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ABSTRACT 

The existing Extended Dijkstra's algorithm for Software 

Defined Networks was developed to handle shortcomings 

associated with the traditional shortest path routing used in 

SDN. Today's SDN controllers route allocation mechanism is 

mainly based on Dijkstra algorithm. However, both 

approaches do not consider bandwidth utilization and do not 

take knowledge of the topology into consideration. This may 

result in network congestion and sub-optimal performance of 

applications. This paper presents a modified Extended 

Dijkstra's algorithm for Software Defined Networks using 

REST APIs and introduces a congestion control component 

responsible for handling traffic overhead in an SDN topology. 

The Abilene network topology was used to evaluate the 

performance of both approaches using throughput and latency 

as performance metrics. 
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1. INTRODUCTION 
Software Defined Networking (SDN) is a newly emerging 

field in computer networks. The main goal of SDN is for a 

network to be open and programmable [2]. This brings many 

new network applications realized by programming the SDN 

controller. Typical examples include traffic engineering, 

security, Quality of Service (QoS), routing, load balancing 

and so on [6]. In recent years, various load balancing methods 

for Data Center Networks (DCNs) using the SDN paradigm 

have been introduced. A load balancing algorithm called 

LABERIO (LoAd-Balancing Routing wIth OpenFlow), to 

minimize latency and maximize the network throughput was 

proposed by Hui et al., (2013). A Plug-n-Serve system 

implementing a load balancing algorithm called LOBUS 

(Load-Balancing over Unstructured networks), using 

OpenFlow for unstructured networks was proposed by 

Handigol et al., (2013). LOBUS maintains the network 

topology and link status, and greedily chooses the client-

server pair that yields the lowest total response time for each 

newly arriving request. Dijkstra algorithm, the classical 

shortest path algorithm used by many routing protocols for 

finding the shortest path two points in the networks was 

extended by Jiang et al., (2014). With recent technology such 

as tunneling, overlay network and virtualized network, it is 

becoming increasingly difficult to find an appropriate path for 

the application, as a shortest path is not necessarily always the 

best path. The extended Dijkstra’s algorithm can be applied to 

derive a pair of shortest path in an SDN topology. However, 

most load balancing approaches in the context of SDN 

allocate resources based on statically configured routes and 

therefore may experience uneven load balancing. In this 

paper, the Extended Dijkstra’s algorithm for SDN is modified 

by utilizing REST API of the controller and introduces a 

congestion control component to handle traffic overhead in an 

SDN topology. The remainder of this paper is organized as 

follows. Section II, introduces SDN, OpenFlow Switches, 

REST APIs, OpenDaylight controller, Mininet and challenges 

with the extended Dijkstra’s Algorithm for SDN. Section III 

describes the proposed algorithm. Section IV shows the 

simulation results and observations. Finally, this paper is 

concluded with Section V. 

2. PRELIMINARIES  

2.1 Software Defined Networking 
SDN is a new paradigm that breaks the vertical integration 

between the network control plane and its data plane [2]. The 

core idea of SDN is to decouple network control from data 

transmission. OpenFlow switches implement data trans- 

mission function, so as to simplify the design of switches, and 

control functions are provided by controllers. The switches 

implement data transmission function according to flow tables 

allocated from controller [2]. Being the brain of SDN, 

controller acquires application information from upper layer 

through the unified northbound interface. Flow tables are 

generated in controller and allocated to OpenFlow switches 

through OpenFlow protocol.  

 

Figure 1. Software-Defined Network Architecture [2] 

By acquiring network topology information, SDN controller 

provides the global network view for OpenFlow switches and 

implements the flexible network configuration and network 

management. SDN has gained a lot of attention in recent 

years, because it addresses the lack of programmability in 

existing networking architectures and faster network 

innovation [10]. 
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2.2 OpenFlow Switches 
OpenFlow switches are like standard hardware switches with 

a flow table performing packet lookup and forwarding. The 

difference between OpenFlow switches and standard 

switches, lies in how the flows rules are inserted and updated 

inside the switch’s flow table [12]. A standard switch can 

have static rules inserted into the switch or can be a learning 

switch where the switch inserts rules into its flow table as it 

learns on which interface (switch port) a machine is. The 

OpenFlow switch on the other hand uses an external 

controller to add rules into its flow table.  

 
Figure 2. Components of an OpenFlow Switch [5] 

2.3 OpenDaylight 
OpenDaylight [14] is an open source project with a modular, 

pluggable, and flexible controller platform at its core. The 

core of the OpenDaylight platform is the Model-Driven 

Service Abstraction Layer (MD-SAL). The OpenDaylight 

controller can execute modules that describe how a new flow 

should be handled [16]. This provides us an interface to write 

python modules that dynamically add or delete routing rules 

into the switch and can use different policies for handling 

flows. Figure 3 presents the components of the OpenDaylight 

controller. 

Mininet 

Mininet [10] is an open source network emulator that supports 

the OpenFlow protocol for the SDN architecture. It is one of 

the most popular tools used by the SDN research community. 

It uses the virtualization approach to create a network of 

virtual hosts, switches, controllers, and links. Mininet hosts 

run standard Linux network software, and it supports the 

OpenFlow protocol for highly flexible custom routing and 

Software-Defined Networking. Just as an operating system 

(OS) virtualizes computing resources with process 

abstraction, Mininet uses process-based virtualization to 

emulate entities on a single OS kernel by running real code, 

including standard network applications, the real OS kernel 

and the network stack. Therefore, a design that works 

properly in Mininet can usually move directly to practical 

networks composed of real hardware devices.  

2.4 REST APIs in the context of SDN 
REST is an architecture style for designing networked 

applications. As REST architectural style has gained more 

popularity in implementing loosely-coupled systems, RESTful 

services are becoming the style of choice for northbound API 

and gaining increasingly importance in SDN architecture. 

Today’s controllers utilize the REST API technology, which 

is an effective mechanism to communicate with various 

components in an SDN network [9]. The REST API uses 

HTTP messages to send and receive information between the 

SDN controller and another application. When the SDN 

controller receives the HTTP GET request, it will reply with 

an HTTP GET response with the information that was 

requested. 

 

Figure 3: OpenDaylight Architecture  [16]

2.6 Extended Dijkstra’s Algorithm for SDN 
Given a weighted, directed graph G = (V, E) and a single 

source node s, the classical Dijkstra’s algorithm can return a 

shortest path from the source node s to every other node, 

where V is a set of nodes and E is the set of edges, each of 

which is associated with no weight. In the original Dijkstra 

algorithm nodes are associated with no weight. However, ED-

SDN returns the shortest path from the single source node to 

every other with the consideration of the edge weight and the 

node weight [6].  
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Figure 4: Extended Dijkstra’s Algorithm [6] 

3 IMPROVED EXTENDED DIJKSTRA 

ALGORITHM (mED-SDN) 
This sections provides an overview of the improved Extended 

Dijkstra’s algorithm for SDN.  

3.1. Description of Improved Extended 

Dijkstra’s Algorithm for SDN  
The main component of the Improved Extended Dijkstra’s 

Algorithm for SDN (mED-SDN) is REST. To make REST 

API calls to the controller, the application has to be 

authenticated against the controller. 

 
Figure 5: Script to Authenticate with the Controller 

Figure 5 shows a section of the python script that uses HTTP 

POST to fetch the URL through the API and retrieve some of 

the variables that are available, for example, information 

about all nodes (hosts) on the network. Once the API receives 

this, it will respond with an HTTP GET response message. As 

shown in Figure 6, the HTTP traffic from host with an IP 

address 10.0.0.1 to destination of 10.0.0.12 will be sent out of 

port 1 on the switch. The flow priority is set to 3200, however 

the default priority is 2990 on the controller. The script puts 

the flow priority higher than the default, this is to ensure that 

the traffic will use the path as set by this script rather than the 

default from the controller. The idle timeout for flow entries 

were set to sixty (60) seconds. This can be set to a higher 

value however. The idle timeout signifies how long the flow 

entry will stay in the switch when there is no traffic matching 

the flow entry. 

 
Figure 6: Updating an OpenFlow Switch Table 

3.2 Congestion Prevention Mechanism 
This sub-section explains the congestion prevention 

mechanism which is a component of the load balancer. The 

congestion control component of this algorithm uses the 

bandwidth utilization as its evaluation criterion for improving 

congestion in an SDN topology. When the bandwidth 

utilization exceeds the threshold value set by the algorithm, it 

reverts to the controller to search for a new path. In other to 

obtain the link bandwidth utilization, the congestion 

congestion component proactively measures the bandwidth in 

the topology and utilizes the REST API on the controller to 

collect cumulative transmitted bytes at corresponding 

OpenFlow switches port. 

 

Figure 7: Congestion Control Component 

4 EVALUATION  
4.1 Simulation Settings 
This research adopted the Abilene network topology and 

utilizes the Mininet network emulator to perform simulations. 

The Abilene network is a high-performance backbone 

network suggested by the Internet2 project. Figure 8 shows a 

historical Abilene (network) core topology emulated in the 

Mininet network emulator, connecting 11 regional sites or 

nodes across the United States. The Abilene network has 10 

Gbps connectivity between neighboring nodes and 100 Mbps 

connectivity between a host and a node. Based on the Abilene 

core topology, a Mininet topology was set up consisting of an 

OpenDaylight SDN controller and 11 switches as nodes, 

where each switch is linked to the controller logically and is 

attached with at least one host. The simulation parameter 

settings are shown in Table I.  

 

Figure 8: Setup of Abilene Topology in Mininet 
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Table 1: Simulation Settings

 

4.2 Throughput Test 
The Iperf network testing utility was used to study the 

throughput utilization on the Abilene network topology. As 

depicted in Figure 9 and Table 2, when the number of nodes 

are relatively light, all three approaches perform similarly. 

However, the TCP control mechanisms such as flow control, 

congestion control and error control mechanisms limit the 

throughput. The results suggest that the proposed approach 

shows a better performance in comparison to the other two. 

The average throughput recorded for the 12-node scenario for 

DA, ED-SDN, mED-SDN was 564, 589 and 610 Mbps 

respectively. 

Figure 9: Throughput Test 

Table 2. Throughput test results 

Nodes mED-SDN ED-SDN DA 

4 620 Mbps 615 Mbps 612 Mbps 

8 614 Mbps 610 Mbps 599 Mbps 

12 610 Mbps 589 Mbps 564 Mbps 

 

4.3 Throughput Test on Larger Abilene 

Network 
To test for the effectiveness of the algorithm and further study 

the impact of the number of nodes on the performance of DA, 

ED-SDN and mED-SDN under the Abilene network topology, 

the number of nodes were increased by four (6) more nodes. 

The Figure 10 illustrates the output from Iperf on the new 

network scenario. Throughput tests were carried out for the 

three approaches. An arbitrary node was selected as the server 

to carry out the throughput tests using Iperf. 

 
Figure 10: Throughput Test on Larger Abilene Topology 

Under the new traffic conditions, DA experiences the most 

throughput set back, with an average of 512 Mbps for the 18- 

node scenario, ED-SDN and mED-SDN however performed 

similarly with a throughput of 585.5 Mbps and 590.4 Mbps 

respectively. In a typical network however, it is very unlikely 

that all the switches are highly active at the same time, but 

protocols such as the CDP (control datagram packet) and 

OpenFlow messages exchanged between the switches and the 

controller transmitted across the links can reduce the network 

throughput. Furthermore, DA experienced significant 

throughput set back also due to the fact that it only considers 

distance as the single factor for determining the best path, as 

the number of nodes increase, the number of hops to reach the 

destination also increases, therefore a packet has to transverse 

through more network hops and subsequently resulting to 

drop in the transmission rate. 

4.4 Latency Test on Abilene Network 

Topology 
The bandwidth of an edge and the capacity of a node were set 

randomly to be within the range shown in Table I. The 

simulation results of the latency tests are shown in Figure 11. 

By the simulation results, we can notice that mED- SDN has 

less end-to-end latency than the original ED-SDN, DA 

experiences significant degradation of latency when the nodes 

increase, partly due to the increase in the number of hops a 

packet travels from the server node. The average latency 

experienced on the 12-node Abilene topology for DA, ED-

SDN and mED-SDN were recorded at 7.5, 6.8 and 5.4 

milliseconds respectively. 

Figure 11: Latency Test 

Table 3. Latency test results 

Nodes mED-SDN ED-SDN DA 

4 5.4 ms 6.7 ms 7.5 ms 

8 4.5 ms 5.1 ms 5.2 ms 

12 3.2 ms 4.4 ms 4.6 ms 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 12 – No. 8, November 2017 – www.ijais.org 
 

 

26 

4.5 Comparison with Round Robin 

Approach 
Further comparison tests were conducted with a common load 

balancing method which is the round robin approach for SDN. 

As seen in Figure 12., the round robin approach has a 

significant low throughput around 50% less than the proposed 

algorithm. Furthermore, the round robin approach may deflect 

a request to a farther server which would cause significant 

latency. Therefore, if the requests are deflected to the farther 

servers through which packets transverse switches and 

routers, the throughput would reduce therefore causing the 

latency to increase significantly. The proposed algorithm is 

superior with respect to network throughput. mED-SDN 

attained an average of 612Mbps under 12-node Abilene 

network topology while round robin was at 315Mbps.  

Figure 12: Comparison with Round Robin 

5 CONCLUSION 
This research is aimed at the development of an efficient load 

balancer in the context of SDN, by modifying the existing 

Extended Dijkstra’s algorithm for SDN using a northbound 

plug-in that performs REST requests to update flow tables in 

switches and a function that handles control congestion in the 

SDN topology. The mED-SDN is a python-based script, 

which is imported as a component into the controller. Using 

Iperf, throughput and latency tests were carried out on the 

Abilene network topology. To further test for the 

effectiveness of the mED-SDN, this research performed 

comparison tests with the Round Robin approach and the 

traditional Dijkstra’s algorithm used by many controllers and 

achieved better performance in terms of throughput and 

latency. 
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