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ABSTRACT 

The study presents a deep learning-based diagnostic and 

prediction method for paediatric respiratory illnesses that have 

a significant global impact on children's health, notably upper 

respiratory tract infections (URTI), chronic obstructive 

pulmonary disease (COPD), bronchiolitis, and pneumonia.  

The proposed framework combines Gated Recurrent Units 

(GRU) to describe sequential patterns in Mel-Frequency 

Cepstral Coefficients (MFCCs) and Convolutional Neural 

Networks (CNN) to capture local temporal features through the 

analysis of respiratory sound recordings.  The model, which 

was trained on a labelled dataset, performed 84% of the time 

and showed good diagnostic and prediction abilities, 

particularly for cases of bronchiolitis (92% precision and 

recall) and healthy (100% precision and recall).  The model's 

potential as an accurate and easily accessible tool for 

diagnosing and predicting paediatric respiratory diseases is 

proven by the results, despite a few misclassifications. 
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1. INTRODUCTION 
Paediatric respiratory diseases, which range from common 

ailments like asthma to serious infections like pneumonia, 

represent a major healthcare burden worldwide, particularly in 

young children [1],[3]. These disorders typically cause 

recurring episodes that interrupt daily living and, in severe 

situations, need hospitalisation. Accurate and fast diagnosis is 

critical for providing optimal care and preventing 

consequences. Traditional diagnostic methods, such as clinical 

assessments, physical examinations, and diagnostic tests, 

frequently face challenges due to the overlapping symptoms of 

respiratory diseases, the reliance on subjective clinical 

judgement, and their resource-intensive nature [4],[19]. 

Furthermore, these methods may necessitate patient 

cooperation, which can be challenging to get in paediatric 

populations [22].  

In recent years, advances in artificial intelligence (AI) and deep 

learning have emerged as revolutionary technologies for 

addressing diagnostic difficulties in healthcare. Deep learning 

models, which can analyse big and complicated datasets, have 

shown exceptional effectiveness in a variety of medical 

applications, including disease detection and screening 

[14],[15]. These technologies offer faster and more accurate 

diagnostics, better clinical decisions, and improved public 

health management. 

Despite advances in AI, its application in paediatric respiratory 

disease detection remains relatively unexplored [2]. This study 

intends to close this gap by developing a diagnostic and 

prediction system using a hybrid Convolutional Neural 

Network (CNN) and Gated Recurrent Unit (GRU) architecture. 

The system aims to automatically learn complex patterns in 

respiratory data, capture temporal correlations, and give 

interpretability in its decision-making process. By addressing 

the limitations of traditional diagnostic approaches and existing 

shallow machine learning models, the proposed system seeks 

to enhance diagnosis accuracy, eliminate misdiagnoses, and 

accelerate treatment initiation. 

The study’s aims include building and deploying a CNN-GRU 

model for detecting and predicting paediatric respiratory 

disorders, evaluating its performance using conventional 

metrics, and showing its potential to support earlier medical 

interventions. This study advances the field of paediatric 

healthcare by harnessing deep learning's strengths, with the 

goal of improving the quality of life for young patients and their 

families.  

2. RELATED WORKS 
Recent advances in deep learning and artificial intelligence 

have accelerated research into paediatric respiratory illness 

detection and prediction. Several studies have investigated 

novel strategies, emphasising both the potential and limitations 

of existing approaches.  

[6] proposed a deep learning strategy based on Artificial Neural 

Networks (ANN) to predict paediatric asthma-related 

emergency department visits using Medicaid claims data. The 

ANN model beat traditional Lasso logistic regression by 

making use of its nonlinear properties. However, the model's 

reliance on Medicaid claims data prompted questions about its 

generalisation. Despite this constraint, the study demonstrated 

the benefits of deep learning in paediatric healthcare prediction.  

 

[20] architecture reached a significant milestone by applying 

deep learning to respiratory sound recordings, achieving 98.5% 

accuracy on the ICBHI benchmark dataset. This finding 

emphasises the framework's strength and potential for practical 

use in detecting respiratory abnormalities and illnesses.  

[15] proved the efficacy of deep learning algorithms in 

identifying common paediatric pulmonary disorders using 

Xray pictures, obtaining 92% accuracy in pneumonia 

identification, outperforming radiologists. However, the 

study's small dataset and narrow emphasis on paediatric 
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pulmonary disorders require additional research to improve 

real-world applicability. Similarly, [8] created a deep learning 

model for chest X-ray pictures that performed exceptionally 

well in paediatric pneumonia, increasing diagnostic accuracy, 

efficiency, and consistency.  

[23] suggested a fine-grained diagnosis system that uses 

electronic health records (EHRs) to detect paediatric 

respiratory illnesses. The system attained 92.5% accuracy, 

proving its potential, while shortcomings in external validation 

and the study's scope were identified. [17] demonstrated a 

supervised multi-label classification framework for predicting 

14 thoracic illnesses in paediatric chest radiographs, with an 

average AUC of 0.940. However, the study's dependence on a 

single dataset called into doubt its broader application.   

[16] presented an ensemble of deep learning models for 

pneumonia identification that surpassed previous methods. The 

study emphasised the importance of validation across multiple 

therapeutic settings to prove broader value. [11] created a deep 

learning-based system for COVID-19 detection and pneumonia 

screening, which demonstrated good accuracy rates and 

represents a viable path for automated detection in clinical 

applications.  

[9] investigated deep learning-based analysis of pulmonary 

auscultation audios and found encouraging results while raising 

concerns regarding generalisation and interpretability due to a 

lack of comparison study. [10] created a model for detecting 

wheezing in children based on real-world data, enhancing 

paediatric respiratory disease diagnosis and therapy. However, 

the study's dataset size was limited, and no comparisons with 

known methodologies were provided.  

[18] suggested a model for detecting respiratory disorders that 

outperformed established methods but was limited by a small 

sample size and reliance on inpatient data. [13] used CNN 

based deep learning algorithms to diagnose lung diseases, with 

encouraging results. Despite its potential, the study has some 

drawbacks, including a small dataset, inherent biases, and 

limited generalisability.  

[12] presented LDDNet, a deep learning system for identifying 

infectious lung illnesses that prioritises thorough optimisation 

and evaluation. [5] investigated a machine learning strategy for 

detecting paediatric pneumonia and demonstrated the Logistic 

Regression model's interpretability and effectiveness for 

medical practitioners.  

Finally, [21] examined machine learning methods used for 

cough sound analysis, emphasising their utility in identifying 

childhood respiratory disorders. However, the study identified 

drawbacks such as input data unpredictability and a small 

number of articles analysed. 

The reviewed studies collectively reveal remarkable 

improvements in using deep learning and machine learning 

approaches to diagnose and predict paediatric respiratory 

diseases. While the studies show excellent accuracy and robust 

methodology, common constraints such as small datasets, a 

lack of external validation, and limited generalisability 

highlights the need for additional research to develop these 

approaches for wider clinical use. 

3. METHODOLOGY 
This research presents a methodology for diagnosing and 

predicting paediatric respiratory diseases using a hybrid deep 

learning model that integrates Convolutional Neural Networks 

(CNN) and Gated Recurrent Units (GRU). The system utilizes 

audio recordings of respiratory sounds, with a structured 

workflow that includes data collection, preprocessing, feature 

extraction, data augmentation, model design, training, and 

evaluation. 

3.1 Data Collection and Preprocessing   

The Kaggle Respiratory Sound Dataset was employed, 

containing respiratory audio recordings and metadata, such as 

crackles, wheezes, and patient diagnoses (COPD, 

Bronchiolitis, Pneumonia, URTI, and Healthy). The data 

underwent preprocessing, including numerical encoding of 

disease labels and splitting into training, validation, and testing 

sets.   

3.2  Feature Extraction   

Mel-Frequency Cepstral Coefficients (MFCCs) were extracted 

from audio recordings as input features for the model. MFCCs, 

which represent the short-term power spectrum of sound, were 

computed using a sequence of transformations, including 

Fourier transforms, logarithmic power spectrum scaling, and 

Discrete Cosine Transforms. A total of 52 MFCC features were 

extracted per audio file.  The derivation is represented as 

follows: 

𝑀𝐹𝐶𝐶(𝑛) = ∑ log(𝑋𝑚)𝑀−1
𝑚=1 cos [

𝑛(𝑚−0⋅5)𝜋

𝑀
]                 1 

where 𝑋𝑚 is the power spectrum of the audio signal, 𝑀 is the 

number of mel bands, and 𝑛 represents the MFCC order. 

The input to the model is the MFCC features extracted from the 

audio data.  

Let: 𝑋 ∈ ℝ𝑇𝑥𝐹                     2 

be the input MFCC features, where T is the number of time 

steps (or frames), and F is the number of MFCC features per 

frame. 

3.3 Data Augmentation   

To enhance the robustness and generalizability of the model, 

data augmentation techniques were applied:   

i.  Noise Addition: It simulated background noise by 

adding random noise to the audio signals. The 

derivation is represented as follows: 

ⅆ𝑎𝑡𝑎𝑛𝑜𝑖𝑠𝑒 = 𝑑𝑎𝑡𝑎 + 𝛼 ⋅ 𝑛𝑜𝑖𝑠𝑒                   3 

ii.  Time Shifting: It adjusted the start time by shifting the 

audio forward or backward. The derivation is 

represented as follows: 

𝑠ℎ𝑖𝑓𝑒𝑑𝑑𝑎𝑡𝑎 = 𝑛𝑝 ⋅
𝑟𝑜𝑙𝑙(𝑑𝑎𝑡𝑎, 𝑠ℎ𝑖𝑓𝑡𝑣𝑎𝑙𝑢𝑒)   4 

iii.  Stretching: It altered the time dimension without 

changing the pitch.  The derivation is represented as 

follows: 

𝑠𝑡𝑟𝑒𝑐𝑡𝑒𝑑𝑑𝑎𝑡𝑎 = 𝑙𝑖𝑏𝑟𝑜𝑠𝑎 ⋅
𝑒𝑓𝑓𝑒𝑐𝑡𝑠. 𝑡𝑖𝑚𝑒𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑑𝑎𝑡𝑎,𝑟𝑎𝑡𝑒)    5 

iv.  Pitch Shifting: It modified the audio pitch to simulate 

different vocal characteristics.  It is represented as 

follows: 
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𝑝𝑖𝑡𝑐ℎ𝑠ℎ𝑖𝑓𝑡𝑒𝑑𝑑𝑎𝑡𝑎
=

𝑙𝑖𝑏𝑟𝑜𝑠𝑎. 𝑒𝑓𝑓𝑒𝑐𝑡𝑠. 𝑝𝑖𝑡𝑐ℎ𝑠ℎ𝑖𝑓𝑡(𝑑𝑎𝑡𝑎,𝑠𝑟,𝑛𝑠𝑡𝑒𝑝𝑠)         6 

3.4 Model Architecture   

The hybrid model combined CNN for spatial feature extraction 

and GRU for temporal sequence modelling as illustrated below 

in Figure 1. 

 

 

Figure 1: The architectural design for diagnosing and 

predicting paediatrics respiratory diseases. 

3.4.1 Convolutional Neural Network (CNN)   

Convolutional Neural Network (CNN) layers were used for 

extracting spatial features from the MFCCs. These layers help 

detect local patterns in the MFCCs that corresponded to 

specific respiratory characteristics (wheezing, crackling). 

The CNN architecture includes: 

i. Conv1D Layers: It used Conv1D layers to detect 

local patterns in MFCCs corresponding to respiratory 

features.  The derivation is represented as follows: 

𝐻𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝑐 ∗ 𝑋𝑡 + 𝑏𝑐)      7 

where: 

𝐻𝑡 is the output of the convolutional layer at time step 

t , 

𝑊𝑐 is the convolutional filter, 

∗ represents the convolution operation, 

𝑋𝑡 is the MFCC input at time t, 

𝑏𝑐 is the bias term. 

ii. ReLU Activation: It is a non-linear activation 

function that ensured non-linearity in the model. The 

derivation is represented as follows: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(𝑥 , 0)      8 

iii. MaxPooling: It reduced the dimensionality of the 

feature maps and retained the most important 

features while reducing the computational cost. The 

derivation is represented as follows: 

𝑃𝑡 = max (𝐻𝑡)      9 

where: 

𝑃𝑡 is the pooled feature at time step t. 

iv. Batch Normalisation: It normalised the output of the 

previous layer, speeding up training and improving 

model stability. The derivation is represented as 

follows: 

𝑃𝑡̂ =
𝑃𝑡−𝜇

√𝜎2+𝜖
       10 

where: 

𝜇 and 𝜎2 are the mean and variance of the pooled 

features, 

𝜖 is a small constant to prevent division by zero. 

3.4.2  Gated Recurrent Unit (GRU) 

It modelled temporal dependencies in sequential data, 

capturing how respiratory sounds evolve over time.   

The GRU layers used update and reset gates for efficient 

sequence learning, with stacked layers for deeper temporal 

feature extraction.  it is presented as follows: 

a. Update Gate 

The update gate controlled how much of the previous hidden 

state was retained; it is presented as follows: 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1 , 𝑃𝑡̂ ])   11 

where: 

𝑧𝑡 is the update gate value, 

𝑊𝑧 is the weight matrix for the update gate, 

ℎ𝑡−1 is the hidden state from the previous time step, 

𝑃𝑡̂ is the current input from the CNN, 

𝜎 is the sigmoid activation function. 

b. Reset Gate 

The reset gate controlled how much of the past information that 

was forgotten, as represented as follows:   

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1 , 𝑃𝑡̂ ])   12 

where: 

𝑟𝑡 is the reset gate value, 

𝑊𝑟 is the weight matrix for the reset gate. 

The candidate hidden state ℎ𝑡̂  computed as follows: 

c. Candidate Hidden State 

The candidate hidden state ℎ𝑡̂  computed as follows: 

ℎ𝑡̂ = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑃𝑡̂)   13 

where: 
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ℎ𝑡̂ is the candidate hidden state, 

⊙ represents element-wise multiplication, 

𝑊 is the weight matrix. 

d. Final Hidden State 

The final hidden state at time t is a combination of the previous 

hidden state and the candidate hidden state, which was 

controlled by the update gate: 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡̂   14 

3.4.3  Dense Layers and Softmax Output:   

The Dense layers refined features extracted by GRU using 

Leaky ReLU activation.   

The Dense Layers with Leaky ReLU activation was used to 

process the output from GRU as computed as follows: 

𝑜𝑡 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊𝑑 . ℎ𝑡 + 𝑏𝑑)    

      15 

where: 

𝑜𝑡 is the output of the dense layer, 

𝑊𝑑 and 𝑏𝑑 are the weights and biases of the dense layer. 

A softmax output layer produced probability distributions 

across five disease classes.   

The probability distribution over the classes is represented as 

follows: 

yt̂ = softmax(Wo. ot + bo)                 16 

where: 

yt̂is the probability distribution over the classes at time step t, 

Woand boare the weights and biases of the output layer.  

The softmax function is defined as follows: 

Softmax(xi) =
ⅇxⅈ

∑ ⅇ
xj

j

                               17 

where xiis the input to the softmax layer for the i-th class. 

3.5 Training and Evaluation   

The model was trained using the categorical cross-entropy loss 

function and optimized with the Adam optimizer. The derivate 

is computed as follows: 

Loss = − ∑ yi log(ŷ1)C
i                        18 

where C is the number of classes, yiis the true label for class i, 

and ŷ1is the predicted probability for class i. 

 Early stopping and model checkpointing were employed to 

prevent overfitting. The performance was assessed using the 

following metrics:   

i.  Accuracy: Proportion of correctly classified instances.   

 

Accuracy =
TP+TN

TP+TN+FN
                19 

 

where: 

TP (True Positives) correctly predicted positive 

instances. 

TN (True Negatives) correctly predicted negative 

instances. 

FP (False Positives) incorrectly predicted positive 

instances. 

FN (False Negatives) incorrectly predicted negative 

instances. 

 

ii.  Precision: Accuracy of positive predictions.  It 

indicated the model's accuracy in predicting positive 

instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 20 

where: 

TP: True Positives 

FP: False Positives 

iii.  Recall: Ability to identify positive instances. It 

measured the model's ability to identify positive cases. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 21 

 

where: 

TP: True Positives 

FN: False Negatives 

iv.  F1-Score: Harmonic mean of precision and recall.   

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                22 

v.  Confusion Matrix: Displayed correct and incorrect 

predictions for each class.  it is represented as follows: 

[
𝑇𝑁 𝐹𝑃
𝐹𝑁 𝑇𝑃

]                  23 

3.6 Diagnostic and Predictive Tasks   

The system performed two primary tasks:   

a.  Diagnostic Task: It classified respiratory conditions into 

predefined categories (COPD, Bronchiolitis, Pneumonia, 

URTI, and Healthy).   

b. Predictive Task: It leveraged GRU's temporal modelling to 

forecast the progression of respiratory conditions based on 

sequential data.   

3.7 Data Flow Design and Flowchart design 

for paediatrics respiratory diseases diagnostic 

and prediction system   

i. Audio Input → MFCC Feature Extraction: The 

respiratory sound recordings were converted into 

MFCC features. 

ii. Data Augmentation: Various augmentation 

techniques were applied to expand the dataset. 

iii. CNN Layers: The augmented MFCCs were 

processed by the CNN layers to extract spatial 

features. 

iv. GRU Layers: The output of the CNN was fed into 

the GRU layers, which captured the temporal 

patterns in the data. 

v. Dense Layers → Output Layer: The GRU output 

was processed by the dense layers, and the SoftMax 

output layer generated the final class probabilities. 

vi. Evaluation Metrics: The model's predictions were 

compared with the ground truth to evaluate its 

performance. 
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The system processes data through sequential stages as 

illustrated below in Figure 2 

 

Figure 2: The system design for the paediatrics 

respiratory disease diagnosis and prediction model using 

deep learning 

3.7.1 Connecting the Flowchart 
The flowchart consists of the following sequential steps, as 

shown Figure in 3, and illustrates how the audio input processes 

through various stages to produce a final output and evaluate 

the model's performance as follows: 

1. Audio input → 2. MFCC extraction → 3. Data augmentation 

→ 4. CNN layers → 5. GRU layers → 6. Dense and softmax 

layers → 7. Evaluation.   

  

                                                                                                                                                                                                                                                      

 

 

 

Figure 3: The flowchart for the paediatrics respiratory 

disease diagnosis and prediction model using deep 

learning 
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The methodology combines advanced signal processing 

techniques and deep learning architectures to deliver a robust 

system for diagnosing and predicting paediatric respiratory 

diseases, addressing challenges such as data variability, 

temporal complexity, and interpretability.   

4. IMPLEMENTATION RESULTS AND 

DISCUSSION 
4.1 Implementation specification of the system 
The paediatric respiratory disease diagnostic and prediction 

system was developed to classify conditions such as COPD, 

Bronchiolitis, Pneumonia, URTI, and Healthy cases. The 

system utilized Python as the programming language and 

several deep learning libraries, including TensorFlow, Keras, 

and Librosa, for model building, training, and audio feature 

extraction. Libraries like Numpy and Pandas facilitated data 

handling, while Seaborn and Matplotlib were used for 

visualization. Scikit-learn supported dataset splitting and 

evaluation metrics. This combination of tools ensured a robust 

pipeline for analysing respiratory sounds using Mel-Frequency 

Cepstral Coefficients (MFCCs), a key feature in distinguishing 

between various conditions.   

The implementation required a hardware setup with GPU 

support for faster training and at least 8GB of RAM to process 

audio data effectively. Software requirements included Python 

3.7+, TensorFlow 2.x, and Librosa for audio analysis. This 

setup provided the computational efficiency and flexibility 

needed to train and test the deep learning model, making it 

capable of addressing the complexities of diagnosing paediatric 

respiratory diseases with high accuracy. 

4.2 Dataset Description 
The Kaggle Respiratory Sound Database comprises 920 

annotated recordings from 126 patients, spanning children, 

adults, and the elderly, totalling 5.5 hours of respiratory sounds. 

These recordings, ranging from 10 to 90 seconds in length, 

include 6898 respiratory cycles, with 1864 containing crackles, 

886 with wheezes, and 506 exhibiting both. The dataset 

captures clean and noisy respiratory sounds, simulating real-

life conditions. Digital stethoscopes and advanced recording 

techniques were employed to gather this data, which is essential 

for understanding respiratory health and diagnosing conditions 

like asthma, pneumonia, and chronic obstructive pulmonary 

disease (COPD).   

The dataset is divided into five respiratory condition classes: 

COPD, Bronchiolitis, Pneumonia, Upper Respiratory Tract 

Infection (URTI), and Healthy cases. Each class represents 

unique symptoms and acoustic characteristics—COPD 

involves airflow limitations with wheezing, Bronchiolitis 

affects infants with chest congestion, Pneumonia causes lung 

inflammation with breathing difficulties, URTI involves nasal 

congestion and sneezing, while Healthy cases exhibit normal 

respiratory sounds. This comprehensive dataset provides a 

valuable resource for applying deep learning techniques to 

automate the diagnosis and prediction of paediatric and adult 

respiratory diseases 

4.3 Loading and Analysing Audio Files. 
The audio files were loaded and analysed using the `librosa` 

library, which converted respiratory recordings into a 

consistent format (e.g., 16 kHz sampling rate) and normalized 

signals for uniformity. The filenames were structured to 

include patient IDs, which were extracted and linked to 

diagnoses from a CSV file, resulting in a merged dataset 

containing filenames, patient IDs, and diseases. This dataset 

facilitated feature extraction, exploratory analysis, and model 

development, with COPD identified as the most common 

condition, highlighting class imbalance. 

Table 1: A small subset of data with two columns: pid 

(patient ID) and disease 

 Pid Disease 

0 162 COPD 

1 193 COPD 

2 138 COPD 

3 207 COPD 

4 176 COPD 

5 151 COPD 

6 215 Bronchiectasis 

7 210 URTI 

8 156 COPD 

9 140 Pneumonia 

Figure 4 illustrates the distribution of disease categories in the 

dataset. COPD is the most prevalent, with over 60 instances, 

followed by Healthy samples (around 25) and URTI 

(approximately 15). Bronchiectasis, Pneumonia, and 

Bronchiolitis each have 5–10 samples, while Asthma and LRTI 

are rare, with fewer than 5 instances. This significant class 

imbalance could impact the model's performance, favouring 

well-represented categories like COPD while underperforming 

on rarer conditions. 

Figure 4: The disease distribution in the dataset. 

4.4 Feature Extraction Using MFCCs and Data 

Augmentation 

MFCCs were extracted using librosa to capture key acoustic 

features like pitch and intensity, creating fixed-length feature 

vectors for each audio sample. Data augmentation techniques, 
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including noise addition, time shifting, time stretching (1.2x 

and 0.8x), and pitch shifting (+3 semitones), were applied to 

enhance dataset diversity and improve model generalization to 

real-world variability in respiratory sounds. 

 

Figure 5: The MFCC waveform plots. 

Figure 5 illustrates MFCC spectrograms for original and 

augmented audio data, representing audio in the frequency 

domain. The x-axis indicates time, the y-axis shows frequency 

bands, and colour intensity represents energy levels, with 

lighter areas signifying higher energy.   

Each augmentation affects the spectrogram differently: noise 

introduces variability in low-energy bands; shifting displaces 

the audio along the time axis; time stretching (1.2x and 0.8x) 

compresses or elongates the frequency patterns; and pitch 

shifting (+3 semitones) raises the frequencies without altering 

timing. These augmentations enhance the model’s ability to 

generalize by exposing it to diverse acoustic variations. 

 
Figure 6: The MFCC Spectrograms. 

4.5 Label Encoding 
Label encoding was used to convert categorical disease labels 

(COPD, Bronchiolitis, Pneumonia, URTI, Healthy) into 

numerical representations. One-hot encoding was applied, 

assigning each label a unique binary vector, enabling the model 

to process multi-class classification effectively. 

 

Figure 7: The code snippet (encoding disease labels into a 

one-hot vector format). 

Figure 7 demonstrates the one-hot encoding process, where 

categorical disease labels (COPD, Bronchiolitis, Pneumonia, 

URTI, Healthy) are mapped to unique binary vectors. For 

instance, 'COPD' is represented as [1, 0, 0, 0, 0], while 'Healthy' 

is [0, 0, 0, 0, 1]. The encoded labels are stored in a float64 array 

(`Y data`) with a shape of (915, 5), corresponding to 915 

samples and 5 disease categories. This encoding format is 

essential for multi-class classification, enabling the model to 

process and predict disease categories effectively. 

4.6 Addressing Class Imbalance 

To address class imbalance, the implementation used 

oversampling to duplicate samples from underrepresented 

classes and applied additional augmentations like noise and 

pitch-shifting more frequently to minority classes such as 

Bronchiolitis and Pneumonia. A bar chart visualized the dataset 

distribution, showing Pneumonia (222) and Healthy (210) as 

the most represented categories, while URTI (138) had the 

lowest count. Bronchiolitis (174) and COPD (171) had 

moderate representation. These techniques ensured a more 

balanced dataset, enabling the model to learn effectively across 

all categories 

 

Figure 8: The distribution of disease labels after data 

augmentation. 

4.7 Dataset Splitting and Sampling 

The dataset was pre-processed and split into training (82.5%), 

validation (17.5%), and test (7.5%) sets using stratified 

sampling to maintain proportional representation of all classes. 

This approach ensured balanced distribution across all splits, 

with the training set used for model training, the validation set 

for performance monitoring, and the test set for evaluating final 

model accuracy on unseen data. 
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Figure 9: The code snippet demonstrates the splitting of a 

dataset into training, validation, and testing sets. 

The dataset splitting results show the following:   

i. MFCC Train Shape: (697, 52) indicates 697 training 

samples, each with 52 features.   

ii. MFCC Validation Shape: (161, 52) represents 161 

validation samples with 52 features each.   

iii. MFCC Test Shape: (57, 52) consists of 57 test samples, 

each with 52 features.   

iv. Labels Train Shape: (697, 5) corresponds to 697 

training labels across 5 classes.   

v. Labels Validation Shape: (161, 5) and Labels Test Shape: 

(57, 5) represent label distributions for the validation 

and test sets, respectively.   

These shapes confirm the dataset is properly split for training, 

validation, and testing. 

4.8 Implementation and Results 

The implemented model utilizes a hybrid architecture 

combining Convolutional Neural Networks (CNNs) for feature 

extraction and Gated Recurrent Units (GRUs) for sequence 

modelling, tailored for diagnosing and predicting paediatric 

respiratory diseases. The CNN layers employ `Conv1D` with 

filters of increasing sizes (16, 32, 64) and the following 

components; BatchNormalization and MaxPooling stabilize 

learning and reduce dimensionality. The final CNN output is 

flattened into a 1D array, which is fed into a GRU layer with 

128 units to capture temporal dependencies.   

The architecture also includes two fully connected dense layers 

with ReLU activation and dropout (0.5) for regularization. The 

final layer is a softmax output layer with five units representing 

the disease categories. The model was compiled with the Adam 

optimizer, categorical cross-entropy loss, and accuracy as the 

evaluation metric, effectively leveraging the strengths of CNNs 

and GRUs for robust multi-class classification. 

Table 2: A summary of a sequential neural network model 

with multiple layers. 

   Model: "sequential" 

__________________________________________________

_______________ 

   Layer (type)                 Output Shape              Param #    

   

============================================

===================== 

   conv1d (Conv1D)              (None, 50, 16)            64         

   batch_normalization (BatchNo (None, 50, 16)            64         

   max_pooling1d (MaxPooling1D) (None, 25, 16)            0          

   ... 

   gru (GRU)                    (None, 128)               75552      

   dense (Dense)                (None, 64)                8256       

   dropout (Dropout)            (None, 64)                0          

   dense_1 (Dense)              (None, 32)                2080       

   dropout_1 (Dropout)          (None, 32)                0          

   dense_2 (Dense)              (None, 5)                 165        

   

============================================

===================== 

   Total params: 139821 

   Trainable params: 138285 

   Non-trainable params: 1536 

4.9 Model Performance and Results 

The model was trained over 50 epochs, achieving a final 

training accuracy of 99.14% and a loss of 0.0372, indicating a 

strong fit to the training data. Validation accuracy improved 

steadily from 55.9% to 88.20%, while validation loss fluctuated 

but showed an overall decline, reflecting effective learning and 

minimal overfitting. 

 

Figure 10: The training and validation accuracy and 

training and validation loss of a model over 50 epochs. 

The left plot shows training accuracy stabilizing around 94%, 

while validation accuracy fluctuates, stabilizing at 88–90%. 

The right plot indicates steady training loss reduction, but 

validation loss fluctuates with occasional spikes, suggesting 

potential overfitting. 

4.10  Evaluation Metrics  

The classification report, as shown in Table 4.3, provides a 

comprehensive evaluation of how well the model performs 

across the different classes. 
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Table 3: The precision, recall, and F1-score for a model's 

performance across five classes: COPD, Bronchiolitis, 

Pneumonia, URTI, and Healthy. 

Class Precision Recall F1-Score 

COPD 1.00           0.70    0.82 

Bronchiolitis 0.92            0.92  0.92 

Pneumonia 0.69           1.00  0.82 

URTI 0.73           0.67    0.70 

Heathy 0.92     0.92   0.92      

Overall 0.85 0.84 0.84 

 

Table 3 summarizes the model's performance: 

a. COPD: Precision 1.00, Recall 0.70, F1-Score 0.82. 

b. Bronchiolitis & Healthy: High accuracy with Precision, 

Recall, and F1-Score of 0.92 each. 

c. Pneumonia: Precision 0.69, Recall 1.00, F1-Score 0.82. 

d. URTI: Precision 0.73, Recall 0.67, F1-Score 0.70. 

Overall metrics show Precision (0.85), Recall (0.84), and F1-

Score (0.84), indicating strong performance with improvement 

needed for COPD and URTI recall. 

The model achieved 84% test accuracy, with strong 

performance in Bronchiolitis and Healthy (Precision and 

Recall: 92%). COPD had high precision (100%) but lower 

recall (70%), while Pneumonia showed 69% precision and 

100% recall. The results highlight robust generalization and 

effective disease classification despite challenges with 

overlapping symptoms. 

4.10.1  ROC-AUC (Receiver Operating Characteristic - 

Area Under the Curve) 

ROC-AUC evaluates the model's ability to distinguish between 

classes, with the curve plotting sensitivity vs. 1-specificity and 

the AUC indicating the likelihood of correctly ranking positive 

over negative examples. 

Table 4: The confusion matrix for the model. 

Actual/Pred

icted  

CO

PD 

Bronchio

litis 

Pneum

onia 

UR

TI 

Healt

hy 

COPD 14  1 0 0 0 

Bronchioliti

s 

1 11 2 1 0 

Pneumonia 0 2 13 1 0 

URTI 0 1 1 14 0 

Healthy 0 0 0 0 15 

The confusion matrix shows high accuracy for COPD, 

Pneumonia, URTI, and Healthy, with Healthy perfectly 

classified. Misclassifications are most common for 

Bronchiolitis, which overlaps with other categories like COPD, 

Pneumonia, and URTI. 

 

 

Figure 11: A confusion matrix and its visualisation to 

evaluate the performance of the model. 

Figure 11 shows the GRU model's confusion matrix for five 

disease categories. Most classes, including COPD, Healthy, 

and Bronchiolitis, were well-classified, though some 

misclassifications occurred, particularly between URTI and 

Pneumonia. High AUC scores highlight strong discriminative 

ability, especially for Healthy and COPD. 

4.11 Diagnostic and Predictive Ability 
The CNN-GRU model achieved 84% accuracy in classifying 

paediatric respiratory conditions using MFCCs, excelling in 

Bronchiolitis and Healthy cases. Despite slightly lower recall 

for COPD, the model’s predictive ability, particularly in 

ambiguous cases like Pneumonia and URTI, shows practical 

potential. With further refinement and validation, it can serve 

as a non-invasive diagnostic tool for telemedicine platforms. 

The CNN-GRU-based paediatric respiratory disease diagnostic 

system showed high accuracy, particularly in diagnosing 

COPD and Healthy cases, demonstrating its potential for real-

world applications. This study highlights the effectiveness of 

combining CNNs and GRUs, addresses gaps in paediatric 

respiratory diagnostics, and emphasizes data augmentation's 

role in enhancing deep learning performance for medical 

applications. 

5. CONCLUSION 
The study concludes that the deep learning model integrating 

CNN and GRU demonstrates significant potential for 

diagnosing and predicting paediatrics respiratory diseases 

through audio recordings of respiratory sounds. The model 

performs particularly well for COPD and Healthy cases, 

showing high accuracy in training and validation, making it 

promising for real-world applications. 

The research contributes to knowledge by introducing an 

innovative, scalable, and efficient diagnostic framework that 

leverages advanced feature extraction and sequential pattern 

analysis. This tool is particularly valuable for early disease 

detection in resource-constrained environments and sets a 

foundation for further exploration of hybrid deep learning 

architectures in medical audio diagnostics. 

Recommendations include expanding the dataset to address 

class imbalances, particularly for Bronchiolitis and Pneumonia, 

and employing advanced audio augmentation techniques to 
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enhance generalization. Rigorous testing in diverse clinical 

settings is advised to ensure robustness before deployment. 

With these improvements, the system has the potential to 

revolutionize the early detection and management of 

paediatrics respiratory diseases, saving lives through accurate 

and timely diagnostics. 
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