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ABSTRACT

Hypertension remains a major global public health burden,
contributing to cardiovascular disease and premature deaths.
Despite advances in medical care, delayed diagnosis
particularly in developing countries like Nigeria continues to
undermine effective prevention and intervention strategies.
Traditional approaches rely on periodic measurements, which
often fail to capture early risk indicators/patient-specific
factors. With the growing availability of large-scale clinical
data, machine learning provides an opportunity to enhance
predictive modeling for early detection. This study proposed a
machine learning framework for predicting hypertension using
both local (426 patient records from Federal Medical Centre,
Yenagoa) and global datasets (174,982 instances from Kaggle).
The dataset was preprocessed using python libraries. Four ML
algorithms: Logistic Regression, Random Forest, K-Nearest
Neighbor, and XGBoost were trained separately on different
feature dimensions with evaluation metrics including accuracy,
sensitivity, specificity, Fl-score, and AUC-ROC. Results
indicated that RF achieved ~99.95% accuracy on the global
dataset, while XGB on local data attained ~98.84% with
superior sensitivity in distinguishing high-risk categories. A
prototype web app built from the best-performing model was
successfully tested, showing strong clinical potential. The
study highlights that using local and global datasets improved
generalization, while ensemble models enhanced predictive
reliability for early detection to improve patient safety.
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1. INTRODUCTION

High blood pressure commonly known as hypertension is one
of the non-communicable diseases characterized by an elevated
blood pressure levels in the arteries. With every heartbeat, the
heart pushes blood through the vessels, ensuring it reaches all
parts of the body in a continuous cycle. The force of blood
pressing against artery walls while it is pumped by the heart is
what causes blood pressure. The illness, which is primarily
defined by consistently elevated blood vessel pressure, makes
it more difficult for the heart to pump blood. The vessels

transport blood from the heart to every region of the body. With
each heartbeat, the heart pumps blood into the vessels.

High Blood Pressure (hypertension), is a chronic medical
condition in which the force of the blood against the artery
walls is consistently too high. According to the World Health
Organization [1], hypertension is diagnosed when an
individual's blood pressure readings are consistently at or above
140/90 mmHg. However, some clinical guidelines, such as
those from the American College of Cardiology (ACC) and the
American Heart Association (AHA), define hypertension as a
blood pressure reading of 130/80 mmHg or higher [2].

Hypertension is particularly challenging because it is an
asymptomatic, silent killer and often remains hidden until
caught during monitoring or evidenced in a hypertension-
associated disease such as heart failure or stroke. When
hypertension is not discovered or diagnosed, it leads to the
increased risk of developing brain, kidney and cardiovascular
diseases significantly. It also accounts for about half of all heart
disease and stroke-related deaths worldwide [3].

According to WHO [1], it is a leading global health concern,
affecting approximately 1.4 billion people worldwide. Major
risk factors include a high-salt diet, obesity, physical inactivity,
excessive alcohol use, and genetic predisposition. Effective
management involves lifestyle modifications and, when
necessary, antihypertensive medication.

Despite advancements in healthcare, Montagna et al. [4] stated
that, current screening protocols exhibit high sensitivity but
suffer from poor specificity, leading to unnecessary further
assessments and increased healthcare costs. The World
Hypertension League reports that in 2018, only about 59.5% of
individuals with hypertension were aware of their condition,
underscoring gaps in early detection and diagnosis.

In recent years, advances in data collection technologies,
wearable health devices, and electronic health records (EHRs)
have led to the accumulation of vast local and global health
datasets. These datasets contain valuable insights that, when
analyzed effectively, can support early detection and prediction
of hypertension. Machine Learning (ML), a subfield of
Artificial Intelligence (Al), has proven to be a powerful tool for
modeling complex health data and uncovering hidden patterns
that are not easily identifiable through traditional statistical
methods.

72



International Journal of Applied Information Systems (1JAIS) — ISSN : 2249-0868
Foundation of Computer Science FCS, Delaware, USA

Volume 13— No. 1, November 2025 — www.ijais.org

Although several ML models have been developed for
predicting high blood pressure, many are limited in scope,
trained on small or non-diverse datasets, and not adequately
validated across different populations. A critical need exists to
create scalable and accurate ML models trained and tested on
both local and global datasets to enhance prediction
performance and ensure clinical relevance across different
demographic and geographic contexts.

This research explores how ML techniques can be applied to
predict hypertension by leveraging both local and global
datasets. The goal is to improve patient safety by facilitating
early risk detection, supporting proactive clinical decision-
making, and promoting personalized preventive care.

2. RELATED WORKS

Several existing studies have explored the application of
machine learning (ML) techniques in predicting hypertension
and related cardiovascular conditions. The review focuses on
methodologies, datasets, feature selection techniques, model
performance, and their clinical implications. By examining
these studies conducted across diverse populations and
healthcare contexts, the review identified progress made,
exposed prevailing limitations, and underscored gaps that this
present research sought to address.

To begin with, Haruna [5] investigated hypertension
prevalence in Jigawa State, Nigeria, by comparing the
performance of five machine learning models: Random Forest
(RF), Classification and Regression Trees (CART), Regression
Tree (RT), Support Vector Machine (SVM), and Artificial
Neural Networks (ANN). The ANN model outperformed the
others with an AUC of 0.8694, revealing the importance of
parental history of hypertension and diabetes as key predictors.
This study underscores the significance of ML in localized
public health applications, especially in identifying high-risk
groups for targeted interventions.

Expanding on this, Mondal and Hazra [6] focused on early
hypertension  detection  using  datasets  comprising
physiological, demographic, and lifestyle data. They employed
SVM, Decision Tree, and Logistic Regression, with genetic
algorithms for feature selection. Their findings showed the
Decision Tree model achieving the highest accuracy at 92.3%,
highlighting its potential as a reliable diagnostic tool in clinical
practice.

Similarly, Montagna et al. [4] leveraged World Hypertension
Day datasets collected during health campaigns to train models
on demographic, lifestyle, and physiological features. Using
resampling techniques like SMOTE and undersampling, they
evaluated supervised algorithms including RF, SVM,
XGBoost, and KNN. Random Forest achieved the best balance
of sensitivity (0.818) and specificity (0.629), outperforming
traditional screening protocols, and emphasizing the role of
data quality and class balance in enhancing predictive
performance.

In another significant contribution, Obafemi [ 7] utilized Kaggle
datasets and ensemble techniques including CatBoost,
LightGBM, and Random Forest. These models demonstrated
high performance, particularly CatBoost and LightGBM,
which, after parameter tuning, achieved accuracy levels above
91% and RMSE scores as low as 0.87773. The study reinforces
the strength of boosting algorithms in hypertension prediction.

Likewise, Effati et al. [8] employed ML models such as RF,
XGBoost, SVM, and Logistic Regression using occupational
health datasets. Feature selection using the k-best approach
identified key predictors. The ensemble models, especially
Random Forest, achieved accuracy rates between 97% and
99%, supporting the robustness of ensemble learning in high-
risk population screening.

From a regional context, Kurniawan et al. [9] examined
hypertension prediction among Indonesian adults using
decision trees, random forest, gradient boosting, and logistic
regression. Logistic regression outperformed others, yielding
an AUC of 0.829, accuracy of 89.6%, and F1-score of 0.877.
Their findings confirm the strong correlation between
predictors and hypertension, validating logistic regression’s
efficacy for clinical applications.

In a broader cardiovascular context, Garg et al. [10] applied
supervised learning models—Random Forest and K-Nearest
Neighbor (KNN)—for heart disease prediction using features
like age and cholesterol. KNN achieved a higher accuracy
(86.89%) compared to Random Forest (81.97%), suggesting
that KNN may be more adaptable for certain cardiovascular
predictions.

Focusing on sub-Saharan Africa, Islam et al. [11] utilized data
from 612 Ethiopian respondents and implemented the Boruta
feature selection method with models including LR, ANN, RF,
and XGBoost. The XGBoost model achieved the best results,
with 88.81% accuracy and an AUC of 0.894, demonstrating
ML’s viability in low-resource settings for risk stratification.

Furthermore, Jeong et al. [12] developed predictive models
using Korea's National Health Insurance data, analyzing
hypertension incidence based on health check frequency. Their
XGBoost model achieved an accuracy of 0.828 and an F1-score
of 0.800, proving more effective than traditional logistic
regression, and emphasizing the role of routine health
screenings in disease forecasting.

Turning to model comparisons, Sandhiya et al. [13] evaluated
ML models like LightGBM, CatBoost, XGBoost, and RF using
features like cholesterol, heart history, and alcohol
consumption. LightGBM emerged best with 92% accuracy,
indicating that gradient boosting models are well-suited for
complex clinical datasets due to their interpretability and
performance.

In their attempt to build hybrid ML models, Das et al. [14] used
Random Forest, Gaussian Naive Bayes, and SVC. Their
Random Forest model yielded an 88% accuracy, with findings
confirming that ensemble techniques offer robustness against
noisy data and outperform single classifiers. For personalized
hypertension risk prediction, Du et al. [15] developed a web-
based system using SHAP explanations and ML models.
LightGBM led with 70.57% accuracy. SHAP visualizations
provided insights into risk factors, demonstrating the potential
for personalized interventions through user-facing tools.

Cross-national validation was explored by Hwang et al. [16]
who used ensemble models on South Korean and Japanese
cohorts. Their Adaptive Boosting and logistic regression
ensemble achieved an AUC of 0.901, with strong
generalizability confirmed on the external dataset. This
validates the feasibility of applying ML across borders using
well-selected features like BMI and fasting glucose. In a
maternal health application, Wanriko et al. [17] addressed
pregnancy-induced hypertension in Kenya. With SMOTE
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applied for class balancing, the Random Forest model achieved performance, thus aiding clinical decisions for managing
89.62% accuracy, proving effective in managing maternal serious outcomes.

hypertension risks through early prediction.

3. MATERIALS AND METHODS
The architecture of the proposed HBP prediction system is
structured as a modular pipeline comprising five major stages

Chang et al. [18] tackled hypertension complications by
adopting a two-step feature elimination and classification
process using models like SVM, C4.5, and XGBoost. XGBoost o
achieved 94.36% accuracy and an AUC of 0.927, proving its as shown in Figure 1.
superior ability to reduce feature space while maintaining high

Data Collection
Local and global datasets containing
patient demographics, lifestyle
attributes, clinical measurements,
and medical history

Data Preprocessing
Handling missing values,
normalization, encoding; applying
S-MOTE to address class imbalance

Feature Selection/Extraction
Dimensionality reduction techniques:
PCA, SVD, LDA

Split Dataset

Training/Testing

A 4

Model Development
Logistic Regression, Random Forest, SVM,
XGBoost

Model Evaluation
Accuracy, Precision,
Recall, F1-Score, AUC-ROC, Confusion
Matrix

Select/Save Best Model

[ Deploy Model ]

Figure 1: Architecture of Proposed Model

3.1 Data Collection including those used in this study, require data to generate
The success of any machine learning implementation relies accurate predictions. Consequently, data collection represents
heavily on the availability of a dataset [19]. Algorithms the critical first step in the machine learning process. The first
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objective this study achieved was to collect a dataset of risks
and indicators of hypertension. This study utilized two different
datasets, a global dataset collected from a publicly available
dataset repository, www.kaggle.com while the second dataset
was collected locally containing vital signs data of patients
from the clinical historical records of patients across outpatient
clinics in Federal Medical Centre, Yenagoa, Bayelsa State after
obtaining due ethical approval from the hospital’s ethics
committee with reference
FMCY/REC/ECC/2025/AUGUST/898.

3.2 Data Preprocessing

Prior to model training, the datasets required thorough pre-
processing, as input samples contained diverse features and
often included missing or inconsistent values. Since many
missing entries were recorded measurements from staff, data-
cleaning techniques were employed to correct errors and
inconsistencies, including duplicates, outliers, and absent
values. This cleaning process utilized various methods such as
imputation, removal, and data transformation to ensure the
dataset’s integrity and suitability for machine learning.

When initiating the creation of a machine learning model, data
preprocessing serves as the foundational step. Real-world data
often presents challenges such as incompleteness,
inconsistency, inaccuracy (including errors or outliers), and
missing attribute values or trends. This is where preprocessing
plays a vital role. Leveraging Exploratory Data Analysis
(EDA) and Python libraries, it cleans, formats, and organizes
raw data, ensuring it is properly structured and ready for
machine learning applications [20].

The target variable for the analysis was constructed using the
blood pressure classification system recommended by the
ACC/AHA, which considers both systolic and diastolic
measurements. Other features derived from the datasets which
were vital indicators for predicting hypertension included BMI
and Pulse Pressure.

3.3 Feature Selection/Extraction

In the development of a robust machine learning model for high
blood pressure prediction, feature extraction plays a vital role
in transforming raw input data into a more meaningful and
compact form that enhances model performance. This process
is essential for capturing the most informative characteristics of
the data while minimizing redundancy and noise. Given the
nature of clinical datasets, which often contain numerous
correlated or less-informative variables, the application of
dimensionality reduction techniques becomes especially
critical.

The objective of feature extraction is to simplify the dataset by
generating a new set of features from the original ones. This
reduced set is designed to preserve most of the essential
information from the initial data. Through the combination and
transformation of the original attributes, a more compact
representation of key features is achieved, effectively capturing
the underlying patterns and information [21].

Dimensionality reduction is a subset of feature extraction that
involves reducing the number of input variables or features
while preserving as much relevant information as possible.
This not only improves computational efficiency but also helps
mitigate the risks of overfitting and multicollinearity in the
predictive modeling process. In this research, three
dimensionality reduction techniques were employed based on
their theoretical strengths and effectiveness observed in related

works: Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD).

These feature extraction techniques will be applied after the
data is preprocessed and normalized; ensuring that the reduced
feature sets retained the most discriminative and clinically
relevant information. The extracted features were then used as
input into various machine learning algorithms including
Logistic Regression, Random Forest, Support Vector Machine,
and XGBoost.

By reducing the feature space effectively, the models were able
to learn more generalizable patterns, improve prediction
accuracy, and operate more efficiently, especially on the
combined local and global datasets. The use of dimensionality
reduction thus aligns with the research objective of identifying
and isolating key predictive indicators of high blood pressure
for enhanced patient safety.

3.4 Model Building

Model building is a critical phase in the machine learning
pipeline, involving the selection, training, and tuning of
appropriate algorithms to develop a predictive system capable
of accurately identifying high blood pressure cases based on the
features extracted from both local and global datasets. The goal
is to construct models that generalize well on unseen data while
maximizing key performance metrics such as accuracy,
sensitivity, specificity etc.

In this study, four widely-used supervised machine learning
algorithms were adopted: Logistic Regression (LR), Random
Forest (RF), K-Nearest Neighbors and Extreme Gradient
Boosting (XGBoost). These algorithms were selected based on
their proven performance in medical prediction tasks and their
unique strengths in handling classification problems.

The training process involved splitting the datasets into training
and testing subsets using stratified sampling to maintain class
distribution. Hyperparameter tuning was performed ensuring
that each model was optimized for best performance. The
reduced and transformed feature sets obtained through PCA
and truncSVD were used as input for model training, enabling
efficient learning from the most informative features.

3.4.1 Logistic Regression (LR)

Logistic regression is a supervised machine learning algorithm
in data science. It is a type of classification algorithm that
predicts a discrete or categorical outcome. Logistic regression,
like linear regression, is a type of linear model that examines
the relationship between predictor variables (independent
variables) and an output variable which is the response, target
or dependent variable [16].

Logistic regression according to Jurafsky & Martin [22], can be
used to classify an observation into one of two classes (like
‘positive sentiment’ and ‘negative sentiment’), or into one of
many classes.

According to Banoula [23], the term "logistic regression"
comes from the idea of the logistic function it utilizes. The
sigmoid function is another name for the logistic function. This
logistic function has a value between 0 and 1. The simplicity of
logistic regression is one of its primary benefits. In addition to
making predictions, logistic regression in machine learning
assists in determining which variables are most crucial to these
forecasts. Because of this, logistic regression is a useful
technique for resolving categorization issues and offering
insightful information about the data. It is often used in
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machine-learning projects due to its interpretability and
simplicity of use. Binary logistic regression, multinomial
logistic regression, and ordinal logistic regression are the three
primary forms of logistic regression [23].

3.4.2 Random Forest (RF)

Random Forest is an ensemble learning technique widely used
for classification, regression, and related tasks. The algorithm
constructs multiple decision trees using random subsets of both
the training data and features, and combines their outputs to
generate a final prediction. Compared to individual decision
trees, Random Forest offers enhanced accuracy and greater
resilience to overfitting. It is also capable of managing high-
dimensional datasets and handling noisy or incomplete data.
However, these benefits come at the cost of increased
computational complexity and longer processing times relative
to simpler models [24].

3.4.3 Extreme Gradient Boosting (XGBoost)
XGBoost (eXtreme Gradient Boosting) is a distributed, open-
source machine learning library that uses gradient boosted
decision trees, a supervised learning boosting algorithm that
makes use of gradient descent. It is known for its speed,
efficiency and ability to scale well with large datasets [25].

XGBoost, or eXtreme Gradient Boosting, according to Tyagi
[26], has become a popular choice for supervised learning
tasks, including both regression and -classification. The
algorithm constructs a predictive model by aggregating the
outputs of multiple base models, commonly decision trees, in
an iterative fashion. Each successive model, or weak learner, is
trained to correct the errors of the preceding ensemble
members. During training, XGBoost employs gradient descent
optimization to minimize a specified loss function, enhancing
overall model accuracy and performance.

Tyagi [26] added that key features of XGBoost Algorithm
include its ability to handle complex relationships in data,
regularization techniques to prevent overfitting and
incorporation of parallel processing for efficient computation.

3.4.4 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN), introduced by Cover and Hart in
1967, is a machine learning algorithm employed for both
classification and regression tasks. It generates predictions
based on the similarity between observations, considering the
k closest neighbors to a given data point. In classification tasks,
the observation is assigned to the class most frequently
represented among its nearest neighbors [27].

KNN as described by [19], is a simple instance-based technique
that classifies unlabeled data points by referencing the nearest
instances in the training set. Unlike decision tree algorithms,
which build explicit tree structures, instance-based methods
like KNN rely directly on the training data for prediction. Some
researchers suggest that all learning algorithms are inherently
instance-based, as they utilize training data to develop models.
In KNN, classification involves calculating the distance
between an unlabeled point and its neighbors using a defined
distance metric, then assigning the point to the class most
frequently represented among these neighbors. For example, in
website classification, KNN measures the distance between the
features of an unlabeled website and those of labeled instances,
assigning the site to the most common class among its nearest
neighbors. Known as a “lazy learning” algorithm, KNN is
suitable for both regression and classification tasks.

3.5 Model Evaluation

Model evaluation is a critical process for determining the
performance and generalizability of machine learning models.
Evaluation metrics, as described by Srivastava [28], are
quantitative measures that assess a model’s effectiveness. They
offer insights into model performance and facilitate
comparisons between different models or algorithms, guiding
the selection of the most appropriate approach for a given task.

Srivastava further explains that when assessing a machine
learning model, it is important to examine its prediction
accuracy, ability to generalize, and overall performance. The
selection of evaluation metrics should be guided by the
particular problem area, data characteristics, and intended
goals.

The research addressed a multi-classification problem and
hence different classification metrics were applied to determine
models’ performance. In the context of high blood pressure
prediction, it is critical to use a comprehensive set of evaluation
metrics to determine how well the model distinguishes between
the different class labels, especially given the class imbalance
often present in medical datasets.

Some of the most frequently used evaluation metrics for
classification tasks that were used in this research include
accuracy, precision, recall, confusion matrix, AUC-ROC and
F1-score. It is considered good practice to evaluate a model
with several different metrics, as this approach offers a more
complete understanding of how well the model fits the specific
problem it aims to address.

3.5.1 Confusion Matrix

For machine learning classification problems where the output
can be two or more classes, a confusion matrix is a performance
measurement that is very helpful for measuring precision and
recall, specificity, accuracy, and most importantly, AUC-ROC
curves. A confusion matrix is a N X N matrix, where N is the
number of predicted classes. For the problem at hand, we have
N=2, so we get a 2 X 2 matrix Srivastava [28].

In a confusion matrix, the rows typically stand for the actual
classes of the data points, while the columns correspond to the
predicted classes, or vice versa. It can be used for both binary
and multi classification problems. Table 1 shows the
components and following are the terms that describes the
confusion matrix

Important Terms in a Confusion Matrix:

1. TP: The benign URLs are correctly identified as
benign.

2. FP: The benign URLs are incorrectly classified as
malicious.

3. TN: The malicious URLs are accurately recognized
as malicious.

4. FN: The malicious URLs are mistakenly identified
as benign.

The confusion matrix provides a foundation for calculating
various metrics to assess the classification model’s
performance, with the choice of metrics depending on the
specific requirements of the application domain.
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Table 1: Confusion matrix

Predicted Value
Positive Negative
positive TP FN

True positive False negative

negative FP TN
False positive True negative

Actual
Value

3.5.2 Accuracy
Most common evaluation metric that is used is accuracy. It
measures how many observations both positive and negative,
were correctly classified. The classification accuracy is the
ratio of the number of correct predictions to the total number of
input samples [19].

No.of correct predictions

Total No.of predictions made 1)
x 100

Accuracy =

But we can write this in terms of true positive, false positive
etc. like this:

B TP +TN
" TP+ FP+TN+FN

@)

Acc

3.5.3 Precision

Precision (pr) evaluates a model's capacity to accurately
classify positive instances. It calculates the number of the
instances predicted as positive are actually positive Schlosser
et al. [29]. In other words, it tells us how precise or confident
the model is when labeling an instance as positive. High
precision means fewer false positives, indicating the model is
good at correctly identifying true positives and is computed as:

TP

- 3
TP + FP @

pr

3.5.4 Recall

Recall is the percentage of correctly predicted instances among
all actual positive classes. High recall means the model
successfully identified most of the true positives, even if it
includes some false positives Swaminathan et al. [30] and it can
be expressed using:

TP

=t 4
"TTPYFN @

3.5.5 AUC-ROC

The Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) is a widely used metric for evaluating
classification models across different threshold settings. The
ROC curve is a probability plot that illustrates the trade-off
between the true positive rate (TPR) on the y-axis and the false
positive rate (FPR) on the x-axis. The AUC quantifies the
model’s ability to distinguish between classes, with higher
values indicating better performance. In a medical context, a
higher AUC reflects a model’s greater capacity to correctly
differentiate between patients with a disease and those without
[31].

TPR

FPR
Figure 2: AUC - ROC Curve [31]

4. RESULTS AND DISCUSSION

4.1 Experimentation

The experimentation process to build this predictive model was
conducted separately on both the Global hypertension dataset
and the Local hypertension dataset following a systematic ML
pipeline. In the first step, data preprocessing was carried out
using EDA and missing values were handled. In order to ensure
data remained uniform across the datasets, StandardScaler was
used to standardize numerical features while categorical
variables were encoded using One-Hot Encoding. Additionally,
new features BMI and Pulse Pressure were derived from the
clinical readings of the local dataset and were incorporated
before the target variable to enhance predictive power. The
target labels were directly assigned or transformed according to
the four WHO blood pressure categories. Less informative
attributes such as educational level, country, and employment
status were excluded from the global datasets to avoid noise in
the models.

After preprocessing, the dataset was split into training and
testing sets using the 80:20 ratios with stratification to preserve
the class distribution across the four hypertension categories.
To handle class imbalance, the SMOTE technique was applied
to the training set, generating synthetic minority class
examples. Best results were obtained from experimenting
separately on the original feature dimension, PCA and
TruncSVD feature dimensions to Logistic Regression (LR),
Random Forest (RF), Extreme Gradient Boosting (XGBoost)
and KNN machine learning algorithms. Logistic Regression
was used as a baseline linear classifier, KNN as a distance-
based learning method, while Random Forest and XGBoost
represented ensemble learning methods capable of capturing
complex, nonlinear interactions. Each model was tuned using
RandomizedSearchCV, where hyperparameter search spaces
were defined for maximum depth, number of estimators,
learning rates, and regularization strengths. To optimize
computational efficiency, the randomized search was limited to
20 iterations with 3-fold cross-validation. Model evaluation
was performed on the held-out test set using multiple metrics:
Accuracy, Precision, Recall, Fl-score, and Area Under the
ROC Curve (AUC). Confusion matrices were plotted for each
model to visualize classification performance across the four
WHO categories of hypertension. Additionally, ROC-AUC
curves were averaged per model to evaluate multi-class
separability. To compare performance across models, bar
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charts were generated for all metrics, and the best model was
identified during tuning. The experimentation was
implemented using Python (scikit-learn, XGBoost,
imbalanced-learn, and Seaborn/Matplotlib libraries) within a
Jupyter Notebook environment.

4.2 Results of ML Algorithms on Global

Datasets
Three different feature sets (Original, PCA, SVD) were
experimented on the global dataset and Table 2 summarizes the
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predictive performance of the four machine learning models
which include Logistic Regression, Random Forest, XGBoost,
and KNN. The results show that Random Forest and XGBoost
on original features performed excellently having Accuracy,
Precision, Recall, F1-Score > 99.90%, ROC-AUC = 100%. In
contrast, Logistic Regression and KNN demonstrated more
moderate performance. Dimensionality reduction with PCA
and SVD generally led to a decrease in performance of the
models, indicating that the original feature set contained the
most discriminative information.

Table 2: Model Performance Summary on Global Datasets

Model Feature Set Accuracy Precision Recall F1-Score ROC-AUC
Logistic Regression Original Features 0.79944 0.863487 0.79944 0.823491 0.940466
Random Forest Original Features 0.999486 0.999488 0.999486 0.999484 1.000000
XGBoost Original Features 0.9994 0.999403 0.9994 0.999398 1.000000
KNN Original Features 0.797726 0.865027 0.797726 0.822796 0.888273
Logistic Regression PCA Features 0.79944 0.863487 0.79944 0.823491 0.940466
Random Forest PCA Features 0.953196 0.957974 0.953196 0.954638 0.995531
XGBoost PCA Features 0.972283 0.974456 0.972283 0.972909 0.998439
KNN PCA Features 0.797726 0.865027 0.797726 0.822796 0.888273
Logistic Regression SVD Features 0.757408 0.83659 0.757408 0.788792 0.912082
Random Forest SVD Features 0.754665 0.828731 0.754665 0.783635 0.905154
XGBoost SVD Features 0.73472 0.831637 0.73472 0.772529 0.905691
KNN SVD Features 0.695802 0.805998 0.695802 0.739271 0.793254

4.2.1 Random Forest Confusion Matrix on

Original Feature Dimension

The confusion matrix for the Random Forest model on the
original features shows an extremely high number of correct
predictions along the diagonal. The number of
misclassifications is nearly zero, visually confirming the
model's almost 100% accuracy in classifying all four blood
pressure categories on the global test set. This is visualized in
the confusion matrix in Figure 3.

4.2.2 ROC-AUC on Random Forest RF

The Receiver Operating Characteristic (ROC) curves for the
Random Forest model, using a One-vs-Rest approach for multi-
class classification, showed in Figure 4 that the curves for each
class (Normal, Elevated, Stage 1, Stage 2) are tightly aligned to
the top-left corner. This indicates excellent class-wise
separability and is consistent with the perfect macro-average
ROC-AUC score of 1.000 reported in the performance
summary.
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4.3 Results of ML Algorithm on Local
Dataset

The same four models were trained and evaluated on the local
dataset (FMC Yenagoa dataset) which is smaller in size than
the global. As shown in Table 3 the Random Forest and
XGBoost again outperformed other models, achieving identical
and very high accuracy and Fl-scores of 0.988. Logistic
Regression performed well (0.930 accuracy), while KNN
showed significantly lower performance of 0.756 accuracy.
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exceptionally high (0.99959 for RF, 1.000 for XGBoost),
demonstrating strong predictive capability even with a limited
sample size.

The bar chart in Figure 5 provides a visual comparison of the
models' performance metrics on the local dataset. It clearly
illustrates the superiority of Random Forest and XGBoost
across all evaluated metrics (Accuracy, Precision, Recall, F1-
Score, and AUC-ROC) compared to Logistic Regression and
KNN.

The ROC-AUC scores for the top models remained

Table 3: Classification Summary of models on Local Datasets

Model Accuracy Precision Recall F1-Score AUC-ROC
RandomForest 0.988372 0.988735 0.988372 0.988355 0.99959
XGBoost 0.988372 0.988735 0.988372 0.988355 1.00000
LogisticRegression 0.930233 0.933852 0.930233 0.925404 0.98735
KNN 0.755814 0.805772 0.755814 0.756253 0.93057
1.2 Models
B RandomForest W XGBoost MMM LogisticRegression mEl KNN
1.01
0.84
Y]
60.6
0.
0]
0.44
0.2;
0.0

Accuracy Precision

Recall F1-Score
Performance Metrics

AUC-ROC

Figure 5: Chart Showing Model Performance on Local Dataset

4.3.1 XGBoost Confusion matrix results

The confusion matrix for the XGBoost model on the local
dataset as visually demonstrated in Figure 6 showing a strong
diagonal, indicating most test instances were correctly
classified. A small number of misclassifications occur between
adjacent categories (e.g., Normal being predicted as Elevated),

which is a common and clinically understandable error given
the continuity of blood pressure values.

4.3.2 ROC-AUC Model Comparison

The ROC curves for all four models on the local dataset
visually confirm the results from the performance table in
Figure 7. The ROC curves for Random Forest (RF) and

80



RN

XGBoost (XGB) are closest to the top-left corner, indicating
their superior performance. Logistic Regression (LR) follows,

Elevated -
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while KNN's curve is significantly lower, reflecting its lesser
ability to distinguish between the classes.
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4.4 Comparing Improved vs Existing
Models

The performance scores in this research are compared to five
existing models in relevant and related studies. This evaluation
aims to validate the effectiveness of the improved model in
classifying and predicting different hypertension categories.
State-of-the-art models were selected for comparison based on
their relevance to this study and the improved model’s ability
to replicate or utilize their approaches, along with parameter
optimizations such as cross-validation and the use of evaluation
metrics. The improved prediction model demonstrated the
highest performance among the five existing models. Table 4
presents a comparative summary of the performance of the

improved model against the selected state-of-the-art models for
hypertension prediction.

The chart in Figure 8 and Table 4 provides a compelling follow-
up to the comparative analysis by highlighting the strong
performance of the proposed prediction model. This reinforces
the notion that the model's superior accuracy stems from its
ability to overcome limitations found in previous models.
Notably, the proposed approach places greater emphasis on
meticulous feature selection, thorough data cleansing and
preprocessing techniques which are critical steps that earlier
studies may sometimes have neglected. This tailored approach
ultimately contributes to the observed high accuracy and
effectiveness relative to existing models.

Table 4: Comparative summary of Improved vs Existing models

Author Accuracy Results (%)
Mondal and Hazra (2024) 923
Montagna et al. (2022) 74.7
Obafemi (2022) 91
Kurniawan et al. (2023) 89.6
Du et al. (2023) 70.57
Proposed Model 99.95

Mondal and Hazra (2024)

Montagna et al. (2022)

Obafemi (2022)

Authors

Kurniawan et al. (2023)

Du et al. (2023) 70.57%

Proposed Model

99.95%

0 10 20

40 50 60 70 80 90 100

Accuracy (%)

Figure 8: Visualization of the Improved Model and the Existing Model(s)
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The results demonstrate that ensemble learning methods
(Random Forest and XGBoost) are highly effective for
hypertension prediction across both global and local contexts.
Their ability to capture complex, non-linear relationships in the
data makes them suitable for medical classification tasks where
multiple interacting risk factors are present.

The near-perfect performance on the global dataset may be
attributed to its large size and diversity, which allows models
to learn generalized patterns effectively. However, the risk of
overfitting must be considered, especially given the perfect
scores. Cross-validation and hyperparameter tuning helped
mitigate this, but further validation on external datasets is
recommended.

On the local dataset, the high performance of Random Forest
and XGBoost despite the small sample size highlights their

x @ Hypertension Predictor x

ocalhost/hypertension-prediction-app/index.html

robustness in data-scarce environments. This is particularly
valuable in clinical settings in regions like Nigeria, where data
collection is challenging but model accuracy is critical. The
lower performance of KNN on both datasets underscores its
limitations with high-dimensional data and class imbalance,
making it less suitable for this type of predictive task without
significant preprocessing.

4.5 Model Deployment

After training, evaluating, and tuning the models, the best-
performing model was exported for real-world use. The trained
model was serialized and saved using standard Python joblib
libraries, allowing it to be reloaded without retraining. This
ensured that the optimized parameters and learned patterns
from the training phase were preserved for future predictions.

Hypertension Predictor

Predict blood pressure according to ACC/AHA 2017 guidelines
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Figure 9: Prediction results generated based on the input data
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To demonstrate its practical application, a simple web
application prototype was developed, “Hypertension
Predictor”. The application provides an interactive interface
where users can input health-related attributes such as age,
gender, systolic and diastolic blood pressure, body mass index
(BMI), family history, and other clinical variables as shown in
Figure 9 Once submitted, the system processes the input
through the saved model, predicts and outputs the
corresponding hypertension category (Normal, Elevated, Stage
1 Hypertension, or Stage 2 Hypertension) as Figure 9 shows.
Also included on the prediction output page are clinical
recommendations for the various hypertension stages.

5. CONCLUSION

This application of both local and global datasets for predicting
hypertension categories demonstrates the high potential and
generalization. The integration of feature engineering, class
imbalance  handling, dimensionality = reduction, and
hyperparameter turned significantly improved predictive
performance.

The local dataset provided granular categorization of blood
pressure levels, allowing for more clinically relevant
predictions. In contrast, the global dataset, though initially
binary, was successfully adapted into a multi-class setting to
enhance comparability. The performance gap between simple
models (Logistic Regression) and ensemble methods (Random
Forest, XGBoost) highlighted the importance of selecting
advanced algorithms for healthcare prediction tasks.

Overall, the study established that predictive modeling is a
viable and effective approach to early hypertension detection.
The models developed can be integrated into clinical decision
support systems or patient-facing applications to enhance
patient safety, encourage preventive measures, and reduce the
long-term burden of cardiovascular complications. Further
research should emphasize the collection of larger and more
diverse local datasets to improve generalizability, as local
datasets reflect region-specific health patterns that may differ
from global data.

Also, future research should integrate non-traditional data
sources such as wearable devices (such as smartwatches,
fitness trackers) with variables that may just offer additional
predictive power and help capture real-time health dynamics
beyond standard clinical data.
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