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ABSTRACT
Privacy preserving data mining has two major directions: one is
the protection of private data, i.e., data hiding in the database
whereas another one is the protection of sensitive rule (Knowl-
edge) contained in data known as knowledge hiding in the
database. This research work focuses on protection of sensitive
association rule. Corporation individual & other may get mu-
tual benefit by sharing their data, but at the same time, they
would like to be sure that their sensitive data remains private
or not disclosed, i.e., hiding sensitive association rules. Ap-
proaches need to be given sensitive association rule in advance
to hide them, i.e., mining is repaired. However, for some appli-
cation pre-process of these sensitive association rules is com-
bined with hiding process when predictive items are given, i.e.,
hiding informative association rule set. In this work, we pro-
pose two algorithms ISLFASTPREDICTIVE, DSRFASTPRE-
DICTIVE to hide informative association rule with n-items. Ear-
lier work hided 2-item association rules. Algorithms proposed in
the paper execute faster than ISL & DSR algorithms prepared
earlier as well as a side effect have been reduced. ISLFASTPRE-
DICTIVE and DSRFASTPREDICTIVE algorithms work better
as database scans are reduced since transaction list of elements
is used in algorithms, i.e., a list of the transaction which supports
itemsets and selection of transactions are done on the basis of
presence of frequent itemsets.

Keywords
Informative Association Rules, Knowledge Hiding in Database,
Frequent Itemset, Privacy-Preserving Data Mining, Sensitive As-
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1. INTRODUCTION
Data Sharing can bring many benefits for business collaboration
as well as research. However, owners like to hide their sensitive
data/Information before sharing their database for mining.[13,
19, 34] reflects the requirement of preserving the privacy with
shared databases. Benefits of data sharing come from the busi-
ness world. For hiding sensitive data, various transformation
methods have been discussed in [1, 2, 3, 4, 5, 7, 23]. Hiding
sensitive knowledge, i.e., association rules were first discussed
in [8, 10]. Approaches for hiding sensitive association rules
falls into categories like data distortion [35, 24, 25, 29, 20, 36],
Data Blocking [31], Border-Based [32, 12], Data Reconstruc-
tion [14, 9, 40, 15] and cryptography approaches [22, 42].
Performance is a major concern with hiding association rules
[21, 26, 28, 27, 44]. [42] presents a novel approach to hide sensi-
tive rules with limited side effects. [33] throws light on the devel-

opment of techniques which are under the knowledge-hiding that
relates to the association rule-mining task. [11] extends the work
to spatial data. [41] describes the measures that can be used with
association rule hiding. [43] hides rules by transactions adding
or removing. [38] works on multiple tables.

2. INFORMATIVE ASSOCIATION RULE SETS
Association Rule Mining was introduced earlier in 1993. In as-
sociation rule mining with market basket data, a set of items is
defined as I= {I1, I2, I3,..., In}. The itemsets of size one from
these sets are called 1-itemsets, itemsets of size two are called
2-itemsets, and similarly, itemsets of size k is called k-itemsets.
In market basket data, the database contains transactions where
each transaction represents a set of items purchased in a par-
ticular transaction. An association rule is represented as A →
B where A and B are itemsets which is a subset of I having
support and confidence greater than user-specified support and
user-specified confidence. For example, Pen→Paper with sup-
port 80% and confidence 90% implies that Pen and Paper both
are present in 80% of total transactions and 90% is the case wher-
ever Pen is present, Paper is also present. So,

Support(A→ B) =
Support(A ∩B)

|D|
(1)

Confidence(A→ B) =
Support(A ∩B)

Support(A)
(2)

Support is used for removing an uninteresting rule as low support
rule occur just by chance and confidence provides the reliability
of an association rule. Consider Database D1 shown in Table 1
with user-defined support threshold 55% and user-defined confi-

Table 1. : Sample database D1

Transaction Id Items
1 U,V,W,X
2 U,V,W
3 U,V,W
4 U,V,W,X
5 W
6 V
7 U,V,X,Y,Z

dence threshold is 80%, eight association rules get generated as
shown in Table 2.
For hiding of sensitive association rules, first sensitive rules are
selected from a list of rules generated and then applied to asso-
ciation rule hiding algorithm whereas in informative rule sets all
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Table 2. : Association rules for sample databases D1

S No LHS RHS Support Confidence Lift
1 {W} → {U} 0.57 0.8 1.12
2 {U} → {W} 0.57 0.8 1.12
3 {W} → {V} 0.57 0.8 0.93
4 {U} → {V} 0.71 1 1.16
5 {V} → {U} 0.71 0.83 1.16
6 {U,W} → {V} 0.57 1 1.16
7 {V,W} → {U} 0.57 1 1.4
8 {U,V} → {W} 0.57 0.8 1.12

association rules are not generated. Here only those association
rules are hided which contains predicting items on left-hand side
of the rule. So while hiding the rules, they are mined from the
database containing predicting items on LHS. Let suppose pre-
dicting item is V then association rules having predicting item V
on the LHS are {V} → {U}, {V,W} → {U} , {U,V} → {W}.
These three rules need to be hided. So the problem of hiding sen-
sitive information association rule sets is defined as follows:
Given a transactional database ’D’ with minimum sup-
port Threshold ”MST” and minimum confidence threshold
”MCT”, sets of association rules and predicting item sets PI,
then all the sensitive association rules are identified as X→ Y
where X ⊆ PI, and non sensitive rules are Z → Y where Z  
PI, so sensitive rules need to be hided and non sensitive rules
does not be affected as much as possible.
In [39], two algorithms are proposed to hide information rule
sets but side effects can be reduced by selecting the candidate
transaction as the one having least number of frequent itemsets
belong to it as well as performance can be enhanced by using
Transaction ID List of items.
In this paper, two algorithms are presented which are the en-
hancement of work done in [39, 37] to improve the performance
as well as to reduce the side-effect.

3. PROPOSED ALGORITHMS
A sensitive association rule can be hidden by

—Reducing the support of rule by either decreasing the support
of LHS or decreasing the support of RHS

—Reducing the Confidence of Rule by either increasing the sup-
port of LHS or decreasing the support of the rule.

This work presents two algorithms, viz. ISLFASTPREDIC-
TIVE, DSRFASTPREDICTIVE. In ISLFASTPREDICTIVE
and DSRFASTPREDICTIVE algorithms, the TIDList of items
has been used which greatly improves the performance of the al-
gorithm. The logic behind the ISLFASTPREDICTIVE algorithm
is to hide sensitive association rules by reducing the support of
rule containing predicting item by increasing the support of LHS
of the rule. In DSRFASTPREDICTIVE algorithm, the logic is
to hide sensitive association by reducing the support of RHS of
rule till support of confidence of the rule falls below a threshold.
Algorithms select candidate transactions to be modified on the
basis of a number of frequent itemsets present in it in increasing
order. The algorithms are shown in algorithm 1 and algorithm 2.

4. EXAMPLES
This section presents two examples which step by step repre-
sents the action of algorithms as well as highlights the benefit of
the proposed approach. Examples shown below also examine the
output of the algorithms presented in [39].
Example 1:
Consider the database D1 and select the predicting item V and

input : Database, Set of Predicting items
output: Modified database to hide Informative association

rules

1 Find all frequent Itemsets (Fsets);
2 foreach Predicting item I ε Predictingitem do
3 foreach item Y ⊆ I do
4 if Y * Fsets then
5 Predictingitem = Predictingitem- {I};
6 Break;
7 end
8 end
9 end

10 foreach X ε Predictingitem do
11 Compute confidence of rule AR where Conf(AR) ≥

MinConf and AR is of form X→ Y i.e. Predicting item
is on L.H.S. ;

12 foreach rule AR having Conf(AR) ≥ MinConf do
13 LhsList = GenerateList(X) ;

// List of transactions containing
itemset x

14 RhsList = GenerateList(Y) ;
// List of transactions containing

itemset y
15 Rule = LhsList ∩ RhsList;

16 NoofModificationRequired =
|Rule| ∗ 100

MCT − |LhsList|
;

17 CandidateTransactionToBeModified = (T - RhsList)
∩ (T - LhsList);
// List of transactions which does not

support RHS and partially or no
support for LHS

18 if |CandidateTransactionToBeModified| <
NoofModificationRequired then

19 Print(”ISLFASTPREDICTIVE will not work
for hiding this rule”);

20 end
21 else
22 Sort(CandidateTransactionToBeModified,by =

presence no of frequent item sets);
23 for k ← 1 to NoofModificationRequired do
24 Pick a Transaction T from

CandidateTransactionToBeModified;
25 Pick a item i from X with least presence in

number of frequent item sets ;
// Pick item from left-hand side

of sensitive association rule
26 SetToOne(T,i);
27 end
28 end
29 end
30 end

Algorithm 1: ISLFASTPREDICTIVE Algorithm

also the maximum size of an itemset is taken as two just to com-
pare the result with the algorithms presented in [39]. DSR algo-
rithm [39] hides the sensitive association rule V → U success-
fully but hides five nonsensitive rules as shown in Table 3. DSR-
FASTPREDICTIVE algorithm proposed in the paper success-
fully hides the sensitive rule V→ U and also no ghost rule gen-
erated and no rule lost. ISL algorithm [39] and ISLFASTPRE-
DICTIVE algorithm successfully hide the sensitive rule without
any side-effects.
Example 2:
Consider the database D2 shown in Table 4 with MST=55% and
MCT=80%. Let the predicting item be ”B” and considering max-
imum 2-itemset then sensitive rule B → A needs to be hided.
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input : Database, Set of Predicting items
output: Modified database to hide Informative association

rules

1 Find all frequent Itemsets (Fsets);
2 foreach Predicting item I ε Predictingitem do
3 foreach item Y ⊆ I do
4 if Y * Fsets then
5 Predictingitem = Predictingitem- {I};
6 Break;
7 end
8 end
9 end

10 foreach X ε Predictingitem do
11 Compute confidence of rule AR where Conf(AR) ≥

MinConf and AR is of form X→ Y i.e. Predicting item
is on L.H.S. ;

12 foreach rule AR having Conf(AR) ≥ MinConf do
13 LhsList = GenerateList(X) ;

// List of transactions containing
itemset x

14 RhsList = GenerateList(Y) ;
// List of transactions containing

itemset y
15 Rule = LhsList ∩ RhsList;
16 NoofModificationRequired = Min(

|Rule| − TotalNumberofTransaction ∗MST

100
,

|Rule| − |LhsList| ∗MCT

100
) ;

17 CandidateTransactionToBeModified = RhsList ∩
LhsList;
// List of transactions which fully

support RHS and LHS
18 Sort(CandidateTransactionToBeModified,by =

presence no of frequent item sets);
19 for k ← 1 to NoofModificationRequired do
20 Pick a Transaction T from

CandidateTransactionToBeModified;
21 Pick a item i from Y with least presence in

number of frequent item sets ;
// Pick item from right-hand side of

sensitive association rule
22 SetToZero(T,i);
23 end
24 end
25 end

Algorithm 2: DSRFASTPREDICTIVE Algorithm

Table 3. : Rule lost after the application of DSR algorithm on D1

S No LHS RHS Support Confidence Lift
1 {W} → {U} 0.57 0.8 1.12
2 {U} → {W} 0.57 0.8 1.12
3 {V} → {U} 0.71 0.83 1.16
4 {U,W} → {V} 0.57 1 1.16
5 {V,W} → {U} 0.57 1 1.4
6 {U,B} → {W} 0.57 0.8 1.12

ISL algorithm [39] hides the sensitive association rule with one
lost rule, i.e., one nonsensitive rule gets hided whereas proposed
ISLFASTPREDICTIVE algorithm successfully hides sensitive
association rule without any side-effect. DSR [39] and DSR-
FASTPREDICTIVE algorithm both hides sensitive rule with five
lost rules.
So, it is evident from both examples that it is better sometimes to
select candidate transaction as the one which contains the least

Table 4. : Database D2

Transaction Id Items
1 ABCD
2 ABC
3 ABC
4 ABCD
5 C
6 B
7 BCDEF

number of frequent itemsets. Approach gets performance im-
proved by using Transaction ID List. In ISL and DSR algorithms
lot of database scans are required to execute the algorithm, but
in proposed approach, no database scans are needed in hiding
part of algorithm since while mining the association rules, trans-
actions list of frequent itemsets has been generated and will be
used in later part of the algorithm.

5. EXPERIMENTAL VALIDATION
We have performed performance evaluation experiments on a PC
with a core-i3 processor with 3 GB RAM running on Ubuntu-
16.04 Operating System and the language used for implemen-
tation is R Language [30] and package used for working in R
is ”arules” [16, 18, 17]. The datasets used in the evaluation tri-
als are generated using IBM synthetic data generator [6]. The
database size employed in the data set range from 10K to 100K
with average transaction length, ATL = 5, and a total number of
items is 50 and number of predicting item is 2. The minimum
support threshold picked is 4% & minimum confidence thresh-
old picked is 20%. To evaluate the performance of the algorithms
following effects are considered:

a) Time Effects.
b) Side Effects.

For Time Effects, we are considering the CPU time/ running time
to run ISLFASTPREDICTIVE, DSRFASTPREDICTIVE to hide
sensitive association rules (ARH ) selected from the set of Asso-
ciation Rules generated (AR) containing the predicting item on
LHS. For Side Effects, we measured Rule Hiding Failure, Rule
Falsely Generated (Ghost Rules) and Rules Falsely Hidden (Lost
Rules). The Rule Hiding Failure Side Effect counts the num-
ber of sensitive association rules; algorithm fails to hide. Rule
Falsely Generated (Ghost Rules) side effect counts the number
of rules that were not available with the original dataset, but af-
ter the modifications performed by the algorithm, the Rule ap-
pears. The Rules Falsely hidden (Lost Rules) side effect counts
the number of nonsensitive rules hided because of the data dis-
tortion process. ISLFASTPREDICTIVE algorithm is compared
with ISL [39] concerning running time of the algorithm and var-
ious side effects. DSR algorithm [39] is compared with DSR-
FASTPREDICTIVE concerning running time of the algorithm
and various side effects. All the graphs plotted to represent the
average of 10 iterations of experiments.
Fig. 1, 2, 3 and 4 accounts for the Hiding Failure, Lost Rule,
Ghost Rule and CPU Time of ISLFASTPREDICTIVE and ISL
against various database sizes ranging from 10K to 100K respec-
tively. Fig. 1 represents the number of rules algorithms ISL and
ISLFASTPREDICTIVE fail to hide. The graph is shown using
percentage because since we performed experiments with differ-
ent database size for ten iterations and every time two arbitrary
predicting items are selected for which informative rules to be
hided. So, the count of a number of a sensitive association rule is
different each time and graph represent the average of 10 itera-
tions. It is deceptive from the Fig. 1 that ISLFASTPREDICTIVE
algorithm perform better in comparison to ISL concerning hid-
ing failure side-effect. These algorithms sometimes fail to hide
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Fig. 1: Hiding failure (ISL & ISLFASTPREDICTIVE)
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Fig. 2: Lost Rules (ISL & ISLFASTPREDICTIVE)
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Fig. 3: Ghost rule (ISL & ISLFASTPREDICTIVE)
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Fig. 4: CPU time requirement (ISL & ISLFASTPREDICTIVE)

all sensitive association rules. Fig. 2 represents the percentage
of lost rules generated by taking an average of 10 iterations of
experiments. From Fig. 2, it is evident that lost rules count is re-
duced since transactions selected for modifications are the ones
which contain the least number of frequent itemsets, so lost rule
count is reduced. Fig. 3 represents the percentage of ghost rules
generated by taking an average of 10 iterations of experiments.
As of Fig. 3, it is clear that the number of ghost rules is reduced
by a small fraction, but no appreciable difference is identified.
In general, it can be said both algorithms almost perform simi-
larly for ghost rule side effect, results are better with hiding fail-
ure and lost rules count. Also, results with proposed approach
can be better when the maximum transactions to be modified are
of all the same length, and there are such transactions where a
number of frequent itemsets presence is very less. Fig. 4 shows
the comparison of running time with ISL and ISLFASTPRE-
DICTIVE algorithm. As it is very clear from the Fig. 4, that
ISLFASTPREDICTIVE algorithm takes less time as compared
to ISL. ISL scans database multiples times which increases the
time requirement of the algorithm, and it becomes too high as
the database size increases. ISLFASTPREDICTIVE algorithm
is based on the Transaction Id list of the itemsets which already
gets generated during the mining of association rules, so there
are no multiple scans of the database in ISLFASTPREDICTIVE
algorithm. Hence, the performance is far better with ISLFAST-
PREDICTIVE algorithm.
DSRFASTPREDICTIVE algorithm is compared with DSR [39]
concerning running time of the algorithm and various side ef-
fects. All the graphs plotted to represent the average of 10 itera-
tions of experiments. Fig. 5, 6, 7 and 8 accounts for the Hiding
Failure, Lost Rule, Ghost Rule and CPU Time of DSRFAST-
PREDICTIVE and DSR against various database sizes ranging
from 10K to 100K respectively. Hiding Failure is 0 with both
DSR and DSRFASTPREDICTIVE algorithm. Graphs suggest
that DSRFASTPREDICTIVE algorithm performs better with
both ghost rule and lost rule side-effect in comparison to DSR
and the best result is with lost rule and running time of the algo-
rithm.

6. SUMMARY OF COMPARISON BETWEEN
ISL, DSR, ISLFASTPREDICTIVE &
DSRFASTPREDICTIVE ALGORITHMS

(1) ISL algorithm start hiding process before checking the fea-
sibility of approaches so many times if algorithm fails to
hide certain rules, a lot of computation gets wasted, and the
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Fig. 5: Hiding failure (DSR & DSRFASTPREDICTIVE)
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Fig. 6: Lost rules (DSR & DSRFASTPREDICTIVE)
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database is modified and being rolled back as a side-effect.
In proposed approach algorithm first checks whether the ap-
proach can hide a particular rule, i.e., the feasibility of the
approach is verified first which helps in reducing the com-
putation and rollback of modifications.

(2) ISL and DSR algorithms are designed in such a way that
it can be used for hiding informative rules where length is
two, but proposed approach takes any number of length of
informative association rules.

(3) ISL and DSR algorithms give priority to transactions on the
basis of length of transactions whereas the ISLFASTPRE-
DICTIVE and DSRFASTPREDICTIVE algorithm give pri-
ority to transactions on the basis of a number of frequent
itemsets present in it which helps in reducing the side ef-
fect. ISL and DSR algorithm running time is high because of
multiple scans of database whereas ISLFASTPREDICTIVE
and DSRFASTPREDICTIVE perform better since transac-
tions list of frequent itemsets is utilized in hiding process.

7. CONCLUSION
This paper proposes two new algorithms based on transaction list
of frequent itemsets prepared while mining of association rules
containing predictive items. The experimental result shows the
fruitfulness of the approach. Experiments suggest that proposed
approach enhances ISL and DSR algorithm regarding running
time but at the same time side effects have been reduced. After
experimenting with a wide range of standard datasets as well as
real datasets we have come to the conclusion that approaches
performed much better when there are lots of transaction of the
same length since previous approaches select transactions to be
modified on the basis of length whereas proposed approaches
modify on the basis of the count of frequent itemsets. This can
be further optimized to generate much better results.
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