International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 13 - No. 1, August 2025 - www.ijais.org

Exploring Search-based Applications in the Software
Development Life Cycle: A Literature Review

Abeer Alarainy
Imam Mohammad Ibn Saud Islamic University
Information Technology
Riyadh
Saudi Arabia

Nora Madi
King Saud University
Software Engineering

Saudi Arabia

Aljawharah Al-Muaythir
Alfaisal University
Software Engineering
Riyadh
Saudi Arabia

Riyadh

Abir Benabid Najjar
King Saud University
Software Engineering

Riyadh

Saudi Arabia

ABSTRACT

Search-Based Software Engineering (SBSE) research is having a
tangible impact on the wider Software Engineering (SE) commu-
nity. SBSE tackles SE problems by reformulating them into search
problems and then uses heuristic techniques to discover optimal or
sub-optimal solutions. Despite the success of SBSE, it faces several
challenges, such as the need for rigorous evaluation of its robust-
ness and scalability, as well as bridging the gap between academic
research and practical industrial application. Also, it must address
the dynamic nature of software systems by incorporating user needs
and preferences into its approaches. Additionally, automating tasks
such as algorithm selection and evaluation is critical for improv-
ing efficiency and practicality. This study presents a literature re-
view of SBSE research across different Software Development Life
Cycle (SDLC) phases by reviewing recent publications from 2019
to 2024. It analyzes studies based on SDLC stages and associated
problems, with a focus on the SBSE algorithms employed. Also, it
highlights current trends in SBSE research, and identifies gaps for
future research directions.

Keywords:

Search Based Software Engineering, Meta-heuristic, Software
Engineering, Software Development Life Cycle, Systematic Re-
view

1. INTRODUCTION

The SDLC phases, including Requirement Analysis, Design, De-
velopment, Testing, Deployment, and Maintenance, present nu-
merous challenges that require software engineers to make deci-
sions or choices depending on project goals. Examples include
selecting and prioritizing requirements, refactoring steps, and
optimizing test cases. Nonetheless, project management (PM)
also plays a crucial role in the SDLC, presenting optimization
challenges such as guiding resource allocation to balance team
capacity, budget, and project timelines effectively. These tasks,
among others, are considered optimization problems, which can
be addressed using SBSE by formulating them as search prob-
lems to find optimal or near-optimal solutions. SBSE is an active
field of research [1] that leverages metaheuristic algorithms, such
as genetic algorithms (GA), particle swarm optimization (PSO),
simulated annealing (SA), Genetic Programming (GP), Evolu-
tionary Algorithms (EAs), Dragonfly Algorithm (DA), and Ant
Colony Optimization (ACO) to automate and optimize SE tasks.
The appeal of SBSE lies in its potential to enhance the SDLC

processes by minimizing project duration, cost, and failure rates
while improving efficiency, scalability, and overall quality. This
literature review examines the current state of SBSE research,
with a focus on how these optimization techniques are applied
across different SDLC phases and addressing specific problems
within each phase.Through this review, the following research
questions are addressed:

(1) What problems arise during different stages of the SDLC
that can be addressed by the application of SBSE?

(2) What are the current trends in SBSE research? and

(3) What are the open gaps for potential future directions in
SBSE?

The key contributions of this study include the following:

—Conducting a literature review of SBSE algorithms applied
across various SDLC stages by reviewing recent publications
from 2019 to 2024.

—Categorizing primary studies based on the SDLC stage they
address.

—Organizing the primary studies by the specific optimization
problems they aim to solve within the SDLC.

—Analyzing the primary studies with a focus on the algorithms
employed, highlighting commonly used methods in SBSE.

—Summarizing current trends in SBSE research to guide future
exploration in this domain.

—Providing insights into less-explored areas and suggesting
future research directions, including opportunities to apply
SBSE in underrepresented SDLC stages and to explore new
or hybrid algorithmic approaches.

The rest of the report is structured as follows: Section II presents
the related studies, Section III describes the literature review pro-
cess followed including research questions, search strategy for
primary studies, the selection process, and data extraction de-
tails. Section IV analyzes the primary studies, including a quan-
titative and literature analysis. Section V discusses the answers to
the research questions. Section VI is on validity threats. Finally,
Section VII concludes and suggests future work.

2. RELATED WORK

This section discusses some related works that explore SBSE
in the form of systematic mapping (SM) or systematic litera-
ture review (SLR). These papers are focused either on a spe-
cific task, area, or technique within SBSE or provide a general

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868

Volume 13 - No. 1, August 2025 - www.ijais.org

overview of regional or community contributions. Table 1 pro-
vides an overview of these studies, listing details like publica-
tion year, focus of the study, and type of review. The well-known
paper by [2] offers a foundational overview of SBSE, classify-
ing key trends, popular optimization techniques like GA, and
applications across the software engineering lifecycle—from re-
quirements and planning to testing and maintenance. It high-
lights gaps in existing research and suggests potential areas for
future work, making it a valuable resource for understanding
SBSE’s growth and impact. However, being over a decade old,
this review doesn’t reflect the latest advancements and emerg-
ing techniques in SBSE. This study, in contrast, brings an up-
to-date perspective, focusing on recent developments and ap-
plications. [1] provide a mapping study of the Symposium on
Search-Based Software Engineering publications. The aim was
to identify trends and evolution of topics within SBSE and to
highlight the symposium’s role in establishing SBSE’s maturity.
The evaluation showed that SSBSE research primarily focuses
on SE tasks like software testing, debugging, design, and mainte-
nance, with evolutionary algorithms being the most widely used
search technique as it was employed in 75% of the papers. While
[1] identify trends within SSBSE publications, this work offers
insights into SBSE’s application, addressing problems specific
to each SDLC stage by exploring studies across a number of re-
sources. [3] compile and analyze contributions from the Span-
ish SBSE research community, examining software engineer-
ing tasks, proposed algorithms, and collaborative efforts. The
study offers insights into research trends and future directions,
highlighting a strong focus on optimization challenges across
tasks like planning, design, and testing. It also explores a vari-
ety of optimization techniques, ranging from exact search meth-
ods to evolutionary computation and swarm intelligence. The pa-
per emphasizes the growth of collaboration within Spain and,
as a result, does not examine the broader, international SBSE
community. Other studies target specific areas within SBSE. For
instance, [4]] focus on Multi-Objective Evolutionary Algorithms
(MOEAs) in SBSE. Their review categorizes widely used met-
rics and explores their applications across various SE fields, in-
cluding requirements engineering, testing, and verification. They
found that software testing is the most frequently applied area
in SBSE, followed by software design, requirements, manage-
ment, and verification. This aligns with this study, which also ob-
served that testing is the most prominent area in SBSE research.
Similarly, [5] conduct a systematic review of nature-inspired
metaheuristic methods specifically within software testing. They
categorize and compare algorithms such as GA, ACO, cuckoo
search, and artificial bee colony optimization (ABC), emphasiz-
ing their applications in automated test case generation, test data
optimization, and quality assurance. Their review also outlines
key metrics like mutation score, complexity, and scalability for
evaluating these algorithms, and discusses their strengths, limi-
tations, and potential for further development. Additionally, they
highlight open issues in software testing, including the need for
better resource management. The findings indicate that a sig-
nificant number of selected papers focused on improving effi-
ciency, performance, and reducing time and cost in software test-
ing. However, unlike these focused studies, this research takes a
broad approach by examining SBSE applications and the algo-
rithms used across the SDLC. In addition, [6] examine the ap-
plication of swarm intelligence algorithms like Grey Wolf Opti-
mization (GWO), Whale Optimization Algorithm (WOA), Har-
ris Hawks Optimizer (HHO), and Moth Flame Optimizer (MFO)
in SE tasks. Their systematic review details these algorithms’ use
in software testing, defect prediction, and reliability, while also
identifying potential areas for future research, such as software
re-modularization and re-engineering. Although the paper iden-
tifies certain gaps and potential applications, it does not elabo-
rate on the approach used to determine them. Additionally, this
review provides insights beyond swarm intelligence algorithms.

\/

Research Questions

Planning

v

Source Selection - Selection Criteria
Study Selection - Quality

Data Extraction & » Assessment
Synthesis - Selection Results

Conducting

v

Reporting the Results

Reporting

\/

Fig. 1. Literature Review Process Framework.

Most of these papers focus on specific areas or techniques within
SBSE. For instance, [S] examine nature-inspired metaheuristics
for software testing, [4] focus on MOEAs, [6] review swarm in-
telligence algorithms applied in software engineering, and [3]
explore the contributions of the Spanish SBSE community across
various tasks. In contrast, [1] provide a broad mapping study of
SBSE research presented at the symposium, covering a range
of SE tasks and computational techniques without focusing on
any one application or algorithm. However, while SSBSE is a
key venue dedicated solely to SBSE, research in this field is also
published across other conferences and journals in software en-
gineering. Therefore, this review includes a number of sources
and encompasses research from the past six years, 2019 to 2024,
providing a recent look at how SBSE is applied to tackle specific
problems in the SDLC, while providing future research direc-
tions that extend beyond individual techniques or regions.

3. RESEARCH METHODOLOGY

A literature review comprises three main phases: planning, con-
ducting, and reporting the review. The literature review was con-
ducted by following the guidelines of [7] and [8], and the col-
lected data was analysed in an unbiased and structured fashion.
The first basic step to start the process of literature review was
the planning process. Figure 1 illustrates the flowchart outlining
the process that was followed.

3.1 Planning the Literature Review

Three research questions have been identified based on the mo-
tivation to perform the literature review. The answers to these
questions provide evidence-based support for exploring the ap-
plication of SBSE in the SDLC. Table 2 outlines the research
questions along with their purposes. Additionally, the scope and
objectives of the review have been clarified using the PICO cri-
teria (Population, Intervention, Comparison, Outcomes) defined
by [7], as shown in Table 3.

3.2 Conductiong the LR

It involves searching electronic databases using the search string
and extracts the relevant studies to answer the research questions.
This process includes developing a literature search strategy, se-
lecting studies, and conducting data extraction and synthesis.

3.2.1 Literature Search Strategy. The search process involves
selecting repositories, defining the search string, and retrieving
primary studies from the repositories.

3.2.1.1 Source Selection. The largest and most popular on-
line repositories have been selected, including the ACM Digital
Library, IEEE Xplore, Wiley, and SpringerLink. Additionally, a
forward snowballing of relevant studies has been included.

X

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

Table 1. Summary of Existing Secondary Studies on SBSE.

Title Focus Review Period- Primary Ref.
method span papers
Search-Based ~ Software | Surveys SBSE’s application in soft- | Review 1998- - [21
Engineering: Trends, | ware testing, requirements, project 2008
Techniques and Applica- | management, and maintenance.
tions Categorizes research by techniques,
problems, and results.
The Symposium on | Examines the evolution of SSBSE | SM 2009- 134 (L]
Search-Based ~ Software | publications, offering insights to re- 2019
Engineering: Past, Present | searchers to strengthen the sympo-
and Future sium.
A systematic literature re- | Compiles and analyzes Spain’s re- | SLR 2001- 232 131
view of the SBSE research | search contributions in SE task op- Febru-
community in Spain timization, novel algorithm propos- ary
als, and emerging research inter- 2019
ests.
Performance Evalua- | Assesses the performance of | SLR 2000- 105 4]
tion Metrics for Multi- | MOEAs in SBSE, focusing on 2020
Objective Evolutionary | commonly used evaluation metrics.
Algorithms in Search-
Based Software Engineer-
ing: Systematic Literature
Review
Nature-inspired meta- | Focuses on the optimization of | SLR 2015- 65 150
heuristic ~ methods in | test case generation using various 2022
software testing nature-inspired metaheuristic meth-
ods, such as GA, ACO, and others.
A Systematic Literature | Reviews applications of four swarm | SLR 2014- 46 [6]
Review on Robust Swarm | algorithms (GWO, WOA, HHO, 2022
Intelligence Algorithms | MFO) in areas like software testing,
in Search-Based Software | defect prediction, and reliability.
Engineering

Table 2. Research questions and their motivation.

NO. Research Questions Motivations
RQ1 What problems arise during different stages | Software development faces challenges at various stages, and
of the software development lifecycle that | SBSE offers optimization-driven solutions. The goal is to iden-
can be addressed by the application of | tify key problems where SBSE can enhance efficiency and
SBSE? scalability, improving software development practices.
RQ2 What are the current trends in SBSE re- | SBSE is a rapidly evolving field, and understanding recent
search? trends helps researchers stay updated on new methods and ap-
plications. This question aims to provide an overview of cur-
rent advancements and emerging hot topics in SBSE utilised in
the SDLC.
RQ3 What are the open gaps for potential future | There are still many unexplored opportunities and unresolved
directions in SBSE? challenges in SBSE. Identifying open gaps will guide future
directions in expanding SBSE’s applicability to new areas in
software engineering.

3.2.1.2 Search String. Conducted research using only pri-
mary sources with the following search string: (Software OR
Software development life cycle OR SDLC) AND (requirement
OR design OR analysis OR architecture OR implementation OR
test OR maintenance) AND (Search-Based Software Engineer-
ing OR SBSE) AND (Meta-heuristic OR Genetic Algorithms
OR Simulated Annealing OR Particle Swarm OR Ant Colony
OR Hill Climbing OR Tabu Search OR Multi-Objective Evo-
Iutionary Algorithms OR MOEA) NOT (Machine Learning OR
Deep Learning OR Systematic).

3.2.1.3 Search Results and Documentation. Four search
strings were applied on four different databases, extracting re-
search papers from the years 2019 to 2024. A full-text search
in the research papers resulted in a total of 224 studies retrieved

from the repositories. This broad list may include many irrele-
vant studies.

3.2.2 Study Selection. The selection of primary studies in-
cludes the description of selection criteria, the selection process,
and the study quality assessment.

3.2.2.1 Selection Criteria. This step is necessary to select
only relevant studies and remove irrelevant ones. Inclusion and
exclusion criteria, as defined in Table 4, are used for this purpose.

3.2.2.2 Quality Assessment. Only using inclusion and ex-
clusion criteria is not enough to extract the most relevant research
studies. The quality of the papers should be evaluated based on
the following questions:

(1) Were the research purpose and objectives clearly stated?

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868

Volume 13 - No. 1, August 2025 - www.ijais.org

Table 3. PICO criteria to define the scope and goal of LR.

Population

The articles and conferences about SBSE in the SDLC.

Intervention

Application of SBSE in the SDLC

Comparison Analyzing the problems at each stage of the SDLC and evaluating the application of SBSE
for each problem.
Outcomes Overview of issues that arise during the SDLC and the application of SBSE to address

these issues, while also identifying gaps for future research directions and highlighting
current trends in SBSE research.

Table 4. Inclusion and exclusion criteria.

Inclusion Criteria

Exclusion Criteria

Studies applying SBSE in SDLC

Studies applying Machine Learning (ML)

Studies published within the last 6 years (between 2019-2024)

Papers published before 2019.

Studies published entirely in English

Non-English studies

Peer-reviewed studies

Technical reports, government reports, letters and editorial,
short notes, abstract only studies.

considered for further analysis.

Studies identified during the literature review phase were not | Duplicate studies have been removed

(2) Was the research problem well-defined?
(3) Does the research include an SBSE algorithm?

(4) Does the research concentrate on a specific SDLC stage?

According to guidelines of quality assessment specified by [7],
the questions were scored on a scale of 0 (No), 0.5 (partial), and
1 (Yes). The total score determines the quality of the paper, with
a threshold score of 3 set to ensure the quality of primary studies.
Only studies with a quality score of 3 or higher were included.

3.2.2.3 Selection Resluts. The study selection process con-
sists of two main steps:

Initial Selection: A total of 224 primary studies were imported
into Rayyan, a tool designed to facilitate the review process with
a user-friendly interface and a blind screening feature that re-
duces the risk of bias. During the import, three duplicates were
identified. The studies were divided among the authors, with at
least two authors reviewing the titles and abstracts to exclude ir-
relevant literature. After this initial screening, the full texts of the
selected studies were examined to ensure they contained relevant
information for further analysis. Once the screening was com-
pleted, the blind mode was disabled, and the authors agreed to
exclude 119 studies. They included 83 studies, classified 5 stud-
ies as “maybe,” and identified 14 studies with conflicts. The au-
thors then held a meeting to resolve these conflicts and reached
a consensus regarding the studies in question. Ultimately, 138
studies were excluded, and 71 studies were included.

Final Selection: The studies that passed the initial selection un-
derwent a quality assessment before being chosen for further
analysis. The resulting papers from this final selection served
as a seed set for conducting forward snowballing. After a thor-
ough review of these full texts, 71 studies were selected for fur-
ther analysis. A forward snowballing procedure was then im-
plemented, which led to the identification of an additional 30
studies. Consequently, a total of 101 studies were analyzed us-
ing quality assessment criteria, resulting in the exclusion of 16
studies. In the end, 85 studies were deemed ready for data ex-
traction. Figure 2 illustrates the complete process of searching
for and selecting the primary studies.

3.2.3 Data Extraction and Synthesis.

3.2.3.1 Data Extraction. The data extraction form was cre-
ated to ensure the consistency and accuracy of the information
collected. This form includes fields that correspond to the re-
search questions as well as publication details. During a consen-
sus meeting, team members discussed and proposed the structure

of the form. Table 5 provides information relevant to addressing
the research questions. For each paper, the collected data was
organized into three categories:

—Publication-related data: digital library, title, year, and type
(e.g., journal or conference).

—SBSE-related data: the problem addressed, the optimization
algorithm used, and the stage of the SDLC.

—Research-related data: identified trends and suggested future
research directions.

3.2.3.2 Data Synthesis. The data synthesis process converts
the extracted data into valuable information that answers the re-
search questions. To streamline the analysis, the selected primary
studies were organized into a structured format, categorized into
three distinct groups: one based on the stage of the Software
Development Life Cycle (SDLC), another based on the type of
problem addressed, and the third based on the algorithms uti-
lized.

3.2.4 Reporting the Review. In the final stage of a literature
review, researchers conduct a comprehensive analysis of the re-
sults related to the research questions. This in-depth examination
enables synthesizing existing research findings and outlining di-
rections for future research initiatives. The review and discussion
are presented in the analysis and discussion sections.

4. ANALYSIS

This section presents an analysis of the primary studies in two
parts: publication analysis, which provides qualitative data on
the selected studies, and literature analysis, which reviews the
research discussed in the papers.

4.1 Publication Analysis

Figure 3 shows that the majority of SBSE-related publications
come from IEEE, with a total of 76 publications, significantly
surpassing those from other publishers. Figure 4 indicates that
the SBSE field is dynamic, with significant contributions from
both publishing avenues. Data shows that 56% of SBSE publi-
cations are from conferences, while journals account for 44%.

4.2 Literature Analysis

This section reviews the studies related to the specific stages of
the SDLC where problems have been identified. Table 6 illus-

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

R\

Search String

Level 1 Level 2
. . . . Level 3 Level 4
Inclusion & Exclusion based Inclusion & Exclusion based . . N
. Forward snowballing = 30 Quiality assessment criteria
on title and abstract on full text 71+30=101 101-16=85
224-129=95 95-24=71 - B
v
(Data Extraction & Syntesis)
Fig. 2. Study selection process.
Table 5. Data Extraction Form.
ID Data Item Description Relevant RQ
D1 Title of paper What is the article’s title? Manuscript Information
D2 Year of publication Year the study was published Manuscript Information
D3 Digital Library Name of repository (e.g, IEEE, ACM,) Manuscript Information
D4 Type Type of article such as journal or conference | Manuscript Information
D5 SBSE Problem Addressed | Specific problem in SDLC addressed by | RQl
SBSE (e.g., test case generation, SPS).
D6 SBSE Algorithm Used Type of SBSE algorithm applied (e.g., ACO, | RQl
PSO).
D7 SDLC Stage The phase(s) of SDLC where SBSE was ap- | RQ1
plied (e.g., testing, design).
D8 Trends Identified Current trends observed in SBSE research. RQ2
D9 Future Research Direc- | Proposed directions for further research. RQ3
tions
80 75
70
80
50
40
30
20
10 6 5
o | — ;
IEEE ACM Springer Wiley

= Journal

m Conference

Fig. 3. Distribution of Publications by Publisher.
Fig. 4. Distribution of Selected Studies by Publication Venue.

trates the frequency of these problems at each stage. The sec-
tion is organized according to the most frequently reported is-
sues, which include testing, maintenance, design, project man-
agement, and deployment.

4.2.1 Testing. The testing phase reveals the highest frequency
of issues, with 55 studies indicating that this stage is where most
problems arise and where SBSE methods are frequently applied.

X

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 13 - No. 1, August 2025 - www.ijais.org

Table 6. Summary of Optimization Problems, SDLC Stages, Applied SBSE Algorithms, and References.

Problem Freq. SDLC Stage | SBSE Algorithm Reference

Test Case Generation and | 18 Testing DynaMOSA, NSGA-II, ACO, EAs, Hybrid (HWOA+ ACO), | [9], [10], [11], [12],

Selection TLBO, Hybrid (Iterated Local Search + Tabu List), CSA, | [13], [14], [15], [L6],
U-NSGA-III, MAEO, GA, Bi-objective Dragonfly Algorithm | [17]], [18], [19], [20],
(BDA), DeepEvolution, Multiple black hole (MBH), Self- | [21], [22], [23], [24],
Contained Hierarchical Optimization Protocol, Hybrid (PSO | [25], [26]
+ Firefly Cuckoo Search (FCSA))

Test Data Generation 14 Testing Hybird (BSA+SA), GA, Multi-population genetic algorithm | [27], [28], [29], [30I,
(MGA), Hybrid (ACO + Negative Selection Algorithm (NSA), | [31], [32], [33], [34],
Intelligent Optimization Algorithms, Coevolutionary Genetic | [35], [36], [37], [38],
Algorithm (CGA), Hybrid (GWO + GA), DynaMOSA, Hybrid | [39], [40]
(GA + immune inspired algorithm), Shuffled Frog Leaping Al-
gorithm (SFLA)

Refactoring 9 Maintenance NSGA-II, GA, Hybrid (Multi-objective search + Clustering al- | [41], [42], [15], [43],
gorithms), Multi-objective Search [44], [45], [46], [47],

(48]

Software Project Schedul- | 6 PM Bi-population discrete evolutionary algorithm (IFBPD-EA), | [49], [S0], [51], [52],

ing Problem MOEA, EAs, Greedy and Parallel Scheduling (GPS), PSO 53], [54]

Path Selection and Code | 4 Testing DynaMOSA, GA, GP, DA 551, [56], 1571, [58]

Coverage

Bug Detection 3 Testing DynaMOSA, Novel strategy (SBSTML), NSGA-II 591, [60], [61]

Bug Localization 1 Maintenance Interactive SBSE [62]

Modularization and Re- | 3 Design NSGA-II, GA, Reinforcement Learning-based Iterated Local | [63], [64], [65]

Modularization Search

Test Suite Generation and | 3 Testing WOA, DynaMosa, NSGA-II [66], [67], [68]

Optimization

Multi-Objective ~ Testing | 2 Testing MOEAs 691, [70]

Resource Allocation

Problem (MOTRAP)

Community Smells Detec- | 1 Maintenance GP [71]

tion

Detecting Code Smells 1 Maintenance | Weighted Cockroach Swarm Optimization (WCSO) [72]

Discovering Metamorphic | 1 Testing PSO [73]

Relations

Fault Localization 1 Testing Jaya Algorithm [74]

Minimizing Problematic | 1 Design NSGA-II [75]

Couplings Within the

Software Architecture

Optimal Deployment 1 Deployment SA [76]

Optimal Software Archi- | 1 Design NSGA-II [Z7]

tecture within a complex

design space

Software Effort Estima- 1 PM Chaotic Particle Swarm Optimization (CPSO) 78]

tion

Requirements Traceability | 1 Maintenance | NSGA-II [79]

Link Recovery

Test Report Prioritization 1 Testing Hybrid (Greedy Algorithm + GA+ ART) [80]

Software Mutation Testing | 1 Testing Forrest Optimization Algorithm (FOA) [81]

Pairwise Testing 1 Testing Gravitational Search Algorithm (GSA) 182]

Test Path Generation 1 Testing ACO [83]

Test Unit Generation 1 Testing DynaMosa [84]

Simulation-based testing | 1 Testing NSGA-II [85]

for Advanced Driver-

Assistance Systems

Synthesizing Pareto- | 1 Design Multi-objective genetic algorithms (MOGAS) [86]

optimal policies in Markov

decision processes

Enhance the greenness of | 1 Design Genetic Improvement (GI) [87]

software

Software Clustering 1 Maintenance Hybrid (GA+ Krill Herd (KH)) [88]

Identification and Evalua- 1 Design GP [89]

tion of Microservices from

User Stories

Test orders in service- 1 Testing GA 1901

oriented architecture

Automate crash reproduc- | 1 Testing Guided Genetic Algorithm (GGA) [54]

tion

Predictions of fault slip- 1 Testing Cat Swarm Optimization (CSO) [91]

through

o)

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 13 - No. 1, August 2025 - www.ijais.org

Numerous problems are addressed during this phase, particularly
in Test Case Generation and Selection, which are the focus of 18
studies ([9], [10], (L1, (120, (130, (140, (150, (160, (1701, (18],
(190, [201, [211, 1221, 1231, [24], [25], and [26]).

One notable contribution to the field is the introduction of Moe-
sART, an innovative adaptive random testing algorithm based on
multi-objective evolutionary search. This approach, detailed in
paper [10], aims to enhance test case diversity and improve the
effectiveness of failure detection. MoesART incorporates three
diversity perspectives: dispersion, balance, and proportionality,
while utilizing the NSGA-II framework to select optimal test
cases. The findings suggest that considering multiple diversity
objectives significantly enhances the failure detection capabil-
ities of the test cases. Additionally, [14] presents InSPeCT, a
novel Path Condition solver that employs Iterated Local Search
(ILS) with a Tabu List. This method addresses the challenge of
slow automated test case generation in software testing, which
is largely due to the high computational complexity associated
with Satisfiability Modulo Theories (SMT) solvers used to re-
solve Path Conditions (PCs). Moreover, [19] introduces a new
t-way testing strategy utilizing a Bi-objective Dragonfly Algo-
rithm (BDA) to generate prioritized test suites. This approach
addresses the limitations of existing methods that focus primar-
ily on test case weights without considering their priority. The
BDA simultaneously optimizes both test case weight and pri-
ority, demonstrating competitive performance against traditional
t-way strategies regarding test suite size and prioritization. Fur-
thermore, [21] presents a novel variant of the black hole opti-
mization algorithm, called binary multiple black hole (BMBH)
optimization, aimed at enhancing the efficiency of combinato-
rial searching-based software testing (CSST). BMBH utilizes
multiple swarms to improve solution exploration and reduce the
number of required test cases, achieving reduction rates of over
60% for certain problems. In addition, [24] introduces SCHOP,
a novel approach that integrates seeding and constraint support
within a harmony search algorithm to optimize test suite size
in combinatorial t-way testing. SCHOP addresses challenges in
test case generation, enhancing software quality while manag-
ing combinatorial explosion. Finally, [25] presents a hybrid ap-
proach for software testing that combines PSO, Bee Colony
Optimization (BCO), and Firefly Cuckoo Search Algorithms
(FCSA) to improve model-based testing. This approach aims to
optimize time and cost in the software testing process while en-
suring efficient automatic test case generation and execution.
The second identified problem is Test Data Generation, which
has been addressed by 14 studies. [42], [30], [31], and [40] uti-
lize GA to tackle this issue. [28] presents BackIP, a novel hy-
brid approach for mutation-based test data generation that com-
bines the Backtracking Search Optimization Algorithm (BSA)
and Integer Programming. This approach aims to enhance the
efficiency of test data generation and reduction while maximiz-
ing coverage metrics and minimizing the occurrence of equiva-
lent mutants. Additionally, [33] introduces a novel Hybrid ACO-
NSA approach for automated test data generation in Java en-
vironments. This method integrates ACO and the Negative Se-
lection Algorithm (NSA) to improve software testing efficiency.
The performance of the Hybrid ACO-NSA technique is eval-
uated using metrics such as Average Coverage (AC), Average
Generations (AG), Average Time (AT), and Success Rate (SR).
These metrics demonstrate the efficiency and effectiveness of the
proposed approach in generating automated test data for Java en-
vironments. Furthermore, [36]] presents a hybrid method named
Fuzuli, which combines the GWO algorithm with GA to auto-
matically generate optimal test data for software structural test-
ing. The primary objectives of Fuzuli are to enhance branch cov-
erage, improve the success rate of test data generation, and in-
crease both stability and speed. Finally, [38]] introduces a novel
method using the Shuffled Frog Leaping Algorithm (SFLA) for
automatic software test data generation. This study addresses the

challenges of cost and time in software testing while emphasiz-
ing the importance of branch coverage as a fitness function. It
demonstrates the effectiveness of SFLA in generating efficient
test data with a high convergence speed.

The third and fourth most frequent problems in software test-
ing are path coverage and bug detection. Path coverage has been
addressed in various studies [55], [56], [?], and [58], using tech-
niques such as GA, DynaMOSA, GP, and PSO. In contrast, bug
detection has been tackled with more innovative approaches. For
example, [59] introduces a novel method called Defect Predic-
tion Guided Search-Based Software Testing (SBSTDPG), which
integrates defect prediction with search-based software testing
(SBST) to improve bug detection efficiency. This method em-
ploys a budget allocation algorithm based on defect scores to
prioritize testing in areas of code that are likely to be defec-
tive. Empirical evaluations show that SBSTDPG identifies sig-
nificantly more bugs compared to traditional methods, particu-
larly in resource-constrained environments, achieving an average
of 13.1 additional bugs found within a tight time budget. Further-
more, [60] enhances the bug detection capability of search-based
software testing by incorporating defect prediction information.
It proposes two innovative approaches: one that allocates time
budgets to classes based on their likelihood of being defective
(SBSTCL) and another that directs the search algorithm towards
these defective areas (SBSTML). Various metrics are utilized to
evaluate and compare the performance of defect prediction mod-
els, including recall, precision, accuracy, Matthews Correlation
Coefficient (MCC), and Area Under the Curve (AUC). The ef-
fectiveness of defect predictors is assessed based on their ability
to identify buggy areas in software, which is essential for guiding
developers in efficient testing. Additionally, [61] presents a new
approach called Multi-Objective Crowd Worker Recommenda-
tion (MOCOM), designed to optimize the recommendation of
crowd workers for crowdsourced testing tasks. This approach
aims to maximize bug detection while minimizing costs. MO-
COM characterizes crowd workers based on their testing context,
capabilities, and domain knowledge, significantly outperforming
five state-of-the-art baselines in experimental evaluations.

The fifth and sixth most common issues discussed in the liter-
ature are test suite generation and optimization, as highlighted
in papers [66], [67], and [68]], along with the multi-objective
testing resource allocation problem explored in papers [69] and
[70]. [66] focuses on improving reusability in software prod-
uct line (SPL) testing by proposing four reusability metrics:
Test Suite Reusability regarding Requirements (TSRR), Test
Case Reusability regarding Requirements (TCRR), Test Suite
Reusability regarding Configurations (TSRC), and Test Case
Reusability regarding Configurations (TCRC). The aim is to en-
hance reusability through an SBST approach, particularly by em-
ploying the NSGA-II algorithm to optimize existing test suites.
This study emphasizes the importance of measuring and improv-
ing reusability metrics, especially TSRR and TCRR. Addition-
ally, [67] introduces a novel strategy for generating combinato-
rial test suites using the WOA, addressing the challenges associ-
ated with exhaustive testing in software systems. It highlights the
effectiveness of t-way testing, which reduces the number of test
cases by focusing on the interactions among parameters. Finally,
68]] presents a hybrid framework that combines the Firefly Al-
gorithm (FA) and the Differential Evolution Algorithm (DE) to
automate test suite generation in model-based testing of object-
oriented programs. This approach utilizes UML behavioral state
chart models to develop optimized test suites aimed at achieving
complete transition path coverage. Experimental results demon-
strate that the hybrid FA-DE algorithm significantly outperforms
the individual FA and DE algorithms in terms of time complex-
ity and the efficiency of test case generation. [69] and [70] both
utilize MOEA to address the multi-objective testing resource
allocation problem (MOTRAP). They focus on simultaneously
optimizing system reliability, testing cost, and testing time us-

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 13 - No. 1, August 2025 - www.ijais.org

ing different models. [69] proposes a model with a pre-specified
reliability constraint and develops enhanced constraint handling
techniques (ECHTs), while [[/0] proposes an architecture-based
model (ABM).

The NSGA-II was employed to tackle various issues. In [85]
investigates the effectiveness of SBST for Advanced Driver-
Assistance Systems (ADAS) by comparing results from two sim-
ulators: TASS/Siemens PreScan and ESI Pro-SiVIC. The study
reveals that while SBST can generate critical test scenarios in
both simulators, there are notable discrepancies in safety viola-
tions and the dynamics of vehicles and pedestrians. The find-
ings suggest that future Verification and Validation (V&V) pro-
cesses should incorporate multiple simulators to enhance robust-
ness and reduce dependency on the specific internal workings of
any single simulator.

4.2.2 Maintenance. Maintenance is the second stage after test-
ing in terms of the number of studies. Software maintenance is
the process that improves the reliability and stability of soft-
ware products. Its idea relies on modifying a software system
after it has been released to improve performance, fix bugs, add
new features to meet evolving user requirements, or adapt to a
changed environment. Following design principles during devel-
opment leads to high-quality software products that are easier
and cheaper to maintain. Studies on the maintenance phase focus
on multiple issues related to refactoring ([41], [42], [92], [43],
[44], [45], 48], [46], [47]) and bug localization [62]], along with
several other maintenance issues discussed in [[71],[72],[79], and
[88]]. For the refactoring aspect, 11 studies worked on several
proposed approaches to address different refactoring issues. [41]],
the authors proposed DEPICTER approach that helps in refactor-
ing recommendations by representing the design-principle met-
rics as fitness function using NSGA-II to improve the quality of
software design, along with the use of heuristic rules to guide the
initialization of the population of potential solutions. Its eval-
uation of four Java systems demonstrated significant improve-
ments in software design quality. Similarly, 3Erefactor by [42]
is a novel automated refactoring approach that addresses ar-
chitectural inconsistencies using NSGA-II and information fu-
sion techniques. The approach has been validated on six open-
source Java projects, showing the effectiveness, efficiency, and
executability of 3Erefactor. The experimental results confirm
the approach’s capability to decrease architectural inconsisten-
cies and improve software quality. Additionally, [92] introduces
a novel approach that uses a multi-objective genetic algorithm
(MGA) with a penalized fitness function called PMQ (Penal-
ized Modularity Quality) to improve software modularity while
minimizing structural disruptions. The evaluation is conducted
by employing both single-objective and multi-objective genetic
algorithms on eight systems including real-world systems and
randomly generated systems. The results demonstrate that the
multi-objective approach yields better results in most scenarios,
achieving higher modularity quality with fewer changes com-
pared to the single-objective method. To address the limitations
in traditional refactoring techniques such as neglecting devel-
oper priorities and failing to adapt to ongoing code evolution,
[43] introduced a novel interactive approach for software refac-
toring that combines innovization (innovation through optimiza-
tion) and the use of NSGA-II. The approach also includes the use
of an implicit exploration of the Pareto front of non-dominated
solutions to eliminate the need to manually explore the Pareto
front for the best trade-offs. This approach facilitates adapting
refactoring solutions based on developer feedback while consid-
ering other code changes concurrently made by the developer.
Based on the implementation of a benchmark of eight open-
source systems and two industrial projects, the results support
the claim that the proposed approach is more efficient, on av-
erage, than existing refactoring techniques. Similarly, DOIMR
(Decision and Objective Interactive Multi-Objective Refactor-

ing) approach [45], which considers the developers preferences
by helping them to explore both the effects of different refactor-
ing options on code quality and where those refactorings would
occur in the code. The tool uses a clustering algorithm to group
similar refactoring solutions to make exploration and selection
easier for the developer. The paper evaluated the tool with 35 de-
velopers and found that it was effective at helping them quickly
and easily find relevant refactorings that met their needs.

Also, [47]], authors used GA and NSGA-II to evaluate their pro-
posed novel approach. The approach aims to extract develop-
ers’ knowledge and preferences to find good refactoring recom-
mendations. They combined the use of multi-objective search,
clustering, mono-objective search, and user interaction in their
approach to facilitate decision-making. Ordering dependencies
among refactorings is a concept introduced by [44]. Authors in
this work developed an algorithm using GA to detect ordering
dependencies and a tool named DPRef which leverages the al-
gorithm’s output to generate visual representations of these de-
pendencies as refactoring graphs. It demonstrated high precision
in detecting dependencies across 9,595 projects. These advance-
ments collectively simplify and improve refactoring processes.
In educational contexts, [46] employ the use of a multi-objective
search-based refactoring in Scratch Programs to improve read-
ability and learning outcomes. The approach was tested on 1,000
projects, showing significant enhancements in program compre-
hension. Also, in the security context, [48] use NSGA-II to bal-
ance security and quality attributes in their proposed security-
aware refactoring framework. This framework finds trade-offs
between improving software quality and maintaining security.
For bug localization, a hybrid fitness function in [62] combines
human evaluation with automated simulations to improve bug
localization in video game models. Tested on an industrial video
game with 29 developers, this approach reduced manual effort
and missed bugs. It achieved notable improvements in preci-
sion, recall, and overall performance metrics. Both papers, [[72]
and [71] use automated approaches to detect suboptimal pat-
terns in software development, although they target distinct types
of problems which are code smells [72]] and community smells
[71]. [72], this paper focuses on detecting code smells, which are
structural characteristics in source code that may cause deeper
problems and affect software quality. The paper presents the
Weighted Cockroach Swarm Optimization (WCSO) algorithm
for automatically identifying code smells. The study shows that
WCSO outperforms the other evolutionary algorithms in detect-
ing the targeted code smells across various open-source appli-
cations. [[/1]], this paper shifts the focus to community smells,
which are organizational and social patterns within software de-
velopment communities that can negatively impact project suc-
cess and software quality. The paper introduces the Genetic
Programming-based Ensemble Classifier Chain (GP-ECC) ap-
proach to detect community smells. GP-ECC’s performance is
compared against several other multi-label learning (MLL) tech-
niques, and the findings show that GP-ECC achieves superior
performance compared to the benchmark methods. [88]] and [79],
focus on different areas to improve software development pro-
cesses. [88] introduces a novel algorithm for software cluster-
ing, while [79] investigates using a well-known optimization
algorithm for requirements traceability link recovery. For soft-
ware clustering, GAKH algorithm [88]] combines Genetic Algo-
rithm (GA) and Krill Herd (KH) algorithms to deliver superior
clustering quality. This approach was evaluated on ten different
software systems by using TurboMQ demonstrating high-quality
clusters. In requirements traceability, NSGA-II [79] paired with
information retrieval methods to overcome the advantages of
manual creation and maintenance of traceability links reduc-
ing manual effort and potential for errors. Based on the con-
ducted evaluation, the approach demonstrates superior perfor-
mance compared to basic IR techniques. While these studies
use and explore different approaches to address distinct chal-

‘ International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

lenges in software engineering, they highlight the effectiveness
of using optimization algorithms, specifically SBSE algorithms
to improve software development processes and enhance soft-
ware quality, comprehension, and maintainability.

4.2.3 Design. The works by ([75, [63], [30l, [77], (6], (87,
[89]) discuss various techniques for software modularization and
microservice decomposition, illustrating the importance of auto-
mated approaches along with the use of optimization algorithms.
Some studies focus on enhancing the modularization methods,
while others focus on the challenges associated with transition-
ing monolithic applications to microservice architectures. For
the modularization aspect, [63] suggests a novel approach for
software modularization that merges search-based and hierarchi-
cal techniques. The suggested approach minimizes the search
space by initializing the modularization using a genetic algo-
rithm, and the final modularization is then carried out using a
hierarchical algorithm. This combination strategy preserves a hi-
erarchical representation of the software for easier understand-
ing while enhancing the quality of modularization. Addition-
ally, [64] suggests a novel Reinforcement Learning-based Iter-
ated Local Search (RL-ILS) technique for software modulariza-
tion. ILS consists of two key components: a local search ap-
proach and a perturbation method. Finding high-quality modu-
larizations is the aim of RL-ILS. The effectiveness of RL-ILS
is demonstrated through experiments on eleven real-world soft-
ware systems, such as search-based, hierarchical, greedy, and
non-hierarchical algorithms, in terms of modularization qual-
ity. In order to improve software architecture reliability which is
important while designing an architectural structure, [77] inves-
tigates the application of genetic programming techniques and
(NSGA-II). The proposed method enhances software reliabil-
ity by identifying architectural tactics, mapping components to
these tactics, and optimizing the architecture to balance cost and
reliability. A case study on a business reporting system demon-
strates the approach’s effectiveness in generating optimal archi-
tectures that achieve this balance. [86] employs MOEAs to syn-
thesize Pareto-optimal policies for Markov Decision Processes
(MDPs) to meet complex quality-of-service (QoS) requirements.
The study presents the EvoPoli framework, which uses evolu-
tionary algorithms to search for Pareto-optimal policies that rep-
resent trade-offs between different objectives. A case study us-
ing an autonomous underwater vehicle (AUV) operating in an
ocean environment is used to assess EvoPoli. The experimen-
tal findings show that EvoPoli can successfully synthesize poli-
cies that balance conflicting objectives, such as maximizing the
gathering of scientific data while minimizing mission risk and
energy consumption. To optimize software architecture sustain-
ability, [87] suggests integrating GI into the architectural de-
sign process to automatically optimize software for reduced en-
ergy consumption without compromising performance. The pro-
posed framework integrates sustainability into design, optimiza-
tion, and continuous evolution phases, automating the creation
of energy-efficient systems. The authors suggest future work
includes refining algorithms, developing sustainability metrics,
and validating the approach through case studies, advancing sus-
tainable software engineering. Also, [75], the authors describe a
novel, search-based algorithm based on NSGA-II for automat-
ing software isolation. The main idea is to frame isolation as an
optimization problem, where the goal is to minimize problem-
atic couplings that cross the boundary of the user-defined por-
tion of code to be isolated. The approach successfully reduces
problematic couplings by over 87% on average across various
open-source projects. In addition, [89] introduces the Microser-
vices Backlog (MB) model, a semi-automatic approach using ge-
netic programming to optimize microservice granularity at de-
sign time, based on user stories. By considering metrics like
coupling, cohesion, granularity, semantic similarity, and com-
plexity, MB enables graphical analysis of architectures, which

helps identify critical design issues. It outperformed state-of-the-
art methods, achieving less coupling, higher cohesion, reduced
complexity, and fewer dependencies.

4.2.4 Project Management. Studies on the PM phase have ad-
dressed issues related to Software Project Scheduling (SPSP)
(1491, 1501, 1511, [52], (53], [54]) and software effort estima-
tion [78]. Notably, the majority of studies related to PM fo-
cused on SPSP. [49] introduces a new mathematical model for
improving project scheduling, considering communication costs
and team relationships, which are often overlooked in tradi-
tional scheduling techniques. To solve the model, the algorithm,
called the enhanced Bi-Population Discrete Evolutionary Al-
gorithm (IFBPD-EA), uses feedback mechanisms for adaptive
tuning and improved local search strategies. Experimental re-
sults show that it outperforms four state-of-the-art algorithms,
achieving improvements in project duration and cost reduction.
This suggests the algorithm’s potential for enhancing scheduling
performance, especially in projects with dynamic human inter-
actions and evolving skill requirements. Similarly, [S1] exam-
ines the disruptive effects of employment turnover. It presents
a MOEA that balances the reassignment of existing team mem-
bers with the hiring of new employees with the necessary skills
in order to maximize resource allocation. In tests across dynamic
benchmarks and real-world settings, the model showed a 9% re-
duction in project costs when compared to traditional methods.
The study provides insightful information for project managers
and future research by demonstrating how efficiently control-
ling turnover can lower costs, sustain productivity, and enhance
project outcomes. Furthermore, [S0] presents a novel method
for multi-round procurement auctions. The objective is to assist
participants in making better choices in complex bidding situa-
tions where they could otherwise prioritize personal benefits over
the success of the project as a whole. To determine the Nash
equilibrium—a balance point that makes bidder selection clear
and promotes long-term collaboration—the researchers created
a game-theoretic model. The PSO algorithm was very success-
ful at achieving this equilibrium after being fine-tuned, beating
alternative techniques in terms of speed and quality. The find-
ings of the study demonstrate that this strategy produces win-win
situations by striking a balance between timeframes, expenses,
and profitability for bidders and investors, eventually fostering a
more collaborative procurement process.

In order to improve project schedules and costs, [S2] presents a
novel model for SPSP that takes into account the evolution of
employees’ experiences and learning skills. This method takes
into consideration how people develop over time, which re-
sults in notable increases in productivity, in contrast to tradi-
tional models that frequently ignore human factors. When the
model was tested on 24 problem cases, it was found to reduce
project length by 40% while maintaining budget. Additionally,
the model was compared to six top algorithms; in 63% of the
cases, the bi-criterion evolution (BCE) algorithm performed bet-
ter than the others. These results highlight how crucial it is to fac-
tor employee experience into project scheduling and give project
managers useful advice on how to allocate resources efficiently
in changing settings. [53]] also addresses a dynamic situation but
in terms of integrating new employees mid-project. By framing
SPSP as a multi-objective optimization problem, the model aims
to balance project duration and costs while adapting to changing
project requirements and employee availability. The proposed
heuristic, hNEA, was tested across 18 benchmark scenarios and
3 real-world cases, showing strong performance in managing dy-
namic events without sacrificing efficiency. The research high-
lights the importance of flexibility in project management and
offers practical insights for managers handling complex, evolv-
ing projects. [78] attempts to solve software effort estimation
by employing a chaotic Particle Swarm Optimization technique
to optimize Use Case complexity weights. Traditional complex-

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 13 - No. 1, August 2025 - www.ijais.org

ity weight levels run the danger of producing inaccurate project
planning because they frequently result in sudden classifications
and unreliable estimations. Using a Bernoulli chaotic map, the
suggested chaotic PSO method produced the best results, ex-
ceeding standard PSO in accuracy by a wide margin (p j 0.05).
This research fills a gap in optimizing the Use Case Points (UCP)
framework, offering practical value for software project man-
agers by enabling more accurate cost and effort estimates. It is
recommended that this strategy be extended in future studies us-
ing more datasets for validation.

S. DISCUSSION

This section provides answers to the RQs by analysing the
selected studies.

RQ1: Addressing SDLC Problems with SBSE Applications
To answer the question, the text is divided into three parts:

Part 1: SBSE Problems

After analyzing 85 primary studies, the problems that arose
during the SDLC stages were extracted. Figure 5 illustrates
the number of studies that focus on each problem. Test Case
Generation and Test Data Generation are the most frequently
occurring problems. This highlights a strong emphasis on SBSE
within testing-related tasks, likely due to the complexity and
resources required for effective testing. Refactoring receives
moderate attention which reflects the significance of SBSE
in enhancing code quality and maintainability. The Software
Project Scheduling Problem (SPSP) appears 6 times, under-
scoring the importance of SBSE in optimizing project timelines
and resource allocation. Path Selection and Coverage is also
represented with 4 occurrences, likely due to its role in ensuring
comprehensive test coverage. Less common problems addressed
by SBSE include Bug Detection as well as Modularization,
Re-Modularization, and Test Suite Generation and Optimiza-
tion, each having a limited but noteworthy focus in research.
The Multi-Objective Testing Resource Allocation Problem,
Community Smells Detection, Code Smells Detection, Bug
Localization, and the discovery of Metamorphic Relations are
mentioned once or twice, suggesting they are lacking sufficient
focus. Other problems are detailed in Tabel 7.

Part 2: SBSE algorithms used to tackle the problems

Figure 6 illustrates the frequency of the most commonly used
algorithms for addressing the SBSE problem. Among the listed
algorithms, NSGA-II and the GA are the most commonly used,
likely due to their multi-objective capabilities. Other algorithms
such as DynaMOSA, PSO, and MOEAs exhibit moderate
usage, each being mentioned around 4 to 5 times. Methods
like GP, EAs, DA, and ACO are cited less frequently, with 2
to 3 occurrences each. The least represented algorithms, with
minimal mentions, include CSO, SA and the WOA. Addition-
ally, the ”Other” category, which encompasses 20 occurrences,
includes novel approaches based on SBSE as well as rarely
used algorithms such as the Immune Algorithm, Tabu Search,
Cockroach Swarm Optimization, FOA, and Cuckoo Search
Optimization.

Part 3: SDLC stages where SBSE is used

Figure 7 illustrates the frequency of problems arising at various
stages of the SDLC that could potentially be addressed using
SBSE. The testing phase presents the highest frequency of
issues, with 55 studies indicating that this stage is where most
problems occur, making it a prime target for SBSE methods.
The maintenance stage follows with approximately 15 studies,
suggesting it also faces significant challenges that can be
addressed by SBSE, likely due to the complexities involved
in updating and improving existing software. The design and
PM phase experiences a moderate frequency of issues. In PM,
six out of seven instances focus on project scheduling, which
is essential for effective resource management. This allows
teams to complete projects on time and within budget. The

remaining instance pertains to effort estimation. In contrast, the
deployment stage highlights only one issue, indicating that the
application of SBSE to address deployment-related challenges
is limited. Overall, the chart suggests that SBSE methods are
primarily relevant and potentially most beneficial during the
Testing and Maintenance stages of the SDLC, with a lesser,
yet still significant, role in the Design and Project Management
phases. Other stages, such as Deployment exhibit fewer issues
that SBSE could effectively address.

RQ2: Current Trends in SBSE Research

Figure 8 illustrates the distribution of studies over the years.
From 2019 to 2022, there was a steady increase in the number
of studies, which peaked in 2022. This trend suggests a growing
interest in SBSE during this period, likely due to advancements
in the field or increased awareness of its benefits in software
engineering. The highest number of studies occurred in 2022,
indicating that SBSE gained significant attention and application
that year. This peak may be linked to improved methodologies,
tools, or successful applications that captured public interest.
However, from 2022 to 2024, there was a sharp decline in
the number of studies, with a notable drop between 2023 and
2024. This decrease could be attributed to several factors,
such as a shift in research focus towards newer or alternative
methodologies, including ML which is out of the scope of this

paper.

In order to know the annual change in using SBSE algorithms,
the literature reviewed in this study shows that the hybrid algo-
rithms and (NSGA-II) appear to be the most used algorithms in
2019 as shown in Figure 9. They have been discussed in a num-
ber of applications in testing, and maintenance fields, including
bug detection [61], refactoring [47]], software clustering prob-
lems [87], and test case generation [14]. The term ”(Others)”
refers to various algorithms that were reported to be used only
once or twice during the year; hence, they are not discussed here.
In 2020, (NSGA-II), and (GA) continued to be used remarkably
and especially the Multi Population Genetic algorithm (MGA) to
support refactoring [43], and test case generation [29],[32],[40].
The number of studies has clearly increased in 2021, specifically
in (GA), to play an important role in testing and maintenance
fields. GA has been utilized to show its effectiveness in mainte-
nance and testing in terms of unit testing to enhance reliability
and performance [27], multi path coverage for test data [55]], test
data generation to maximize code coverage and enhance soft-
ware testing efficiency [31]]. Studies in 2022 reached the high-
est number and were more diverse compared to previous years
as topics related to testing, maintenance, design, project man-
agement, and planning were highlighted. NSGA-II and hybrid
algorithms have been used more in the field of testing and main-
tenance such as [45],[36],[37], and [25]). It is worth noting that
there have been promising attempts to use NSGA-II in design.
For example, [75]], an automated refactoring process for isolating
software components from complex architectural dependencies
has been proposed. In addition, [77], a search-based method for
optimizing software architecture reliability using the NSGA-II
algorithm and genetic programming has been proposed by ex-
tracting reliability tactics through genetic programming and op-
timizing component allocation with NSGA-II. Also, [78]], opti-
mizing Use Case complexity weight parameters in software ef-
fort estimation using chaotic Particle Swarm Optimization (PSO)
has been discussed as well the use of multi-objective evolu-
tionary algorithm (MOEA) in project management [52]. In the
last two years 2023 and 2024, the literature highlights various
algorithms such as the hybrid algorithms that have been used
in project management, maintenance, and testing [S3[,[62],[13]],
and [33]]. Furthermore, the use of DynaMOSA [84]], MOEA [70],
ACO [83], and PSO [23] in testing and MOEA in project man-
agement [82] has been proposed. The diversity and advancement

10

O

Requirements Traceability Link Recovery

Software Effort Estimation

Optimal Software Architecture within a complex design space

Problems

8] N
o v

-
v

10

NO. of Studies

Fig. 6.
Studies.

Optimal Deployment

Minimizing Problematic Couplings Within the Software...

Fault Localization

Discovering Metamaorphic Relations
Detecting Code Smells

Community Smells Detection

Bug Localization

Multi-Objective Testing Resource Allocation Problem
Test Suite Generation and Optimization
Modularization and Re-Modularization
Bug Detection

Path Selection and Code Coverage
Software Project Scheduling Problem
Refactoring

Test Data Generation

Test Case Generation

Other

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

e e e T T e T e T T

II\J
(W8]

I

0 2 - 6 8 10 12 14 16 18 20

Number of Studies

Fig. 5. Number of studies addressing various software engineering problems in the reviewed literature.

-
[

20
14 14
5
33iiII ‘
L o O o
[P S & &

& & & F

v“-—’ (&)

SBSE Algorithm

Frequency of SBSE Algorithms Used in Software Engineering

60 55

50

2
= 40
3
7]
S 30
L4
E
S 20
) 15
10 7 7
H B :
0 —
Testing Maintenance Design PM Deployment
SDLC Stage

Fig. 7. Distribution of SBSE Studies Across SDLC Stages.

presents the number of studies corresponding to each algorithm,

in the use of SBSE algorithms to support and improve SDLC is
a strong indicator of their effectiveness and potential to solve a
wide range of challenges. This progress encourages continued
work on exploring the SBSE algorithms field and highlights the
valuable role algorithms play in enhancing and solving SDLC
problems.

RQ3: Open Gaps for Potential Future Directions in SBSE
This section responds to RQ3 by analyzing the primary studies
and identifying open gaps, pointing to possible directions for fur-
ther research. In Table 7, the primary studies are analyzed, cate-
gorizing them according to the targeted problems and identifying
the SBSE algorithms applied to address these problems. Figure 6

including the *Other’ category, which covers 20 articles. Each
of these 20 papers uses an algorithm that appeared only once
among the 85 analyzed papers. Upon further investigation of the
results and variety of these studies, it was found that these algo-
rithms often showed effectiveness, suggesting a valuable area for
potential investigation and could lead to broader applications of
SBSE methodologies in diverse software engineering contexts.
For example, the Greedy and Parallel Scheduling (GPS) algo-
rithm in [34], demonstrates the effectiveness of exploring a less
common scheduling technique that takes into account heteroge-
neous resources with different levels of skill proficiency. Com-
pared to the Parallel Scheduling Scheme (PSS), the GPS algo-

11

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

; Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

NO. OF PUBLICATION
=
15}

2019 2020 2021 2022 2023 2024
YEAR OF PUBLICATION

Fig. 8. Trend of SBSE-Related Publications Over the Years.

rithm consistently delivers better performance across different
project settings, effectively reducing project duration. Another
example is the work by [81]], which introduces a new method for
software mutation testing that uses a discretized, modified ver-
sion of the FOA to target and mutate only the most bug-prone
paths within a program, thereby reducing mutant creation by
about 27.63% compared to traditional techniques. Further inves-
tigation was also conducted on algorithms that appeared multiple
times in the primary studies. Two bubble charts were created to
visualize open gaps: one showing the application of SBSE algo-
rithms to SDLC-related problems (Figure 10) and another illus-
trating their application across SDLC stages, providing a broader
perspective (Figure 11). Figure 10 highlights the versatility of
certain algorithms across multiple SDLC optimization problems
while also revealing several open gaps. For instance, algorithms
like CSO and WOA are less frequently applied to the problems
explored. Investigating ways to adapt or broaden the use of these
algorithms across a wider range of SDLC challenges could open
up new research directions. The NSGA-II algorithm, widely ap-
plied across various problems, has not yet been explored in a hy-
brid approach within the studies, presenting another opportunity
for future research. A number of problems, including Software
Clustering and Test Report Prioritization, have received limited
attention. Future research could examine these problems to de-
termine whether other algorithms might improve effectiveness in
solving them. By contrast, Test Case Generation and Selection
have received more attention and benefit from a diverse range of
algorithms, reflecting their complexity and the need for flexible,
more advanced approaches. Test Data Generation, however, has
exclusively been approached using GA and hybrid techniques,
such as BSA combined with SA and GWO combined with GA.
Moreover, some emerging algorithms and recent advances in op-
timization that employ artificial intelligence and ML are not rep-
resented in this study. Exploring these new developments could
provide valuable solutions for various SDLC problems in future
research. Supporting this is the work by [43]], which introduces
an interactive tool for software refactoring that uses the multi-
objective evolutionary algorithm NSGA-II to generate a set of
solutions (i.e. Pareto front). The approach dynamically adapts
to developer feedback, providing refactoring suggestions based
on real-time code changes to preserve software design quality
and minimize the number of recommended refactorings. Eval-
uation results show the tool’s efficiency in comparison to other
techniques, demonstrating improvements in the software refac-
toring process. However, the authors note that exploring the
Pareto front is challenging, especially when using an interac-
tive approach. Consequently, they suggest incorporating ML as
a potential extension to address this difficulty. In addition, [23]
proposes an enhanced version of the PSO algorithm tailored for
software test data generation. By introducing modifications, in-
cluding a new fitness function and balanced exploration and ex-
ploitation, this approach overcomes local optima challenges, in-

creasing test coverage while requiring fewer evaluations. This
refined PSO method outperforms several existing evolutionary
and meta-heuristic algorithms. Although, the authors point out
some unresolved issues that need further exploration, suggesting
the use of hybrid algorithms or the integration of ML methods to
enhance optimization. Only 11 out of 85 studies (approximately
13%) utilized hybrid approaches, suggesting a lower adoption
rate than anticipated based on the potential benefits of hybrid
methodologies. This suggests another area for future research,
as hybrid algorithms could potentially offer robust solutions to
SDLC optimization problems where the weaknesses of one ap-
proach can be offset by the strengths of another. For example,
[33]] is a recent study that presents a new approach, the Hybrid
ACO-NSA, for automating test data generation in Java environ-
ments. The performance of the algorithm surpasses current state-
of-the-art-approaches, with a success rate of 99.8%. In this case,
the ACO algorithm is good at exploring the search space, while
the NSA algorithm is good at finding test data replication, pro-
viding complete route coverage, and decreasing the size of a test
suite. By combining these two algorithms, the Hybrid ACO-NSA
approach is able to generate test data that is both comprehensive
and efficient. Another example is Fuzuli [36], which employs
both GWO and GA to automatically generate optimal test data
for software testing. The algorithm outperforms other algorithms
(e.g. PSA and ABC) with an average coverage of %99.98, a suc-
cess rate of %99.97, and an average output of 2.86. In this algo-
rithm, the GA generates the initial population and applies evo-
Iutionary operators, while the GWO directs the search process,
resulting in efficient and effective test data generation. From a
broader perspective, Figure 11 shows the application of SBSE
algorithms across various SDLC stages, including Testing, De-
sign, Maintenance, and Project Management (PM). Design and
PM stages have received less attention and less variety of algo-
rithm use compared to Testing. Additionally, none of the sur-
veyed primary studies focused on the Requirements or Devel-
opment stages. This suggests potential gaps where additional re-
search could investigate the applicability of SBSE algorithms for
these stages.

The deployment phase is not represented in the plot, as only a
single study addressed this phase—using Simulated Annealing
(SA) [[76]. That study presents an optimization model for deploy-
ing cloud-hosted application components in a way that guaran-
tees multitenancy isolation. The model addresses the challenge
of sharing resources among tenants while maintaining isolation
to prevent performance degradation due to high workloads. By
modelling the deployment problem as a multi-choice multidi-
mensional knapsack problem (MMKP), the authors develop a
solution using a simulated annealing-based metaheuristic. The
results reveal that the approach achieves near-optimal solutions,
balancing isolation needs with resource utilization efficiency,
highlighting the potential of metaheuristic optimization in cloud
resource management. This indicates an opportunity for further
research to explore and expand the use of SBSE algorithms in
the deployment phase.

6. THREATS TO VALIDITY

Internal validity: Searches were conducted to identify all rele-
vant studies from four digital libraries. However, it is acknowl-
edged that some studies may have been overlooked, but it is be-
lieved that their number will be minimal.

Construct validity: The research questions may not encompass
every aspect of the latest advancements in SBSE. To mitigate this
issue, brainstorming is employed to effectively pinpoint a set of
research questions that adequately address the current research
landscape in this study.

Additionally, a potential challenge faced is ensuring the accuracy
of the classification of optimization problems within the SDLC.
Despite efforts to categorize them as carefully as possible, some

12

Foundation of Computer Science FCS, New York, USA

‘ International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868

Volume 13 - No. 1, August 2025 - www.ijais.org

w

=9

98]

[2*]

fary

2019 2020 2021

H DynaMOSA NSGA-II mGA ® Hybrid

0 I| ‘ ‘I I‘Illl‘ll‘l| ‘ll | |

2022 2023 2024

PSO m(MOEA) mGP mOthers

Fig. 9. Yearly Distribution of SBSE Algorithms Used in Studies.

problems might overlap, and the distinction between general and
specific classifications isn’t always clear.

Conclusion validity: This analysis focuses exclusively on stud-
ies that address the use of SBSE within the SDLC. The authors
argue that the purpose of this study is to explore and identify
potential research directions for the application of SBSE in the
SDLC, which can help researchers select relevant areas of ap-
plication. However, although many studies have utilized ML to
address issues that arise during the SDLC, the authors have cho-
sen to exclude it from their research.

Additionally, this study does not evaluate techniques across di-
verse datasets, as the reviewed primary studies do not consis-
tently report standardized datasets or benchmark scenarios. Fu-
ture research could explore this direction as more empirical stud-
ies with unified reporting become available.

External validity: The findings from this literature review were
evaluated in relation to specific studies within the SBSE domain.
Thus, the conclusions and classifications are valid only within
this particular context. The current study’s results are based on
qualitative analysis and can serve as a foundation for future re-
search. Additional studies can be examined accordingly.

7. CONCLUSIONS

In this paper, the literature review results on exploring search-
based applications in the SDLC are presented. The study con-
firms the significant interest in applying SBSE algorithms as
indicated by the number of reviewed studies. The most com-
mon use of SBSE algorithms occurs during the testing phase,
where they address various problems, particularly in Test Case
Generation and Selection. This observation suggests a potential
avenue for researchers to investigate whether the advancements
made in testing can be applicable to other SDLC phases, espe-
cially in project management, requirements, design, and deploy-
ment stages, which have received relatively little attention but
are equally important.

Additionally, the work contributes to identifying gaps in current
studies, aiding in suggesting future research areas and opportuni-
ties. These include exploring the application of SBSE algorithms
for enhancement approaches in requirements engineering, devel-
opment, and deployment challenges, as well as further investiga-
tion into hybrid and machine learning approaches.

The goal of this literature review study is to highlight the main
research topics related to the application of SBSE in various
SDLC phases and associated problems, thereby encouraging
both researchers and practitioners to explore the substantial po-
tential that SBSE research areas can offer to support the SDLC
as a whole. For future work, there are plans to investigate the ap-
plications of machine learning algorithms in addressing SDLC-
related optimization problems and compare their effectiveness
with traditional SBSE approaches that do not incorporate ma-
chine learning.

8. REFERENCES

[1] T. E. Colanzi, W. K. Assuncdo, S. R. Vergilio, P. R. Farah,
and G. Guizzo, “The symposium on search-based soft-
ware engineering: Past, present and future,” Information
and Software Technology, vol. 127, p. 106372, 2020.

[2] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-
based software engineering: Trends, techniques and appli-
cations,” ACM Computing Surveys (CSUR), vol. 45, no. 1,
pp. 1-61, 2012.

[3] A. Ramirez, P. Delgado-Pérez, J. Ferrer, J. R. Romero,
I. Medina-Bulo, and F. Chicano, “A systematic literature
review of the sbse research community in spain,” Progress
in Artificial Intelligence, vol. 9, pp. 113-128, 2020.

[4] “Performance evaluation metrics for multi-objective evo-
lutionary algorithms in search-based software engineering:
Systematic literature review,” Applied Sciences (Switzer-
land), vol. 11, no. 7, 2021.

13

X

Optimization Problem

[5] N. Khoshniat, A.

Volume 13 - No. 1, August 2025 - www.ijais.org

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Software Clustering

Test Report Prioritization -

Simulation-based Testing for Advanced Driver-Assistance Systems -
Requirements Traceability Link Recovery 4

Optimal Software Architecture within a complex design space
Minimizing Problematic Couplings Within the Software Architecture 4
Automate Crash Reproduction

Test Orders in Service-Oriented Architecture 4

Modularization and Re-Modularization -

Refactoring 4

Test Data Generation

Test Unit Generation -

Bug Detection

Software Effort Estimation

Discovering Metamorphic Relations

Multi-Objective Testing Resource Allocation Problem (MOTRAP) 4
Identification and Evaluation of Microservices from User Stories
Community Smells Detection

Software Project Scheduling Problem -

Optimal Deployment

Test Path Generation 4

Path Selection and Code Coverage

Test Case Generation and Selection A

Test Suite Generation and Optimization

Predictions of Fault Slip-through 1

1
1
1
1
1
1
1
1
1 1
2 6 1
7 4
1
1 1
1
1
2
1
1
2 2 1
1
1
1 1 1 1
1 1 1 1 2 1 1 3
1 1
C50 WOA DA ACO SA EAs GP MOEAS PSODynaMOSAGA NSGA-llHybrid

SBSE Algorithm

Fig. 10. Mapping of Optimization Problems in SDLC to Applied SBSE Algorithms.

Jamarani, A. Ahmadzadeh,
M. Haghi Kashani, and E. Mahdipour, “Nature-inspired
metaheuristic methods in software testing,” Soft Comput-
ing, vol. 28, no. 2, pp. 1503-1544, 2024.

[6] A.Zeb, FE. Din, M. Fayaz, G. Mehmood, and K. Z. Zamli,

“A systematic literature review on robust swarm intelli-
gence algorithms in search-based software engineering,”
Complexity, vol. 2023, no. 1, p. 4577581, 2023.

[7]1 B. Kitchenham and S. M. Charters, “Guidelines for per-

forming systematic literature reviews in software engineer-
ing,” Technical report, Ver. 2.3 EBSE Technical Report.
EBSE, no. January 2007, pp. 1-57, 2007.

[8] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Sys-

tematic mapping studies in software engineering,” in /2th
international conference on evaluation and assessment in
software engineering (EASE), BCS Learning & Develop-
ment, 2008.

[9] P. Delgado-Pérez, A. Ramirez, K. J. Valle-Gémez,

1. Medina-Bulo, and J. R. Romero, “Interevo-tr: Interactive
evolutionary test generation with readability assessment,”
IEEE Transactions on Software Engineering, vol. 49, no. 4,
pp- 2580-2596, 2022.

[10] C. Mao, L. Wen, and T. Y. Chen, “Adaptive random

test case generation based on multi-objective evolutionary
search,” in 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communi-
cations (TrustCom), pp. 4653, IEEE, 2020.

[11] F. Mehboob, A. Rauf, and R. U. R. Qazi, “Evaluating

the optimized mutation analysis approach in context of
model-based testing,” in 2020 International Conference on

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Emerging Trends in Smart Technologies (ICETST), pp. 1-6,
IEEE, 2020.

J. Cao, H. Huang, and F. Liu, “Android unit test case gener-
ation based on the strategy of multi-dimensional coverage,”
in 2021 IEEE 7th International Conference on Cloud Com-
puting and Intelligent Systems (CCIS), pp. 114-121, IEEE,
2021.

I. Ghani, W. M. Wan-Kadir, A. F. Arbain, and 1. Ghani,
“A detection-based multi-objective test case selection algo-
rithm to improve time and efficiency in regression testing,”
IEEE Access, 2024.

F. Chen, A. Gunawan, D. Lo, and S. Kim, “Inspect: Iterated
local search for solving path conditions,” tech. rep., 2019.

S. Sharma, S. Rizvi, and V. Sharma, “A framework for op-
timization of software test cases generation using cuckoo
search algorithm,” pp. 282-286, 2019.

M. Naz, Z. Anwaar, and W. H. Butt, “Automated white box
test case generation for statement coverage using u-nsga-
iii,” in 2023 17th International Conference on Open Source
Systems and Technologies (ICOSST), pp. 1-6, IEEE, 2023.

Q. Shao, “Automatic case generation of variation testing
in navigation software based on the genetic algorithm,”
pp. 263-268, 2023.

A. S. Verma, A. Choudhary, and S. Tiwari, “Automatic test
case generation framework for changed code using modi-
fied aeo algorithm in regression testing,” pp. 81-84, 2023.

M. Ahmed, A. B. Nasser, and K. Z. Zamli, “Construction
of prioritized t-way test suite using bi-objective dragonfly
algorithm,” IEEE Access, vol. 10, pp. 71683-71698, 2022.

14

K\

SDLC stage

Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

PM A 2 2 2
Maintenance - 1 2 7 2
Design 1 1 3
Testing 1 1 2 2 i 1 2 2 5 11 4 9
o} ¥ o o 2 o -~ & >
& & F & & S & F & ¢ & &
+ & £ &)
of
SBSE Algorithm

(20]

[21]

(22]

(23]

[24]

(25]

[26]

Fig. 11.

H. B. Braiek and F. Khomh, “Deepevolution: A search-
based testing approach for deep neural networks,” pp. 454—
458, 2019.

H. N. N. Al-Sammarraie and D. N. Jawawi, “Multiple
black hole inspired meta-heuristic searching optimization
for combinatorial testing,” leee Access, vol. 8, pp. 33406—
33418, 2020.

O. Al-Masri and W. A. Al-Sorori, “Object-oriented test
case generation using teaching learning-based optimiza-
tion (tlbo) algorithm,” IEEE Access, vol. 10, pp. 110879—
110888, 2022.

A. Damia, M. Parvizimosaed, A. Bakhshai, and M. Salehi,
“Optimized test data generation for path testing using
improved combined fitness function with modified parti-
cle swarm optimization algorithm,” in 2024 IEEE Cana-
dian Conference on Electrical and Computer Engineering
(CCECE), pp. 412416, IEEE, 2024.

A. A. Muazu, A. S. Hashim, U. I. Audi, and U. D. Mai-
wada, “Refining a one-parameter-at-a-time approach using
harmony search for optimizing test suite size in combina-
torial t-way testing,” IEEE Access, 2024.

S. Potluri, J. Ravindra, G. B. Mohammad, and G. S. Sajja,
“Optimized test coverage with hybrid particle swarm bee
colony and firefly cuckoo search algorithms in model based
software testing,” in 2022 First International Conference

on Artificial Intelligence Trends and Pattern Recognition
(ICAITPR), pp. 1-9, 2022.

G. Grano, C. Laaber, A. Panichella, and S. Panichella,
“Testing with fewer resources: An adaptive approach to
performance-aware test case generation,” IEEE Transac-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Application of SBSE Algorithms Across SDLC Stages.

tions on Software Engineering, vol. 47, no. 11, pp. 2332-
2347, 2019.

Z.]. Rashid and M. F. Adak, “Test data generation for dy-
namic unit test in java language using genetic algorithm,”
in 2021 6th International Conference on Computer Science
and Engineering (UBMK), pp. 113-117, IEEE, 2021.

S. D. Bejo, B. G. Assefa, and S. K. Mohapatra, “Backip:
Mutation based test data generation using hybrid ap-
proach,” in 2021 International Conference on Informa-
tion and Communication Technology for Development for
Africa (ICT4DA), pp. 178-183, IEEE, 2021.

X. Dang, X. Yao, D. Gong, T. Tian, and B. Sun, “Multi-
task optimization-based test data generation for mutation
testing via relevance of mutant branch and input variable,”
IEEE Access, vol. 8, pp. 144401-144412, 2020.

K. Serdyukov and T. Avdeenko, “Development and re-
search of the test data generation approach modifications,”
in 2021 International Conference on Information Technol-
ogy and Nanotechnology (ITNT), pp. 1-6, IEEE, 2021.

M. R. H. Charmchi and B. R. Cami, “Paths-oriented test
data generation using genetic algorithm,” in 2021 12th
International Conference on Information and Knowledge
Technology (IKT), pp. 157-162, IEEE, 2021.

Z. Cao, Y. Wang, P. Guo, and B. Tian, “Efsm test data
generation based on fault propagation and multi-population
genetic algorithm,” in 2020 7th International Conference
on Dependable Systems and Their Applications (DSA),
pp. 240-245, IEEE, 2020.

P. Chavan and P. Chavan, “An review on automated test
data generation with java environment,” in 2024 First Inter-
national Conference on Pioneering Developments in Com-

15

K\

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Foundation of Computer Science FCS, New York, USA
Volume 13 - No. 1, August 2025 - www.ijais.org

puter Science & Digital Technologies (IC2SDT), pp. 131—
136, IEEE, 2024.

F. Tang, “Design and java implementation of intelligent
platform for english training based on intelligent test data
generation algorithm,” in 2022 3rd International Confer-

ence on Smart Electronics and Communication (ICOSEC),
pp- 1641-1644, 2022.

X. Dang, X. Yao, D. Gong, and T. Tian, “Efficiently gen-
erating test data to kill stubborn mutants by dynamically
reducing the search domain,” /EEE Transactions on Relia-
bility, vol. 69, no. 1, pp. 334-348, 2020.

B. Arasteh, M. R. Sattari, and R. S. Kalan, Fuzuli: Auto-
matic Test Data Generation for Software Structural Testing
using Grey Wolf Optimization Algorithm and Genetic Algo-
rithm. 2022.

X. Yao, G. Zhang, F. Pan, D. Gong, and C. Wei, “Orderly
generation of test data via sorting mutant branches based
on their dominance degrees for weak mutation testing,”
IEEE Transactions on Software Engineering, vol. 48, no. 4,
pp- 1169-1184, 2020.

A. Ghaemi and B. Arasteh, “Sfla-based heuristic method to
generate software structural test data,” Journal of software:
Evolution and Process, vol. 32, no. 1, p. 2228, 2020.

X. Dang, W. Bao, Q. Qu, and D. Li, “Software testing com-
bining the fusion of surrogate model and evolutionary al-
gorithm,” in 2023 International Conference on the Cogni-
tive Computing and Complex Data (ICCD), pp. 311-316,
IEEE, 2023.

X. Yao, D. Gong, B. Li, X. Dang, and G. Zhang, “Testing
method for software with randomness using genetic algo-
rithm,” IEEE Access, vol. 8, pp. 61999-62010, 2020.

Y. Zhao, Y. Yang, Y. Zhou, and Z. Ding, “Depicter: a
design-principle guided and heuristic-rule constrained soft-
ware refactoring approach,” IEEE Transactions on Relia-
bility, vol. 71, no. 2, pp. 698-715, 2022.

J. Liu, W. Jin, J. Zhou, Q. Feng, M. Fan, H. Wang,
and T. Liu, “3erefactor: Effective, efficient and executable
refactoring recommendation for software architectural con-
sistency,” IEEE Transactions on Software Engineering,
2024.

V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. 0.
Cinnéide, A. Ouni, and Y. Cai, “An interactive and dy-
namic search-based approach to software refactoring rec-
ommendations,” IEEE Transactions on Software Engineer-
ing, vol. 46, no. 9, pp. 932-961, 2018.

T. Ferreira, J. Ivers, J. J. Yackley, M. Kessentini, I. Ozkaya,
and K. Gaaloul, “Dependent or not: Detecting and under-

standing collections of refactorings,” IEEE Transactions on
Software Engineering, vol. 49, no. 6, pp. 3344-3358, 2023.

S. Rebai, V. Alizadeh, M. Kessentini, H. Fehri, and R. Kaz-
man, “Enabling decision and objective space exploration
for interactive multi-objective refactoring,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 5, pp. 1560-
1578, 2020.

F. Adler, G. Fraser, E. Griindinger, N. Korber, S. Labrenz,
J. Lerchenberger, S. Lukasczyk, and S. Schweikl, “Im-
proving readability of scratch programs with search-based
refactoring,” pp. 120-130, 2021.

V. Alizadeh, H. Fehri, and M. Kessentini, “Less is more:
From multi-objective to mono-objective refactoring via de-
veloper’s knowledge extraction,” pp. 181-192, 2019.

C. Abid, M. Kessentini, V. Alizadeh, M. Dhaouadi, and
R. Kazman, “How does refactoring impact security when
improving quality? a security-aware refactoring approach,”
IEEE Transactions on Software Engineering, vol. 48, no. 3,
pp- 864-878, 2020.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

J. Zhang, X. Shen, and C. Yao, “Evolutionary algorithm
for software project scheduling considering team relation-
ships,” IEEE Access, vol. 11, pp. 43690-43706, 2023.

T. N. Bao, Q.-T. Huynh, X.-T. Nguyen, G. N. Nguyen, and
D.-N. Le, “A novel particle swarm optimization approach
to support decision-making in the multi-round of an auction
by game theory,” International Journal of Computational
Intelligence Systems, vol. 13, no. 1, pp. 1447-1463, 2020.
N. Nigar, M. K. Shahzad, S. Islam, O. Oki, and J. M.
Lukose, “A novel multi-objective evolutionary algorithm to
address turnover in the software project scheduling prob-
lem based on best fit skills criterion,” IEEE Access, vol. 11,
pp. 89742-89756, 2023.

N. Nigar, M. K. Shahzad, S. Islam, S. Kumar, and
A. Jaleel, “Modeling human resource experience evolution
for multiobjective project scheduling in large scale soft-
ware projects,” IEEE Access, vol. 10, pp. 44677-44690,
2022.

N. Nigar, M. K. Shahzad, S. Islam, O. Oki, and
J. M. Lukose, “Multi-objective dynamic software project
scheduling: A novel approach to handle employee’s addi-
tion,” IEEE Access, vol. 11, pp. 39792-39806, 2023.

S. Akbar, M. Zubair, R. Khan, U. U. Akbar, R. Ullah,
and Z. Zheng, “Weighted multi-skill resource constrained
project scheduling: A greedy and parallel scheduling ap-
proach,” IEEE Access, 2024.

S. Fan, N. Yao, L. Wan, B. Ma, and Y. Zhang, “An
evolutionary generation method of test data for multiple
paths based on coverage balance,” IEEE Access, vol. 9,
pp. 86759-86772, 2021.

S. D. Semujju, H. Huang, F. Liu, Y. Xiang, and Z. Hao,
“Search-based software test data generation for path cov-
erage based on a feedback-directed mechanism,” Complex
System Modeling and Simulation, vol. 3, no. 1, pp. 12-31,
2023.

J. Goschen, A. S. Bosman, and S. Gruner, “Genetic micro-
programs for automated software testing with large path
coverage,” pp. 1-8, 2022.

S. M. Al Khatib, “Optimization of path selection and code-
coverage in regression testing using dragonfly algorithm,”
in 2021 International Conference on Information Technol-
ogy (ICIT), pp. 919-923, IEEE, 2021.

A. Perera, A. Aleti, M. Bohme, and B. Turhan, “Defect pre-
diction guided search-based software testing,” in Proceed-
ings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, pp. 448—460, 2020.

A. Perera, “Using defect prediction to improve the bug de-
tection capability of search-based software testing,” in Pro-
ceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pp. 1170-1174, 2020.
J. Wang, S. Wang, J. Chen, T. Menzies, Q. Cui, M. Xie, and
Q. Wang, “Characterizing crowds to better optimize worker
recommendation in crowdsourced testing,” IEEE Transac-
tions on Software Engineering, vol. 47, no. 6, pp. 1259-
1276, 2019.

R. Casamayor, C. Cetina, O. Pastor, and F. Pérez, “Study-
ing the influence and distribution of the human effort in a
hybrid fitness function for search-based model-driven en-
gineering,” IEEE Transactions on Software Engineering,
vol. 49, no. 12, pp. 5189-5202, 2023.

A. H. F. Tabrizi and H. Izadkhah, Software modularization
by combining genetic and hierarchical algorithms. 2019.
M. Tajgardan, H. Izadkhah, and S. Lotfi, “A reinforcement
learning-based iterated local search for software modular-
ization,” in 2022 8th Iranian conference on signal process-
ing and intelligent systems (ICSPIS), pp. 1-6, IEEE, 2022.

16

K\

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

Volume 13 - No. 1, August 2025 - www.ijais.org

C. Schroder, A. van der Feltz, A. Panichella, and
M. Aniche, “Search-based software re-modularization: a
case study at adyen,” pp. 81-90, 2021.

M. Fathi and S. Khoshnevis, “Reusability metrics in
search-based testing of software product lines: An exper-
imentation,” in 2021 26th International Computer Confer-
ence, Computer Society of Iran (CSICC), pp. 1-6, IEEE,
2021.

A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali,
“Combinatorial test suites generation strategy utilizing
the whale optimization algorithm,” IEEE Access, vol. 8,
pp. 192288-192303, 2020.

M. Panda, S. Dash, A. Nayyar, M. Bilal, and R. M.
Mehmood, “Test suit generation for object oriented pro-
grams: A hybrid firefly and differential evolution ap-
proach,” IEEE Access, vol. 8, pp. 179167-179188, 2020.

Z.Su, G. Zhang, F. Yue, D. Zhan, M. Li, B. Li, and X. Yao,
“Enhanced constraint handling for reliability-constrained
multiobjective testing resource allocation,” IEEE Transac-
tions on Evolutionary Computation, vol. 25, no. 3, pp. 537-
551, 2021.

G. Zhang, L. Li, Z. Su, Z. Shao, M. Li, B. Li, and
X. Yao, “New reliability-driven bounds for architecture-
based multi-objective testing resource allocation,” IEEE
Transactions on Software Engineering, vol. 49, no. 4,
pp- 2513-2529, 2022.

N. Almarimi, A. Ouni, M. Chouchen, I. Saidani, and M. W.
Mkaouer, “On the detection of community smells us-
ing genetic programming-based ensemble classifier chain,”
in Proceedings of the 15th International Conference on
Global Software Engineering, pp. 43-54, 2020.

G. Saranya, D. Mishra, V. Srikar, C. Abhilash, and
S. Dooda, “Code smell detection using a weighted cock-
roach swarm optimization algorithm,” in 2023 14th Inter-
national Conference on Computing Communication and
Networking Technologies (ICCCNT), pp. 1-8, IEEE, 2023.

B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato, “Au-
tomatic discovery and cleansing of numerical metamorphic
relations,” pp. 235-245, 2019.

M. Bisi and V. Vishvkarma, “Software fault localization us-
ing jaya algorithm,” in 2023 IEEE 20th India Council In-
ternational Conference (INDICON), pp. 1076-1081, IEEE,
2023.

J. Ivers, C. Seifried, and I. Ozkaya, “Untangling the knot:
Enabling architecture evolution with search-based refactor-
ing,” in 2022 IEEE 19th International Conference on Soft-
ware Architecture (ICSA), pp. 101-111, IEEE, 2022.

L. C. Ochei, A. Petrovski, and J. M. Bass, “Optimal deploy-
ment of components of cloud-hosted application for guar-
anteeing multitenancy isolation,” Journal of cloud comput-
ing, vol. 8, pp. 1-38, 2019.

M. Einabadi and S. M. H. Hasheminejad, “A search-based
method for optimizing software architecture reliability,”
in 2022 8th International Conference on Web Research
(ICWR), pp. 47-54, 1IEEE, 2022.

R. Ferdiana, A. E. Permanasari, et al., “Complexity weights
parameter optimization of use case points estimation us-
ing chaotic pso,” in 2022 5th International Conference on
Information and Communications Technology (ICOIACT),
pp. 105-109, IEEE, 2022.

D. V. Rodriguez and D. L. Carver, “Multi-objective in-
formation retrieval-based nsga-ii optimization for require-
ments traceability recovery,” pp. 271-280, 2020.

P. Zhu, Y. Li, T. Li, H. Ren, and X. Sun, “Advanced crowd-
sourced test report prioritization based on adaptive strat-
egy,” IEEE Access, vol. 10, pp. 53522-53532, 2022.

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

B. Arasteh, F. S. Gharehchopogh, P. Gunes, F. Kiani,
and M. Torkamanian-Afshar, “A novel metaheuristic based
method for software mutation test using the discretized and
modified forrest optimization algorithm,” Journal of Elec-
tronic Testing, vol. 39, no. 3, pp. 347-370, 2023.

K. M. Htay, R. R. Othman, A. Amir, H. L. Zakaria, and
N. Ramli, “A pairwise t-way test suite generation strategy
using gravitational search algorithm,” pp. 7-12, 2021.

M. Klima, M. Bures, and M. Blaha, “Ant colony opti-
mization based algorithm for test path generation problem
with negative constraints,” in 2024 IEEE 24th International
Conference on Software Quality, Reliability and Security
(ORS), pp. 701-712, IEEE, 2024.

J. Afonso and J. Campos, “Automatic generation of smell-
free unit tests,” pp. 9-16, 2023.

M. Borg, R. B. Abdessalem, S. Nejati, F.-X. Jegeden,
and D. Shin, “Digital twins are not monozygotic—cross-
replicating adas testing in two industry-grade automotive
simulators,” pp. 383-393, 2021.

S. Gerasimou, J. Cdmara, R. Calinescu, N. Alasmari, F. Al-
hwikem, and X. Fang, “Evolutionary-guided synthesis of
verified pareto-optimal mdp policies,” pp. 842—-853, 2021.

D. Di Pompeo and M. Tucci, “Harnessing genetic im-
provement for sustainable software architectures,” in 2024
IEEE 215t International Conference on Software Architec-
ture Companion (ICSA-C), pp. 248-249, 1IEEE, 2024.

M. Akbari and H. Izadkhah, “Hybrid of genetic algorithm
and krill herd for software clustering problem,” pp. 565—
570, 2019.

F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M.
Gaona, “Microservices backlog—a genetic programming
technique for identification and evaluation of microser-
vices from user stories,” IEEE Access, vol. 9, pp. 117178-
117203, 2021.

B. Zhang, G. Yi, Y. Wang, and Q. Fei, “Research on
generation algorithm of soa-oriented integration test or-
der,” in 2021 IEEE 21st International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-
C), pp. 107-116, IEEE, 2021.

F. H. Abba, K. Umar, U. A. Ibrahim, and A. I. Dalhatu,
“Search-based prediction of software functional fault slip-
through,” in 2023 2nd International Conference on Multi-
disciplinary Engineering and Applied Science (ICMEAS),
pp. 1-7, IEEE, 2023.

D. Sharma and S. Lohchab, “A search-based approach
on metaheuristic algorithm for software modularization to
optimize software modularity,” in 2022 6th International
Conference on Computing Methodologies and Communi-
cation (ICCMC), pp. 1440-1450, IEEE, 2022.

M. Soltani, A. Panichella, and A. Van Deursen, “Search-
based crash reproduction and its impact on debugging,”
IEEE Transactions on Software Engineering, vol. 46,
no. 12, pp. 1294-1317, 2018.

17

	Introduction
	RELATED WORK
	RESEARCH METHODOLOGY
	Planning the Literature Review
	Conductiong the LR
	Literature Search Strategy
	Study Selection
	Data Extraction and Synthesis
	Reporting the Review

	Analysis
	Publication Analysis
	Literature Analysis
	Testing
	Maintenance
	Design
	Project Management

	Discussion
	Threats to Validity
	Conclusions
	References

