight
OpenDaylight [14] is an open source project with a modular,

pluggable, and flexible controller platform at its core. The

core of the OpenDaylight platform is the Model-Driven

Service Abstraction Layer (MD-SAL). The OpenDaylight

controller can execute modules that describe how a new flow

should be handled [16]. This provides us an interface to write

python modules that dynamically add or delete routing rules

into the switch and can use different policies for handling

flows. Figure 3 presents the components of the OpenDaylight

controller.

Mininet

Mininet [10] is an open source network emulator that supports

the OpenFlow protocol for the SDN architecture. It is one of

the most popular tools used by the SDN research community.

It uses the virtualization approach to create a network of

virtual hosts, switches, controllers, and links. Mininet hosts

run standard Linux network software, and it supports the

OpenFlow protocol for highly flexible custom routing and

Software-Defined Networking. Just as an operating system

(OS) virtualizes computing resources with process

abstraction, Mininet uses process-based virtualization to

emulate entities on a single OS kernel by running real code,

including standard network applications, the real OS kernel

and the network stack. Therefore, a design that works

properly in Mininet can usually move directly to practical

networks composed of real hardware devices.

2.4 REST APIs in the context of SDN
REST is an architecture style for designing networked

applications. As REST architectural style has gained more

popularity in implementing loosely-coupled systems, RESTful

services are becoming the style of choice for northbound API

and gaining increasingly importance in SDN architecture.

Today’s controllers utilize the REST API technology, which

is an effective mechanism to communicate with various

components in an SDN network [9]. The REST API uses

HTTP messages to send and receive information between the

SDN controller and another application. When the SDN

controller receives the HTTP GET request, it will reply with

an HTTP GET response with the information that was

requested.

Figure 3: OpenDaylight Architecture [16]

2.6 Extended Dijkstra’s Algorithm for SDN
Given a weighted, directed graph G = (V, E) and a single

source node s, the classical Dijkstra’s algorithm can return a

shortest path from the source node s to every other node,

where V is a set of nodes and E is the set of edges, each of

which is associated with no weight. In the original Dijkstra

algorithm nodes are associated with no weight. However, ED-

SDN returns the shortest path from the single source node to

every other with the consideration of the edge weight and the

node weight [6].

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 8, November 2017 – www.ijais.org

24

Figure 4: Extended Dijkstra’s Algorithm [6]

3 IMPROVED EXTENDED DIJKSTRA

ALGORITHM (mED-SDN)
This sections provides an overview of the improved Extended

Dijkstra’s algorithm for SDN.

3.1. Description of Improved Extended

Dijkstra’s Algorithm for SDN
The main component of the Improved Extended Dijkstra’s

Algorithm for SDN (mED-SDN) is REST. To make REST

API calls to the controller, the application has to be

authenticated against the controller.

Figure 5: Script to Authenticate with the Controller

Figure 5 shows a section of the python script that uses HTTP

POST to fetch the URL through the API and retrieve some of

the variables that are available, for example, information

about all nodes (hosts) on the network. Once the API receives

this, it will respond with an HTTP GET response message. As

shown in Figure 6, the HTTP traffic from host with an IP

address 10.0.0.1 to destination of 10.0.0.12 will be sent out of

port 1 on the switch. The flow priority is set to 3200, however

the default priority is 2990 on the controller. The script puts

the flow priority higher than the default, this is to ensure that

the traffic will use the path as set by this script rather than the

default from the controller. The idle timeout for flow entries

were set to sixty (60) seconds. This can be set to a higher

value however. The idle timeout signifies how long the flow

entry will stay in the switch when there is no traffic matching

the flow entry.

Figure 6: Updating an OpenFlow Switch Table

3.2 Congestion Prevention Mechanism
This sub-section explains the congestion prevention

mechanism which is a component of the load balancer. The

congestion control component of this algorithm uses the

bandwidth utilization as its evaluation criterion for improving

congestion in an SDN topology. When the bandwidth

utilization exceeds the threshold value set by the algorithm, it

reverts to the controller to search for a new path. In other to

obtain the link bandwidth utilization, the congestion

congestion component proactively measures the bandwidth in

the topology and utilizes the REST API on the controller to

collect cumulative transmitted bytes at corresponding

OpenFlow switches port.

Figure 7: Congestion Control Component

4 EVALUATION
4.1 Simulation Settings
This research adopted the Abilene network topology and

utilizes the Mininet network emulator to perform simulations.

The Abilene network is a high-performance backbone

network suggested by the Internet2 project. Figure 8 shows a

historical Abilene (network) core topology emulated in the

Mininet network emulator, connecting 11 regional sites or

nodes across the United States. The Abilene network has 10

Gbps connectivity between neighboring nodes and 100 Mbps

connectivity between a host and a node. Based on the Abilene

core topology, a Mininet topology was set up consisting of an

OpenDaylight SDN controller and 11 switches as nodes,

where each switch is linked to the controller logically and is

attached with at least one host. The simulation parameter

settings are shown in Table I.

Figure 8: Setup of Abilene Topology in Mininet

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 8, November 2017 – www.ijais.org

25

Table 1: Simulation Settings

4.2 Throughput Test
The Iperf network testing utility was used to study the

throughput utilization on the Abilene network topology. As

depicted in Figure 9 and Table 2, when the number of nodes

are relatively light, all three approaches perform similarly.

However, the TCP control mechanisms such as flow control,

congestion control and error control mechanisms limit the

throughput. The results suggest that the proposed approach

shows a better performance in comparison to the other two.

The average throughput recorded for the 12-node scenario for

DA, ED-SDN, mED-SDN was 564, 589 and 610 Mbps

respectively.

Figure 9: Throughput Test

Table 2. Throughput test results

Nodes mED-SDN ED-SDN DA

4 620 Mbps 615 Mbps 612 Mbps

8 614 Mbps 610 Mbps 599 Mbps

12 610 Mbps 589 Mbps 564 Mbps

4.3 Throughput Test on Larger Abilene

Network
To test for the effectiveness of the algorithm and further study

the impact of the number of nodes on the performance of DA,

ED-SDN and mED-SDN under the Abilene network topology,

the number of nodes were increased by four (6) more nodes.

The Figure 10 illustrates the output from Iperf on the new

network scenario. Throughput tests were carried out for the

three approaches. An arbitrary node was selected as the server

to carry out the throughput tests using Iperf.

Figure 10: Throughput Test on Larger Abilene Topology

Under the new traffic conditions, DA experiences the most

throughput set back, with an average of 512 Mbps for the 18-

node scenario, ED-SDN and mED-SDN however performed

similarly with a throughput of 585.5 Mbps and 590.4 Mbps

respectively. In a typical network however, it is very unlikely

that all the switches are highly active at the same time, but

protocols such as the CDP (control datagram packet) and

OpenFlow messages exchanged between the switches and the

controller transmitted across the links can reduce the network

throughput. Furthermore, DA experienced significant

throughput set back also due to the fact that it only considers

distance as the single factor for determining the best path, as

the number of nodes increase, the number of hops to reach the

destination also increases, therefore a packet has to transverse

through more network hops and subsequently resulting to

drop in the transmission rate.

4.4 Latency Test on Abilene Network

Topology
The bandwidth of an edge and the capacity of a node were set

randomly to be within the range shown in Table I. The

simulation results of the latency tests are shown in Figure 11.

By the simulation results, we can notice that mED- SDN has

less end-to-end latency than the original ED-SDN, DA

experiences significant degradation of latency when the nodes

increase, partly due to the increase in the number of hops a

packet travels from the server node. The average latency

experienced on the 12-node Abilene topology for DA, ED-

SDN and mED-SDN were recorded at 7.5, 6.8 and 5.4

milliseconds respectively.

Figure 11: Latency Test

Table 3. Latency test results

Nodes mED-SDN ED-SDN DA

4 5.4 ms 6.7 ms 7.5 ms

8 4.5 ms 5.1 ms 5.2 ms

12 3.2 ms 4.4 ms 4.6 ms

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12 – No. 8, November 2017 – www.ijais.org

26

4.5 Comparison with Round Robin

Approach
Further comparison tests were conducted with a common load

balancing method which is the round robin approach for SDN.

As seen in Figure 12., the round robin approach has a

significant low throughput around 50% less than the proposed

algorithm. Furthermore, the round robin approach may deflect

a request to a farther server which would cause significant

latency. Therefore, if the requests are deflected to the farther

servers through which packets transverse switches and

routers, the throughput would reduce therefore causing the

latency to increase significantly. The proposed algorithm is

superior with respect to network throughput. mED-SDN

attained an average of 612Mbps under 12-node Abilene

network topology while round robin was at 315Mbps.

Figure 12: Comparison with Round Robin

5 CONCLUSION
This research is aimed at the development of an efficient load

balancer in the context of SDN, by modifying the existing

Extended Dijkstra’s algorithm for SDN using a northbound

plug-in that performs REST requests to update flow tables in

switches and a function that handles control congestion in the

SDN topology. The mED-SDN is a python-based script,

which is imported as a component into the controller. Using

Iperf, throughput and latency tests were carried out on the

Abilene network topology. To further test for the

effectiveness of the mED-SDN, this research performed

comparison tests with the Round Robin approach and the

traditional Dijkstra’s algorithm used by many controllers and

achieved better performance in terms of throughput and

latency.

6 REFERENCES
[1] B. Wolfgang and M. Michael. 2014. Software-defined

Networking: Using OpenFlow: Protocols, Applications

and Architectural Design Choices. IEEE 13th

International Conference on Trust, Security and Privacy

in Computing Communications, 1-6.

[2] Dijkstra, E.W. 1959. A note on two problems in

connexion with graphs, Numerishe mathematik 1 (1),

269-271.

[3] G. Deep and J. Hong. 2016. Round Robin Load Balancer

using Software Defined Networking (SDN). Capstone

Team Research Project, Vol. 5, 1-9, 2016.

[4] G. Senthil, and S. Rajani. 2015. Dynamic Load

Balancing using Software Defined Networks.

International Journal of Electrical and Computer

Engineering (IJECE), Vol. 3, 203-256

[5] H. Tim. 2011. Path computation enhancement in

Software Defined Networks. ChenDu College of

University of Electronic Science and Technology.

[6] J. Jiang, H. Hsin-Wen, and C. Szu-Yuan. 2013.

Extending Dijkstra’s shortest path algorithm for Software

Defined Networks. Department of Computer Science

and Information Engineering National Central

University.

[7] K. Diego and M. Fernando. 2014. Software-Defined

Networking: A Comprehensive Survey. International

Conference on Advanced Information Networking and

Applications, Vol. 103(1), 1-63.

[8] L.Hui, S.Yao, and T.Fin. 2013. Dynamic Load Balance

Routing in OpenFlow Enabled Networks. IEEE

International Conference on Advanced Information

Networking and Applications, 290-297.

[9] Michael, D. 2011. The REST API Lifecycle: From

Planning to Production. International Journal for

Advances in Engineering Research, Vol. 2, 333-339.

[10] Mininet Website, http://mininet.org/, last accessed on

May 2016.

[11] N. Handigol, M. Heller and M. Nick. 2013. Plug-n-

Serve: Load-Balancing Web Traffic using OpenFlow.

Networking Report, University of Washington, Vol. 7.

[12] N. Mckeown, T. Anderson. 2008. OpenFlow enabling

innovation on campus networks. ACM SIGCOMM

Computer Communication.

[13] Open Networking Foundation., OpenFlow Switch

Specification version 1.4.0. Accessed on October 14,

2016

[14] OpenDaylight Developer Guide., OpenDaylight

community. Accessed on October 14, 2015

[15] Y. Widhi, J. Jehn-Ruey, & B. Achmad. 2015. The

Extended Dijkstra-based Load Balancing for OpenFlow

Network. International Journal of Electrical and

Computer Engineering (IJECE), Vol. 5(2)., 289-296

[16] Z. Khan, M.and Awais. 2014. Performance Evaluation of

OpenDaylight SDN controller. Department of Computer

Science, Namal College, Pakistan..

