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ABSTRACT 
Hypertension remains a major global public health burden, 

contributing to cardiovascular disease and premature deaths. 

Despite advances in medical care, delayed diagnosis 

particularly in developing countries like Nigeria continues to 

undermine effective prevention and intervention strategies. 

Traditional approaches rely on periodic measurements, which 

often fail to capture early risk indicators/patient-specific 

factors. With the growing availability of large-scale clinical 

data, machine learning provides an opportunity to enhance 

predictive modeling for early detection. This study proposed a 

machine learning framework for predicting hypertension using 

both local (426 patient records from Federal Medical Centre, 

Yenagoa) and global datasets (174,982 instances from Kaggle). 

The dataset was preprocessed using python libraries. Four ML 

algorithms: Logistic Regression, Random Forest, K-Nearest 

Neighbor, and XGBoost were trained separately on different 

feature dimensions with evaluation metrics including accuracy, 

sensitivity, specificity, F1-score, and AUC-ROC. Results 

indicated that RF achieved ~99.95% accuracy on the global 

dataset, while XGB on local data attained ~98.84% with 

superior sensitivity in distinguishing high-risk categories. A 

prototype web app built from the best-performing model was 

successfully tested, showing strong clinical potential. The 

study highlights that using local and global datasets improved 

generalization, while ensemble models enhanced predictive 

reliability for early detection to improve patient safety. 
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1. INTRODUCTION 
High blood pressure commonly known as hypertension is one 

of the non-communicable diseases characterized by an elevated 

blood pressure levels in the arteries. With every heartbeat, the 

heart pushes blood through the vessels, ensuring it reaches all 

parts of the body in a continuous cycle. The force of blood 

pressing against artery walls while it is pumped by the heart is 

what causes blood pressure. The illness, which is primarily 

defined by consistently elevated blood vessel pressure, makes 

it more difficult for the heart to pump blood. The vessels 

transport blood from the heart to every region of the body. With 

each heartbeat, the heart pumps blood into the vessels. 

High Blood Pressure (hypertension), is a chronic medical 

condition in which the force of the blood against the artery 

walls is consistently too high. According to the World Health 

Organization [1], hypertension is diagnosed when an 

individual's blood pressure readings are consistently at or above 

140/90 mmHg. However, some clinical guidelines, such as 

those from the American College of Cardiology (ACC) and the 

American Heart Association (AHA), define hypertension as a 

blood pressure reading of 130/80 mmHg or higher [2]. 

Hypertension is particularly challenging because it is an 

asymptomatic, silent killer and often remains hidden until 

caught during monitoring or evidenced in a hypertension-

associated disease such as heart failure or stroke.  When 

hypertension is not discovered or diagnosed, it leads to the 

increased risk of developing brain, kidney and cardiovascular 

diseases significantly. It also accounts for about half of all heart 

disease and stroke-related deaths worldwide [3]. 

According to WHO [1], it is a leading global health concern, 

affecting approximately 1.4 billion people worldwide. Major 

risk factors include a high-salt diet, obesity, physical inactivity, 

excessive alcohol use, and genetic predisposition. Effective 

management involves lifestyle modifications and, when 

necessary, antihypertensive medication. 

Despite advancements in healthcare, Montagna et al. [4] stated 

that, current screening protocols exhibit high sensitivity but 

suffer from poor specificity, leading to unnecessary further 

assessments and increased healthcare costs. The World 

Hypertension League reports that in 2018, only about 59.5% of 

individuals with hypertension were aware of their condition, 

underscoring gaps in early detection and diagnosis. 

In recent years, advances in data collection technologies, 

wearable health devices, and electronic health records (EHRs) 

have led to the accumulation of vast local and global health 

datasets. These datasets contain valuable insights that, when 

analyzed effectively, can support early detection and prediction 

of hypertension. Machine Learning (ML), a subfield of 

Artificial Intelligence (AI), has proven to be a powerful tool for 

modeling complex health data and uncovering hidden patterns 

that are not easily identifiable through traditional statistical 

methods. 
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Although several ML models have been developed for 

predicting high blood pressure, many are limited in scope, 

trained on small or non-diverse datasets, and not adequately 

validated across different populations. A critical need exists to 

create scalable and accurate ML models trained and tested on 

both local and global datasets to enhance prediction 

performance and ensure clinical relevance across different 

demographic and geographic contexts. 

This research explores how ML techniques can be applied to 

predict hypertension by leveraging both local and global 

datasets. The goal is to improve patient safety by facilitating 

early risk detection, supporting proactive clinical decision-

making, and promoting personalized preventive care. 

2. RELATED WORKS 
Several existing studies have explored the application of 

machine learning (ML) techniques in predicting hypertension 

and related cardiovascular conditions. The review focuses on 

methodologies, datasets, feature selection techniques, model 

performance, and their clinical implications. By examining 

these studies conducted across diverse populations and 

healthcare contexts, the review identified progress made, 

exposed prevailing limitations, and underscored gaps that this 

present research sought to address. 

To begin with, Haruna [5] investigated hypertension 

prevalence in Jigawa State, Nigeria, by comparing the 

performance of five machine learning models: Random Forest 

(RF), Classification and Regression Trees (CART), Regression 

Tree (RT), Support Vector Machine (SVM), and Artificial 

Neural Networks (ANN). The ANN model outperformed the 

others with an AUC of 0.8694, revealing the importance of 

parental history of hypertension and diabetes as key predictors. 

This study underscores the significance of ML in localized 

public health applications, especially in identifying high-risk 

groups for targeted interventions. 

Expanding on this, Mondal and Hazra [6] focused on early 

hypertension detection using datasets comprising 

physiological, demographic, and lifestyle data. They employed 

SVM, Decision Tree, and Logistic Regression, with genetic 

algorithms for feature selection. Their findings showed the 

Decision Tree model achieving the highest accuracy at 92.3%, 

highlighting its potential as a reliable diagnostic tool in clinical 

practice. 

Similarly, Montagna et al. [4] leveraged World Hypertension 

Day datasets collected during health campaigns to train models 

on demographic, lifestyle, and physiological features. Using 

resampling techniques like SMOTE and undersampling, they 

evaluated supervised algorithms including RF, SVM, 

XGBoost, and KNN. Random Forest achieved the best balance 

of sensitivity (0.818) and specificity (0.629), outperforming 

traditional screening protocols, and emphasizing the role of 

data quality and class balance in enhancing predictive 

performance. 

In another significant contribution, Obafemi [7] utilized Kaggle 

datasets and ensemble techniques including CatBoost, 

LightGBM, and Random Forest. These models demonstrated 

high performance, particularly CatBoost and LightGBM, 

which, after parameter tuning, achieved accuracy levels above 

91% and RMSE scores as low as 0.87773. The study reinforces 

the strength of boosting algorithms in hypertension prediction. 

Likewise, Effati et al. [8] employed ML models such as RF, 

XGBoost, SVM, and Logistic Regression using occupational 

health datasets. Feature selection using the k-best approach 

identified key predictors. The ensemble models, especially 

Random Forest, achieved accuracy rates between 97% and 

99%, supporting the robustness of ensemble learning in high-

risk population screening. 

From a regional context, Kurniawan et al. [9] examined 

hypertension prediction among Indonesian adults using 

decision trees, random forest, gradient boosting, and logistic 

regression. Logistic regression outperformed others, yielding 

an AUC of 0.829, accuracy of 89.6%, and F1-score of 0.877. 

Their findings confirm the strong correlation between 

predictors and hypertension, validating logistic regression’s 

efficacy for clinical applications. 

In a broader cardiovascular context, Garg et al. [10] applied 

supervised learning models—Random Forest and K-Nearest 

Neighbor (KNN)—for heart disease prediction using features 

like age and cholesterol. KNN achieved a higher accuracy 

(86.89%) compared to Random Forest (81.97%), suggesting 

that KNN may be more adaptable for certain cardiovascular 

predictions. 

Focusing on sub-Saharan Africa, Islam et al. [11] utilized data 

from 612 Ethiopian respondents and implemented the Boruta 

feature selection method with models including LR, ANN, RF, 

and XGBoost. The XGBoost model achieved the best results, 

with 88.81% accuracy and an AUC of 0.894, demonstrating 

ML’s viability in low-resource settings for risk stratification. 

Furthermore, Jeong et al. [12] developed predictive models 

using Korea's National Health Insurance data, analyzing 

hypertension incidence based on health check frequency. Their 

XGBoost model achieved an accuracy of 0.828 and an F1-score 

of 0.800, proving more effective than traditional logistic 

regression, and emphasizing the role of routine health 

screenings in disease forecasting. 

Turning to model comparisons, Sandhiya et al. [13] evaluated 

ML models like LightGBM, CatBoost, XGBoost, and RF using 

features like cholesterol, heart history, and alcohol 

consumption. LightGBM emerged best with 92% accuracy, 

indicating that gradient boosting models are well-suited for 

complex clinical datasets due to their interpretability and 

performance. 

In their attempt to build hybrid ML models, Das et al. [14] used 

Random Forest, Gaussian Naive Bayes, and SVC. Their 

Random Forest model yielded an 88% accuracy, with findings 

confirming that ensemble techniques offer robustness against 

noisy data and outperform single classifiers. For personalized 

hypertension risk prediction, Du et al. [15] developed a web-

based system using SHAP explanations and ML models. 

LightGBM led with 70.57% accuracy. SHAP visualizations 

provided insights into risk factors, demonstrating the potential 

for personalized interventions through user-facing tools. 

Cross-national validation was explored by Hwang et al. [16] 

who used ensemble models on South Korean and Japanese 

cohorts. Their Adaptive Boosting and logistic regression 

ensemble achieved an AUC of 0.901, with strong 

generalizability confirmed on the external dataset. This 

validates the feasibility of applying ML across borders using 

well-selected features like BMI and fasting glucose. In a 

maternal health application, Wanriko et al. [17] addressed 

pregnancy-induced hypertension in Kenya. With SMOTE 
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applied for class balancing, the Random Forest model achieved 

89.62% accuracy, proving effective in managing maternal 

hypertension risks through early prediction. 

Chang et al. [18] tackled hypertension complications by 

adopting a two-step feature elimination and classification 

process using models like SVM, C4.5, and XGBoost. XGBoost 

achieved 94.36% accuracy and an AUC of 0.927, proving its 

superior ability to reduce feature space while maintaining high 

performance, thus aiding clinical decisions for managing 

serious outcomes. 

3. MATERIALS AND METHODS 
The architecture of the proposed HBP prediction system is 

structured as a modular pipeline comprising five major stages 

as shown in Figure 1. 

 

Figure 1: Architecture of Proposed Model 

3.1 Data Collection 
The success of any machine learning implementation relies 

heavily on the availability of a dataset [19]. Algorithms, 

including those used in this study, require data to generate 

accurate predictions. Consequently, data collection represents 

the critical first step in the machine learning process. The first 
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objective this study achieved was to collect a dataset of risks 

and indicators of hypertension. This study utilized two different 

datasets, a global dataset collected from a publicly available 

dataset repository, www.kaggle.com while the second dataset 

was collected locally containing vital signs data of patients 

from the clinical historical records of patients across outpatient 

clinics in Federal Medical Centre, Yenagoa, Bayelsa State after 

obtaining due ethical approval from the hospital’s ethics 

committee with reference 

FMCY/REC/ECC/2025/AUGUST/898.  

3.2 Data Preprocessing 
Prior to model training, the datasets required thorough pre-

processing, as input samples contained diverse features and 

often included missing or inconsistent values. Since many 

missing entries were recorded measurements from staff, data-

cleaning techniques were employed to correct errors and 

inconsistencies, including duplicates, outliers, and absent 

values. This cleaning process utilized various methods such as 

imputation, removal, and data transformation to ensure the 

dataset’s integrity and suitability for machine learning. 

When initiating the creation of a machine learning model, data 

preprocessing serves as the foundational step. Real-world data 

often presents challenges such as incompleteness, 

inconsistency, inaccuracy (including errors or outliers), and 

missing attribute values or trends. This is where preprocessing 

plays a vital role. Leveraging Exploratory Data Analysis 

(EDA) and Python libraries, it cleans, formats, and organizes 

raw data, ensuring it is properly structured and ready for 

machine learning applications [20]. 

The target variable for the analysis was constructed using the 

blood pressure classification system recommended by the 

ACC/AHA, which considers both systolic and diastolic 

measurements. Other features derived from the datasets which 

were vital indicators for predicting hypertension included BMI 

and Pulse Pressure.  

3.3 Feature Selection/Extraction 
In the development of a robust machine learning model for high 

blood pressure prediction, feature extraction plays a vital role 

in transforming raw input data into a more meaningful and 

compact form that enhances model performance. This process 

is essential for capturing the most informative characteristics of 

the data while minimizing redundancy and noise. Given the 

nature of clinical datasets, which often contain numerous 

correlated or less-informative variables, the application of 

dimensionality reduction techniques becomes especially 

critical. 

The objective of feature extraction is to simplify the dataset by 

generating a new set of features from the original ones. This 

reduced set is designed to preserve most of the essential 

information from the initial data. Through the combination and 

transformation of the original attributes, a more compact 

representation of key features is achieved, effectively capturing 

the underlying patterns and information [21]. 

Dimensionality reduction is a subset of feature extraction that 

involves reducing the number of input variables or features 

while preserving as much relevant information as possible. 

This not only improves computational efficiency but also helps 

mitigate the risks of overfitting and multicollinearity in the 

predictive modeling process. In this research, three 

dimensionality reduction techniques were employed based on 

their theoretical strengths and effectiveness observed in related 

works: Principal Component Analysis (PCA) and Singular 

Value Decomposition (SVD). 

These feature extraction techniques will be applied after the 

data is preprocessed and normalized; ensuring that the reduced 

feature sets retained the most discriminative and clinically 

relevant information. The extracted features were then used as 

input into various machine learning algorithms including 

Logistic Regression, Random Forest, Support Vector Machine, 

and XGBoost. 

By reducing the feature space effectively, the models were able 

to learn more generalizable patterns, improve prediction 

accuracy, and operate more efficiently, especially on the 

combined local and global datasets. The use of dimensionality 

reduction thus aligns with the research objective of identifying 

and isolating key predictive indicators of high blood pressure 

for enhanced patient safety.  

3.4 Model Building 
Model building is a critical phase in the machine learning 

pipeline, involving the selection, training, and tuning of 

appropriate algorithms to develop a predictive system capable 

of accurately identifying high blood pressure cases based on the 

features extracted from both local and global datasets. The goal 

is to construct models that generalize well on unseen data while 

maximizing key performance metrics such as accuracy, 

sensitivity, specificity etc. 

In this study, four widely-used supervised machine learning 

algorithms were adopted: Logistic Regression (LR), Random 

Forest (RF), K-Nearest Neighbors and Extreme Gradient 

Boosting (XGBoost). These algorithms were selected based on 

their proven performance in medical prediction tasks and their 

unique strengths in handling classification problems. 

The training process involved splitting the datasets into training 

and testing subsets using stratified sampling to maintain class 

distribution. Hyperparameter tuning was performed ensuring 

that each model was optimized for best performance. The 

reduced and transformed feature sets obtained through PCA 

and truncSVD were used as input for model training, enabling 

efficient learning from the most informative features. 

3.4.1 Logistic Regression (LR) 
Logistic regression is a supervised machine learning algorithm 

in data science. It is a type of classification algorithm that 

predicts a discrete or categorical outcome. Logistic regression, 

like linear regression, is a type of linear model that examines 

the relationship between predictor variables (independent 

variables) and an output variable which is the response, target 

or dependent variable [16]. 

Logistic regression according to Jurafsky & Martin [22], can be 

used to classify an observation into one of two classes (like 

‘positive sentiment’ and ‘negative sentiment’), or into one of 

many classes. 

According to Banoula [23], the term "logistic regression" 

comes from the idea of the logistic function it utilizes. The 

sigmoid function is another name for the logistic function. This 

logistic function has a value between 0 and 1. The simplicity of 

logistic regression is one of its primary benefits. In addition to 

making predictions, logistic regression in machine learning 

assists in determining which variables are most crucial to these 

forecasts. Because of this, logistic regression is a useful 

technique for resolving categorization issues and offering 

insightful information about the data. It is often used in 
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machine-learning projects due to its interpretability and 

simplicity of use. Binary logistic regression, multinomial 

logistic regression, and ordinal logistic regression are the three 

primary forms of logistic regression [23]. 

3.4.2 Random Forest (RF) 
Random Forest is an ensemble learning technique widely used 

for classification, regression, and related tasks. The algorithm 

constructs multiple decision trees using random subsets of both 

the training data and features, and combines their outputs to 

generate a final prediction. Compared to individual decision 

trees, Random Forest offers enhanced accuracy and greater 

resilience to overfitting. It is also capable of managing high-

dimensional datasets and handling noisy or incomplete data. 

However, these benefits come at the cost of increased 

computational complexity and longer processing times relative 

to simpler models [24]. 

3.4.3 Extreme Gradient Boosting (XGBoost) 
XGBoost (eXtreme Gradient Boosting) is a distributed, open-

source machine learning library that uses gradient boosted 

decision trees, a supervised learning boosting algorithm that 

makes use of gradient descent. It is known for its speed, 

efficiency and ability to scale well with large datasets [25]. 

XGBoost, or eXtreme Gradient Boosting, according to Tyagi 

[26], has become a popular choice for supervised learning 

tasks, including both regression and classification. The 

algorithm constructs a predictive model by aggregating the 

outputs of multiple base models, commonly decision trees, in 

an iterative fashion. Each successive model, or weak learner, is 

trained to correct the errors of the preceding ensemble 

members. During training, XGBoost employs gradient descent 

optimization to minimize a specified loss function, enhancing 

overall model accuracy and performance. 

Tyagi [26] added that key features of XGBoost Algorithm 

include its ability to handle complex relationships in data, 

regularization techniques to prevent overfitting and 

incorporation of parallel processing for efficient computation. 

3.4.4 K-Nearest Neighbors (KNN) 
K-Nearest Neighbors (KNN), introduced by Cover and Hart in 

1967, is a machine learning algorithm employed for both 

classification and regression tasks. It generates predictions 

based on the similarity between observations, considering the 

k closest neighbors to a given data point. In classification tasks, 

the observation is assigned to the class most frequently 

represented among its nearest neighbors [27]. 

KNN as described by [19], is a simple instance-based technique 

that classifies unlabeled data points by referencing the nearest 

instances in the training set. Unlike decision tree algorithms, 

which build explicit tree structures, instance-based methods 

like KNN rely directly on the training data for prediction. Some 

researchers suggest that all learning algorithms are inherently 

instance-based, as they utilize training data to develop models. 

In KNN, classification involves calculating the distance 

between an unlabeled point and its neighbors using a defined 

distance metric, then assigning the point to the class most 

frequently represented among these neighbors. For example, in 

website classification, KNN measures the distance between the 

features of an unlabeled website and those of labeled instances, 

assigning the site to the most common class among its nearest 

neighbors. Known as a “lazy learning” algorithm, KNN is 

suitable for both regression and classification tasks. 

3.5 Model Evaluation 
Model evaluation is a critical process for determining the 

performance and generalizability of machine learning models. 

Evaluation metrics, as described by Srivastava [28], are 

quantitative measures that assess a model’s effectiveness. They 

offer insights into model performance and facilitate 

comparisons between different models or algorithms, guiding 

the selection of the most appropriate approach for a given task. 

Srivastava further explains that when assessing a machine 

learning model, it is important to examine its prediction 

accuracy, ability to generalize, and overall performance. The 

selection of evaluation metrics should be guided by the 

particular problem area, data characteristics, and intended 

goals.  

The research addressed a multi-classification problem and 

hence different classification metrics were applied to determine 

models’ performance. In the context of high blood pressure 

prediction, it is critical to use a comprehensive set of evaluation 

metrics to determine how well the model distinguishes between 

the different class labels, especially given the class imbalance 

often present in medical datasets. 

Some of the most frequently used evaluation metrics for 

classification tasks that were used in this research include 

accuracy, precision, recall, confusion matrix, AUC-ROC and 

F1-score. It is considered good practice to evaluate a model 

with several different metrics, as this approach offers a more 

complete understanding of how well the model fits the specific 

problem it aims to address. 

3.5.1 Confusion Matrix 
For machine learning classification problems where the output 

can be two or more classes, a confusion matrix is a performance 

measurement that is very helpful for measuring precision and 

recall, specificity, accuracy, and most importantly, AUC-ROC 

curves. A confusion matrix is a N X N matrix, where N is the 

number of predicted classes. For the problem at hand, we have 

N=2, so we get a 2 X 2 matrix Srivastava [28]. 

In a confusion matrix, the rows typically stand for the actual 

classes of the data points, while the columns correspond to the 

predicted classes, or vice versa. It can be used for both binary 

and multi classification problems. Table 1 shows the 

components and following are the terms that describes the 

confusion matrix 

Important Terms in a Confusion Matrix: 

1. TP: The benign URLs are correctly identified as 

benign.  

2. FP: The benign URLs are incorrectly classified as 

malicious. 

3. TN: The malicious URLs are accurately recognized 

as malicious.  

4. FN: The malicious URLs are mistakenly identified 

as benign. 

The confusion matrix provides a foundation for calculating 

various metrics to assess the classification model’s 

performance, with the choice of metrics depending on the 

specific requirements of the application domain. 
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Table 1: Confusion matrix 

 Predicted Value 

Positive Negative 

A
ct

u
a

l 

V
a

lu
e 

positive TP 

True positive 

FN 

False negative 

negative FP 

False positive 

TN 

True negative 

 

3.5.2 Accuracy 
Most common evaluation metric that is used is accuracy. It 

measures how many observations both positive and negative, 

were correctly classified. The classification accuracy is the 

ratio of the number of correct predictions to the total number of 

input samples [19].  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
× 100 

(1) 

But we can write this in terms of true positive, false positive 

etc. like this: 

𝑨𝒄𝒄 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2) 

3.5.3 Precision 
Precision (pr) evaluates a model's capacity to accurately 

classify positive instances. It calculates the number of the 

instances predicted as positive are actually positive Schlosser 

et al. [29]. In other words, it tells us how precise or confident 

the model is when labeling an instance as positive. High 

precision means fewer false positives, indicating the model is 

good at correctly identifying true positives and is computed as: 

𝑝𝑟 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

3.5.4 Recall 
Recall is the percentage of correctly predicted instances among 

all actual positive classes. High recall means the model 

successfully identified most of the true positives, even if it 

includes some false positives Swaminathan et al. [30] and it can 

be expressed using: 

𝑟 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

3.5.5 AUC-ROC 
The Area Under the Receiver Operating Characteristic Curve 

(AUC–ROC) is a widely used metric for evaluating 

classification models across different threshold settings. The 

ROC curve is a probability plot that illustrates the trade-off 

between the true positive rate (TPR) on the y-axis and the false 

positive rate (FPR) on the x-axis. The AUC quantifies the 

model’s ability to distinguish between classes, with higher 

values indicating better performance. In a medical context, a 

higher AUC reflects a model’s greater capacity to correctly 

differentiate between patients with a disease and those without 

[31]. 

 
Figure 2: AUC - ROC Curve [31] 

4. RESULTS AND DISCUSSION 

4.1 Experimentation 
The experimentation process to build this predictive model was 

conducted separately on both the Global hypertension dataset 

and the Local hypertension dataset following a systematic ML 

pipeline. In the first step, data preprocessing was carried out 

using EDA and missing values were handled. In order to ensure 

data remained uniform across the datasets, StandardScaler was 

used to standardize numerical features while categorical 

variables were encoded using One-Hot Encoding. Additionally, 

new features BMI and Pulse Pressure were derived from the 

clinical readings of the local dataset and were incorporated 

before the target variable to enhance predictive power. The 

target labels were directly assigned or transformed according to 

the four WHO blood pressure categories. Less informative 

attributes such as educational level, country, and employment 

status were excluded from the global datasets to avoid noise in 

the models.  

After preprocessing, the dataset was split into training and 

testing sets using the 80:20 ratios with stratification to preserve 

the class distribution across the four hypertension categories. 

To handle class imbalance, the SMOTE technique was applied 

to the training set, generating synthetic minority class 

examples. Best results were obtained from experimenting 

separately on the original feature dimension, PCA and 

TruncSVD feature dimensions to Logistic Regression (LR), 

Random Forest (RF), Extreme Gradient Boosting (XGBoost) 

and KNN machine learning algorithms. Logistic Regression 

was used as a baseline linear classifier, KNN as a distance-

based learning method, while Random Forest and XGBoost 

represented ensemble learning methods capable of capturing 

complex, nonlinear interactions. Each model was tuned using 

RandomizedSearchCV, where hyperparameter search spaces 

were defined for maximum depth, number of estimators, 

learning rates, and regularization strengths. To optimize 

computational efficiency, the randomized search was limited to 

20 iterations with 3-fold cross-validation. Model evaluation 

was performed on the held-out test set using multiple metrics: 

Accuracy, Precision, Recall, F1-score, and Area Under the 

ROC Curve (AUC). Confusion matrices were plotted for each 

model to visualize classification performance across the four 

WHO categories of hypertension. Additionally, ROC-AUC 

curves were averaged per model to evaluate multi-class 

separability. To compare performance across models, bar 
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charts were generated for all metrics, and the best model was 

identified during tuning. The experimentation was 

implemented using Python (scikit-learn, XGBoost, 

imbalanced-learn, and Seaborn/Matplotlib libraries) within a 

Jupyter Notebook environment. 

4.2 Results of ML Algorithms on Global 

Datasets 
Three different feature sets (Original, PCA, SVD) were 

experimented on the global dataset and Table 2 summarizes the 

predictive performance of the four machine learning models 

which include Logistic Regression, Random Forest, XGBoost, 

and KNN. The results show that Random Forest and XGBoost 

on original features performed excellently having Accuracy, 

Precision, Recall, F1-Score > 99.90%, ROC-AUC = 100%. In 

contrast, Logistic Regression and KNN demonstrated more 

moderate performance. Dimensionality reduction with PCA 

and SVD generally led to a decrease in performance of the 

models, indicating that the original feature set contained the 

most discriminative information. 

 

Table 2: Model Performance Summary on Global Datasets 

Model Feature Set Accuracy Precision Recall F1-Score ROC-AUC 

Logistic Regression Original Features 0.79944 0.863487 0.79944 0.823491 0.940466 

Random Forest Original Features 0.999486 0.999488 0.999486 0.999484 1.000000 

XGBoost Original Features 0.9994 0.999403 0.9994 0.999398 1.000000 

KNN Original Features 0.797726 0.865027 0.797726 0.822796 0.888273 

Logistic Regression PCA Features 0.79944 0.863487 0.79944 0.823491 0.940466 

Random Forest PCA Features 0.953196 0.957974 0.953196 0.954638 0.995531 

XGBoost PCA Features 0.972283 0.974456 0.972283 0.972909 0.998439 

KNN PCA Features 0.797726 0.865027 0.797726 0.822796 0.888273 

Logistic Regression SVD Features 0.757408 0.83659 0.757408 0.788792 0.912082 

Random Forest SVD Features 0.754665 0.828731 0.754665 0.783635 0.905154 

XGBoost SVD Features 0.73472 0.831637 0.73472 0.772529 0.905691 

KNN SVD Features 0.695802 0.805998 0.695802 0.739271 0.793254 

4.2.1 Random Forest Confusion Matrix on 

Original Feature Dimension 
The confusion matrix for the Random Forest model on the 

original features shows an extremely high number of correct 

predictions along the diagonal. The number of 

misclassifications is nearly zero, visually confirming the 

model's almost 100% accuracy in classifying all four blood 

pressure categories on the global test set.  This is visualized in 

the confusion matrix in Figure 3. 

 

4.2.2 ROC-AUC on Random Forest RF 
The Receiver Operating Characteristic (ROC) curves for the 

Random Forest model, using a One-vs-Rest approach for multi-

class classification, showed in Figure 4 that the curves for each 

class (Normal, Elevated, Stage 1, Stage 2) are tightly aligned to 

the top-left corner. This indicates excellent class-wise 

separability and is consistent with the perfect macro-average 

ROC-AUC score of 1.000 reported in the performance 

summary. 
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Figure 3: Random Forest Confusion Matrix on Original Feature Dimensions

 
Figure 4: ROC Curves – Randon Forest (Original Features) 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, Delaware, USA 

Volume 13– No. 1, November 2025 – www.ijais.org 

 

80 

4.3 Results of ML Algorithm on Local 

Dataset 
The same four models were trained and evaluated on the local 

dataset (FMC Yenagoa dataset) which is smaller in size than 

the global.  As shown in Table 3 the Random Forest and 

XGBoost again outperformed other models, achieving identical 

and very high accuracy and F1-scores of 0.988. Logistic 

Regression performed well (0.930 accuracy), while KNN 

showed significantly lower performance of  0.756 accuracy. 

The ROC-AUC scores for the top models remained 

exceptionally high (0.99959 for RF, 1.000 for XGBoost), 

demonstrating strong predictive capability even with a limited 

sample size. 

The bar chart in Figure 5 provides a visual comparison of the 

models' performance metrics on the local dataset. It clearly 

illustrates the superiority of Random Forest and XGBoost 

across all evaluated metrics (Accuracy, Precision, Recall, F1-

Score, and AUC-ROC) compared to Logistic Regression and 

KNN.  

 

Table 3: Classification Summary of models on Local Datasets 

Model Accuracy Precision Recall F1-Score AUC-ROC 

RandomForest 0.988372 0.988735 0.988372 0.988355 0.99959 

XGBoost 0.988372 0.988735 0.988372 0.988355 1.00000 

LogisticRegression 0.930233 0.933852 0.930233 0.925404 0.98735 

KNN 0.755814 0.805772 0.755814 0.756253 0.93057 

 

 

Figure 5: Chart Showing Model Performance on Local Dataset 

4.3.1 XGBoost Confusion matrix results 
The confusion matrix for the XGBoost model on the local 

dataset as visually demonstrated in Figure 6 showing a strong 

diagonal, indicating most test instances were correctly 

classified. A small number of misclassifications occur between 

adjacent categories (e.g., Normal being predicted as Elevated), 

which is a common and clinically understandable error given 

the continuity of blood pressure values. 

4.3.2 ROC-AUC Model Comparison 

The ROC curves for all four models on the local dataset 

visually confirm the results from the performance table in 

Figure 7. The ROC curves for Random Forest (RF) and 
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XGBoost (XGB) are closest to the top-left corner, indicating 

their superior performance. Logistic Regression (LR) follows, 

while KNN's curve is significantly lower, reflecting its lesser 

ability to distinguish between the classes. 

 
Figure 6: XGBoost Confusion Matrix on Original Feature Dimension 

 
Figure 7: ROC curves on RF, XGB, LR, KNN
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4.4 Comparing Improved vs Existing 

Models 
The performance scores in this research are compared to five 

existing models in relevant and related studies. This evaluation 

aims to validate the effectiveness of the improved model in 

classifying and predicting different hypertension categories. 

State-of-the-art models were selected for comparison based on 

their relevance to this study and the improved model’s ability 

to replicate or utilize their approaches, along with parameter 

optimizations such as cross-validation and the use of evaluation 

metrics. The improved prediction model demonstrated the 

highest performance among the five existing models. Table 4 

presents a comparative summary of the performance of the 

improved model against the selected state-of-the-art models for 

hypertension prediction. 

The chart in Figure 8 and Table 4 provides a compelling follow-

up to the comparative analysis by highlighting the strong 

performance of the proposed prediction model. This reinforces 

the notion that the model's superior accuracy stems from its 

ability to overcome limitations found in previous models. 

Notably, the proposed approach places greater emphasis on 

meticulous feature selection, thorough data cleansing and 

preprocessing techniques which are critical steps that earlier 

studies may sometimes have neglected. This tailored approach 

ultimately contributes to the observed high accuracy and 

effectiveness relative to existing models. 

 

Table 4: Comparative summary of Improved vs Existing models 

Author Accuracy Results (%) 

Mondal and Hazra (2024) 92.3 

Montagna et al. (2022) 74.7 

Obafemi (2022) 91 

Kurniawan et al. (2023) 89.6 

Du et al. (2023) 70.57 

Proposed Model 99.95 

 

 
Figure 8: Visualization of the Improved Model and the Existing Model(s) 
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The results demonstrate that ensemble learning methods 

(Random Forest and XGBoost) are highly effective for 

hypertension prediction across both global and local contexts. 

Their ability to capture complex, non-linear relationships in the 

data makes them suitable for medical classification tasks where 

multiple interacting risk factors are present. 

The near-perfect performance on the global dataset may be 

attributed to its large size and diversity, which allows models 

to learn generalized patterns effectively. However, the risk of 

overfitting must be considered, especially given the perfect 

scores. Cross-validation and hyperparameter tuning helped 

mitigate this, but further validation on external datasets is 

recommended. 

On the local dataset, the high performance of Random Forest 

and XGBoost despite the small sample size highlights their 

robustness in data-scarce environments. This is particularly 

valuable in clinical settings in regions like Nigeria, where data 

collection is challenging but model accuracy is critical. The 

lower performance of KNN on both datasets underscores its 

limitations with high-dimensional data and class imbalance, 

making it less suitable for this type of predictive task without 

significant preprocessing. 

4.5 Model Deployment 
After training, evaluating, and tuning the models, the best-

performing model was exported for real-world use. The trained 

model was serialized and saved using standard Python joblib 

libraries, allowing it to be reloaded without retraining. This 

ensured that the optimized parameters and learned patterns 

from the training phase were preserved for future predictions. 

 

 
Figure 9: Prediction results generated based on the input data 
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To demonstrate its practical application, a simple web 

application prototype was developed, “Hypertension 

Predictor”. The application provides an interactive interface 

where users can input health-related attributes such as age, 

gender, systolic and diastolic blood pressure, body mass index 

(BMI), family history, and other clinical variables as shown in 

Figure 9 Once submitted, the system processes the input 

through the saved model, predicts and outputs the 

corresponding hypertension category (Normal, Elevated, Stage 

1 Hypertension, or Stage 2 Hypertension) as Figure 9 shows. 

Also included on the prediction output page are clinical 

recommendations for the various hypertension stages. 

5. CONCLUSION 
This application of both local and global datasets for predicting 

hypertension categories demonstrates the high potential and 

generalization. The integration of feature engineering, class 

imbalance handling, dimensionality reduction, and 

hyperparameter turned significantly improved predictive 

performance. 

The local dataset provided granular categorization of blood 

pressure levels, allowing for more clinically relevant 

predictions. In contrast, the global dataset, though initially 

binary, was successfully adapted into a multi-class setting to 

enhance comparability. The performance gap between simple 

models (Logistic Regression) and ensemble methods (Random 

Forest, XGBoost) highlighted the importance of selecting 

advanced algorithms for healthcare prediction tasks. 

Overall, the study established that predictive modeling is a 

viable and effective approach to early hypertension detection. 

The models developed can be integrated into clinical decision 

support systems or patient-facing applications to enhance 

patient safety, encourage preventive measures, and reduce the 

long-term burden of cardiovascular complications. Further 

research should emphasize the collection of larger and more 

diverse local datasets to improve generalizability, as local 

datasets reflect region-specific health patterns that may differ 

from global data. 

Also, future research should integrate non-traditional data 

sources such as wearable devices (such as smartwatches, 

fitness trackers) with variables that may just offer additional 

predictive power and help capture real-time health dynamics 

beyond standard clinical data. 
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