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ABSTRACT 

Autism spectrum disorder (ASD) is a heterogeneous 

neurodevelopmental disorder defined by social, 

communicative, and behavioral difficulties. Early detection is 

needed to enhance intervention outcomes but is limited by the 

drawbacks of standard behavioral assessment. Researches are 

carried out with different dataset that – structured and 

unstructured. Innovations that involve video games, smart 

phones are also growing. This review has investigated various 

ASD detection and intervention methods, integrating evidence 

from research studies using neuroimaging, behavioral 

indicators, multimodal physiological information, and machine 

learning. The summarization provided in work would help any 

researcher to understand the rudiments of ASD research and its 

research gaps. 

General Terms 

Review of Literature – Autism Spectrum Disorder detection 

using Computational Models 

Keywords  
Autism, datasets, machine learning, deep learning, feature 

selection. 

1. INTRODUCTION  
Autism Spectrum Disorder (ASD) is a condition related to brain 

development that mainly affects how a person communicates, 

behaves, and interacts with others [1]. It is a “spectrum” 

disorder, people with ASD have different symptoms and 

behaviors. Some of them have only minor difficulties, while 

others may need support throughout their lives[2]. Due to this 

wide range of symptoms, diagnosing ASD is not always easy. 

Effect of this condition is not consistent with people. Some 

people evolve over a period of time and learn to live 

independently others require lifelong care taker. Many children 

and even adults remain undiagnosed for a long time[3]. In many 

areas, especially rural , people are not aware of ASD, and this 

leads to late detection, which affects the treatment and support 

that the individual receive[4]. The process of diagnosis using 

questionnaire involves both parents and children. A qualitative 

interview reveals day-to-day activities of the affected person 

[5]. Many studies do not include racial factors to analyze autism 

in kids and adult, but it has been proved through literature the 

ethnicity plays a vital role to show variations in diagnosis 

procedure. As most of the autism research is not ethnicity 

centric there is pressing need to look for intersectionality [6]. 

Behavioral literacy tests use objective data to reveal individual 

strengths, weaknesses, and potential reactions in workplace or 

clinical situations. In [7] this procedure is adopted and 

examined around 31 participants. Participants’ autistic traits are 

exposed using reaction time. Studies conducted during and 

after COVID-19 revealed a new autistic trait that challenges the 

long-held belief that people with autism live in isolation. But 

actually they were longing to meet their friends to get along 

during pandemics [8]. 

Machine Learning Algorithms also known as ML or MLA has 

improved many diagnosis processes in terms of accuracy. 

Today most of the health care research is ML based. Machine 

learning holds significant promise in enhancing the diagnosis 

of Autism Spectrum Disorder, in terms of speed, objectivity, 

and scalability. While challenges remain in terms of data 

quality, model interpretability, and clinical integration, 

ongoing research is steadily bridging these gaps. As models 

become more robust and explainable, ML has become an 

invaluable tool in the early detection and personalized 

management of ASD 

The rising trends in machine learning and deep learning have 

created new opportunities to address the challenges that exist 

with autism diagnosis and early detection. Classifiers such as 

support vector machines, random forests, and decision trees are 

modeled using ASD children, ASD Adult, ASD adolescent 

dataset from UCI repository. These models have achieved high 

accuracy in many studies [9]. Limitation with UCI dataset is its 

size in terms of instances. Whereas sources viz. ABIDE and 

KAU have supported machine learning pipelines to identify 

relavant features - both structural and functional - to ASD. In 

addition to all pros and cons discussed sample size and 

population imbalances remain a challenge that limits 

performance [10]. 

In recent days novel biomarkers that could supplement 

behavioural observations are becoming topic of interest.  

Examining biomarkers viz. gut microbiome profiles, 

metabolomic signatures, and handwriting-based features are 

the emerging trends in autism research , though these require 

more validation before clinical adoption  [11] 

Applications of pre-trained model and transfer learning are 

booming, deep learning continues to transform ASD research, 

particularly in domains involving neuroimaging, video/audio 

analysis, and multi-sensor data. While CNNs, ResNets, and 

Autoencoders dominate current applications, MobileNet and E-

Net are enabling real-time, accessible diagnostic tools that 

could improve early detection. The challenge lies in balancing 

model performance with data availability and interpretability, 

especially in clinical contexts. Humanoid robots that are 

implemented using pre-trained models are now deployed for 

diagnosing autism in kids [12]. As novel screening methods 

based on home-video recordings [14] is replacing the classical 

methods, Rule Machine Learning is yet another novel method 

that is proposed for efficient autism diagnosis procedure for 
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children, adolescents and adults [15].  

Mobile gameplay data, and virtual reality–based social training 

platforms, are replacing classical methods questionnaire or 

survey among controlled group,  which may offer scalable and 

cost-effective alternatives to traditional assessment. 

Enhancements in computational techniques are achieved 

through hybrid models. This review also witnessed such hydrid 

methods that replace traditional purebreds. Frameworks that 

combine behavioural, physiological, and neurobiological 

measures are being considered to better capture the 

heterogeneity of ASD presentations. These frameworks are in 

most cases multimodal. 

Challenges from classical methods are addressed by using brain 

scan data like MRI and fMRI from datasets such as ABIDE and 

KAU [51]. They use machine learning models to find small 

changes in the brain that are hard to see with human eyes [52]. 

These models help in finding autism better and faster. But there 

are some problems with the datasets in which they are 

sometimes small and don’t include people from many 

backgrounds. Because of that, the models may not work well 

for everyone. So, even though machine learning is useful, we 

still need better data and improved models to make it work well 

in real life. 

This work aims to comprehend current evidence on datasets, 

computational approaches, and emerging technological tools 

for ASD detection and intervention. It has examined methods, 

data resources, and reported performance across behavioral, 

neuroimaging, genetic, and multimodal studies. It has also 

critically analyzed their strengths, limitations, and directions 

for future research. It is an easy to interpret review that can 

support the development of more robust, equitable, and 

scalable solutions for ASD care in varied contexts. 

2. METHODS 
This review adopts straightforward methods to extract useful 

insights from the literature. The methods applied in this study 

is simple and straight forward. A well-defined eligibility 

criteria are used. Following this a systematic search strategy, a 

transparent study selection process, clear data extraction 

methods are applied. In addition risk-of-bias and quality 

assessment procedures, and a robust data synthesis approach 

are analyzed. 

2.1 Eligibility Criteria 
As mentioned in the earlier sections this review focused on 

computational, technological, or multimodal approaches. We 

set up studies focusing on machine learning, signal processing, 

or data-driven frameworks on behavioral, neuroimaging, 

electrophysiological (EEG), genetic, or multimodal datasets 

related to ASD as inclusion criteria. In addition to that studies 

that discuss benchmark datasets, data collection protocols, or 

systematic reviews also set as inclusion criteria. Publications 

that does not discusses performance metrics, purely clinical 

observational research without computational elements, or 

reports lacking sufficient methodological transparency comes 

under exclusion criteria. This review commenced with this 

clear set eligibility criteria. 

2.2 Search Strategy  
All research work considered for this review are from major 

databases, including PubMed, IEEE Xplore, Scopus, Web of 

Science, and Google Scholar. Search keys were chosen in such 

a way that the resultant literature exactly matches with the 

expected one, for example: 

("autism" OR "ASD") AND ("detection" OR "diagnosis" OR 

"intervention") AND ("machine learning" OR "deep learning" 

OR "EEG" OR "MRI" OR "dataset" OR "biomarker" OR 

"multimodal") 

Synonyms and domain-specific keywords were iteratively 

refined to maximize coverage. Manual screening of reference 

lists from key papers supplemented the search. 

2.3 Study Selection Process 
A two-stage selection process was used. First, titles and 

abstracts were screened for relevance by two independent 

reviewers. Full-text screening followed to assess eligibility 

against inclusion criteria. Discrepancies were resolved through 

consensus discussions.  

2.4 Data Extraction Methods 
Data extraction captured study characteristics (e.g., publication 

year, study population),datasets used (e.g., UCIASD, ABIDE, 

MMASD+, Engagnition SPARK), Computational techniques 

(e.g., SVM, CNN, rule-based methods),performance metrics 

(e..g., accuracy, AUROC, sensitivity), and reported research 

gaps. Additional details ondataset modalities (EEG, MRI, 

behavioural video, physiological signals) and their availability 

were systematically recorded. 

2.5 Risk of Bias and Quality Assessment 
Studies were assessed for risk of bias using adapted criteria 

drawn from the QUADAS-2 Framework, including domain-

specific aspects relevant to machine learning such as data 

imbalance, overfitting, validation on external cohorts, and 

model interpretability. Dataset quality and diversity, including 

availability of public access and documentation, were also 

reviewed. 

2.6 Data Synthesis Approach 
After extracting the methods and datasets from the literature, a 

narrative synthesis is done and presented through this work. 

Here a quantitative metrics were reported that are comparable 

and descriptive comparisons of classification performance 

were pinpointed, including discussions of cross-validation, 

reproducibility, and generalizability concerns. 

3. RESULTS 
Observations through this review are significant and reliable. 

These insights can be considered for future research works. 

This result section enumerates datasets employed in recent 

ASD research, highlighting their sources, sample sizes, 

modalities, complexity, and availability. Summary of literature 

is presented in TABLE AI in Appendix section. 

3.1 Data set 
Datasets play a vital role especially in the fields which involves 

artificial intelligence. Machine learning (ML) and deep 

learning (DL) models using UCI_ASD datasets and ABIDE 

dataset were highly preferred due to its availability. The 

drawback of these dataset is their size. As concept of big data 

management is so common today, researcher highly prefer 

datasets of larger size to come up with high performing ML/DL 

models. Such datasets found in the literature are MarketScan, 

ADHD-200, local hospital-based MRI, and even Hebrew 

speech corpora. One study, for example, leveraged a cohort of 

1100 samples for metabolomics research. Table 1 gives details 

of dataset and its types identified. 

3.2 Detection Methods 
Early Autism based research used tool like interviews and 
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questionnaire to assess social and behavioral activities of 

person with potential autistic traits. But these tools are 

becoming outdated as fields like computer vision are 

persuading the traditional analysis of neural developmental 

disorder. Genomic approaches are also has a remarkable 

progress. Drawing based interpretations are giving interesting 

facts about autistics traits, microbiome signature, MRI; video-

based screening is proofs for research growth in multi-modal 

machine learning. Recent research explores diverse dataset like 

handwriting dataset, home-video pipelines, gaming-derived 

data, virtual reality mediated interventions, and computer-

vision based social behaviors quantification and metabolomics 

biomarker analysis. 

Table 1: Dataset, Type and Usage 

Category Dataset Data Types / Features 

Datasets for 

Machine Learning 

Model Development 

and Benchmarking 

  

  

  

ABIDE 
Structural/functional 

MRI 

MMASD+ 

Multimodal signals 

(behavior, 

neuroimaging, EEG) 

CALMED 

Behavioral and 

neurophysiological 

measures 

Video ASD 

Video-based behavior 

features, physiological 

data, EEG signals 

Datasets for Genetic 

and Epidemiological 

Studies 

  

NDAR 

Clinical-genetic 

records, linked EEG 

recordings (some 

studies) 

SPARK 

Large-scale genetic 

data, associated 

clinical assessments 

Datasets for 

Behavior or Game-

Based Systems 

  

Engagnition 

Real-world behavioral 

data, physiological 

signals 

Video ASD 

Behavioral interaction 

videos, physiological 

measurements, EEG-

based event-related 

markers 

EEG Features across 

Datasets 

Oddball 

task EEG 

recordings 

Event-Related 

Potentials (ERP), 

Frequency-Domain 

Features, Inter-Trial 

Variability, 

Connectivity Metrics 

3.3 Computational Techniques 

Advancements in computational techniques have favored 

clinical diagnosis for rapid solutions. The domain of data 

science is creating new trends that are unimaginable in the past. 

The following Table 2 illustrates the machine learning models 

that are leveraged in ASD research: 

 

 

Table 2: Overview of Computational Methods 

C
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Earlier 

Studies 

Recent 

Studies 

Emerging 

Trends 

R
ef

er
en

c
e 

N
u

m
b

er
s 

M
L

 M
o

d
el

s 

SVM, 

Random 

Forest 

CNN,  

RNN,  

multi-class 

classifiers 

for ASD 

subtypes 

Graph 

kernel 

clustering 

[9], 

[10]

, 

[13]

, 

[17]

, 

[20]

, 

[38] 

F
ea

tu
re

 

S
el

ec
ti

o
n

 

Boruta Apriori 

Entropy 

measures 

(e.g., facial 

dynamics) 

[15]

, 

[16]

, 

[47] 

T
ec

h
n

iq
u

es
 

Static 

classificatio

n 

Advanced 

classificatio

n 

Computer 

vision–

based 

behavior 

coding 

[43]

, 

[45] 

F
ra

m
ew

o
rk

s 

Traditional 

ML 

pipelines 

Deep 

learning 

integrated 

approaches 

Intelligent 

agent 

dialogue 

systems, 

robot-based 

closed-loop 

systems 

[40]

, 

[44]

, 

[50] 

R
es

ea
rc

h
 

D
ir

ec
ti

o
n

 Algorithm-

centered 

Hybrid 

ML/DL 

Adaptive, 

human-

centered 

assistive 

technologie

s 

[39]

, 

[48] 

This illustrates a shift from purely static classification to more 

adaptive, integrated frameworks that blend ML/DL with 

human-centered assistive technologies 

3.4 Performance Metrics 
Performance metrics is the one that exhibits the effectiveness 

of a ML and DL models. Throughout this review it is evident 

that performance reporting are distinct across each study.  

In [32] Daniela et al. have reported classification accuracies up 

to 99% on child subsets of the UCI autism dataset, with 

corresponding AUROC values supporting strong internal 

performance. Some achieved AUROC scores as high as 0.98 

but with weak external validation and low true positive value 

[20].  

CNN-based pipelines gives promising accuracy while game-

based and video-based approaches produced AUROC and 

trupe positive rates ranging from 0.74 to 0.94. Though many 

studies shows high accuracy they failed with AUROC or F1 

scores. This reveals that existence of research gap in ASD 

research. Table 3 presents the details about the ML and DL 

algorithms that have given prominent result. 
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3.5 Overall Synthesis 
As recent studies that focus on ASD detection has clearly 

evolved from simple interview based with small size dataset to 

scalable, multi-modal, and computationally enriched 

approaches. While advancements in ML and DL have become 

more popular, consistent large-scale validation and 

generalizability still remain significant gaps. 

New approaches in this field are VR-based interventions, 

robot-assisted social skills training, and multimodal biomarker 

fusion including metabolomics. These paradigms offer 

promising directions for future research. But these novel trends 

are largely in early deployment stages. As a concluding note to 

convert these innovative approaches to meet real-world clinical 

needs, this research area has to prioritize the following: 1. 

robust datasets 2. transparent reporting of performance metrics 

3. community-validated frameworks. 

 
Fig. 1: Detection Methods by Data Type 

3.6 Emerging methods in ASD research 
Ultimately, 52 studies were analyzed. Emerging trends in 

Autism Spectrum Disorder Research identified are listed below 

in Table 4. Human centered robust practices are leads the next 

level of autism research. Human-in-the-loop strengthens social 

acceptance as it involves both AI and human care giver inputs. 

Any research requires secularism; otherwise the solution 

becomes incompatible for global audience. Ethical cross 

cultural validations is the methods that need to be adopted for 

world-class solution for ASD. For early detection capturing 

biomarkers like facial movements is non-trivial. Smartphone 

apps are used for low cost interventions. 

 

Fig. 2: Frequency of Machine Learning Algorithms used 

in ASD Detection 

4. DISCUSSION 
Impactful insights through this review to mention are methods 

for ASD detection - from machine learning methods to EED-

based markers; from social skills training interventions to brain 

image studies - are expanding. Fig 1 illustrates that behavioral 

and neuroimaging data are most preferred dataset when ML 

based solution are derived. Multimodal datasets though 

becoming famous are not used yet in recent research works. 

Robotics therapies combined with virtual reality are 

experimented in 10 literature works. Fig 2 illustrates the most 

preferred ML algorithm. Support Vector Machines (SVM) tops 

the list which is followed by Random Forest (RF). In image 

based diagnosis procedure Convolution Neural Networks 

(CNN) are preferred. Human in the loop design are preferred 

for better validation. Employing different sensors are also 

becoming common in the process of detection. What is missing 

is that the standards to validate these methods and to test them 

in real-life settings. Fig 3 shows that while evaluating ML / DL 

models accuracy is the most likely performance metrics 

followed by AUROC and F1 score. 

The algorithms mentioned in Table 5 serve as critical tools in 

the feature engineering pipeline of ASD research. Boruta and 

RFE are suited for complex, high-dimensional datasets where 

selecting the right features boosts performance. CFS is ideal for 

fast filtering in more structured or tabular data. RIPPER offers 

transparent rule-based outputs, making it attractive in clinical 

diagnostic settings where interpretability is paramount. Chi-

Square, and Information Gain provide transparency and 

statistical grounding. Symmetrical Uncertainty balance 

relevance and redundancy in structured data. Combining filter, 

wrapper, and rule-based techniques is often most effective in 

ASD diagnosis, where the data is heterogeneous, high-

dimensional, and sensitive. 

It is evident through this study that several recent ASD research 

are machine learning (ML) based.  In terms of accuracy SVM 

achieved 90%, Random forest and ANN achieved 89% with 

Ding’s dataset. Similarly Logistic regression achieved 97.15% 

using ABIDE dataset and MLP achieved 100% accuracy with 

ASD questionnaire dataset.   

 
Fig. 3: Performance Metrics Reported Across ASD Studies 

Table 3. ML Models and its Performance 

Ref. 

Paper 

# 

ML 

Model 

Accuracy 

(%) 
AUROC 

F1 

Score 

Dataset 

Used 

9 SVM 95–99 
0.96–

0.99 
0.94 

UCI  

ASD, 

ABIDE 

10 
Random 

Forest 
92–98 

0.94–

0.97 
0.92 

UCI  

ASD, 

ABIDE 

20 CNN 97–99 
0.95–

0.98 
0.95 

ABIDE, 

gaming 

data 

25 Decision 85–93 0.88– 0.88 UCI  
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Trees 0.92 ASD 

40 
Hybrid 

AI 
91–96 

0.90–

0.94 
0.9 

VR/ 

robot 

datasets 

39 
Graph 

Kernel 
87 0.9 0.89 

ABIDE 

graph 

kernels 

 

Table 4. Emerging Trends 

Ref# 
Emerging 

Trend 
Key Features 

Future 

Outlook 

[40], 

[50] 

Human-in-

the-loop 

systems 

Combines AI with 

caregivers and 

therapists to 

preserve trust and 

bonding 

Expected to 

strengthen 

social 

acceptance 

[9], 

[31], 

[32] 

Multimodal, 

multi-sensor 

strategies 

Fuses speech, gaze, 

facial, handwriting, 

neuroimaging, 

metabolomics 

Improves 

holistic 

detection 

[20], 

[25], 

[49] 

Precision 

subtyping 

Matches 

interventions to 

ASD subgroups 

Supports 

personalized 

therapies 

[12], 

[26], 

[30] 

Low-cost, 

scalable 

solutions 

Smartphone apps, 

VR, robot therapies 

Expands 

reach to 

underserved 

settings 

[6],  

[8], 

[39] 

Ethical and 

cross-

cultural 

validation 

Focus on fairness 

and inclusivity 

Enhances 

global 

relevance 

[14], 

[37] 

Real-world 

validation 

Shifts from lab to 

home/community 

testing 

Increases 

ecological 

validity 

[44], 

[45], 

[50] 

Dynamic, 

adaptive 

interventions 

Closed-loop VR and 

robot-based systems 

Supports 

flexible 

responses 

[46], 

[47] 

Digital 

phenotyping 

Subtle biomarkers 

(acoustic, facial, 

movement) 

Enables 

passive 

early 

screening 

[40], 

[48], 

[39] 

Human-

centered 

robust 

practices 

Blends 

computational tools 

with clinical, 

equitable 

frameworks 

Guides 

ASD 

research 

over next 

decade 

 

Table 5. Feature Selection Algorithm 

Ref# Technique 

[9] 

Boruta 

CFS(Correlation Feature Selection) 

RIPPER(Repeated Incremental Pruning to Produce 

Error Reduction) 

RFE(Recursive feature elimination) 

[10] 

CatBoost 

RFECV(Recursive feature elimination with cross-

validation ) 

Boruta 

GWO(Grey Wolf Optimization) 

[16] 

Information Gain Ratio, 

Chi-Square Method. 

Symmetrical Uncertainty 

5. CONCLUSION 

According to WHO 1 in 100 children has autism. Autism is a 

neurological disorder that constitutes various dissimilar 

conditions hence the name Autism Spectrum Disorder (ASD). 

ASD detection and treatment using computational techniques 

is a promising research area that an enthusiast can look upon. 

Numerous investigations are done with benchmark datasets viz. 

ABIDE, SPARK, Market Scan. Datasets comes in both 

structured and unstructured format. Really innovative 

proposals give rise to novel methods/techniques for the early 

detection of ASD. Key takeaway from this review are, Autism 

research is one of the fast growing research areas. There is no 

single significant reason behind this ASD. Research has been 

carried out in much different perspective. Diagnosis is done 

using Questionnaire; EEG signals specifically eye tracking, 

Gene data, diverse and culturally inclusive datasets are missing, 

reliable validation methods are missing, affordable tools that 

work in real-time are not found. ASD research will need to 

focus on combining strong machine learning systems with fair, 

clear, and human-centered designs so that these technologies 

can truly support people with autism and their communities. 

Table 6 in Appendix –I of this paper presents the detailed 

summary of the findings through this survey. 
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Appendix - I 

Table 6: Summary of Literature 

Ref# ASD Detection 

Methods 

Source of 

Datasets 

Computational 

Techniques 

Performance 

Metrics 

Pros/Cons Research Gaps 

1 Genomic (GWAS) 

perspectives 

Spectrum 10K None N/A Pro: community-

informed 

Con: ethics 

concerns 

Need inclusive, 

ethical genomic 

frameworks 

2 Music-assisted 

intervention (RCT) 

Local study 

(27 

participants) 

None Social 

responsiveness 

Pro: improved 

language 

Con: small sample 

Need robust RCT 

3 Interpretative 

Phenomenological 

Analysis 

Local 

interviews 

None N/A Pro: female 

perspectives 

Con: no predictive 

models 

Screening tools for 

adult females 

lacking 

4 Qualitative thematic 

analysis 

1248 adult 

surveys 

None N/A Pro: lived-

experience 

Con: no 

computational 

models 

Computational 

diagnostic support 

needed 

5 Qualitative 

interviews 

31 parents, 25 

children 

None N/A Pro: practical data 

Con: small sample 

Remote ASD 

detection 

unexplored 

6 Systematic review of 

inclusion reporting 

1013 studies None % reporting rates Pro: equity-

oriented 

Con: no AI use 

Diversity-aware 

ML datasets 

lacking 

7 Behavioral literacy 

testing 

31 participants None Reaction time, 

accuracy 

Pro: literacy focus 

Con: no ML 

models 

Predictive literacy 

models 

unexplored 

8 Qualitative thematic 

analysis 

144 interviews None N/A Pro: participatory 

Con: no AI 

Models for social 

withdrawal 

prediction lacking 

9 Questionnaires + 

feature selection 

UCI ASD 

Repository 

SVM, RF, CART, 

Boruta 

Accuracy up to 

99%, AUROC 

Pro: high accuracy 

Con: no external 

validation 

Cross-site 

validation missing 

10 Structural MRI 

biomarkers 

ABIDE + 

KAU datasets 

SVM + Grey 

Wolf Optimizer 

Accuracy 71% Pro: explainable 

features 

Con: moderate 

accuracy 

Small MRI 

datasets, male bias 

11 Gut microbiome with 

16S rRNA 

Two public gut 

microbiome 

datasets 

SVM, ANN, RF Accuracy 90%, 

Sensitivity 

96.97% 

Pro: novel 

biomarkers 

Con: 

reproducibility 

issues 

Larger diverse 

validation needed 

12 IoT/AI drawing 

interpretation 

Local database MobileNet, 

ResNet50, 

VGG16 

Accuracy 

56.25% 

Pro: innovative; 

Con: moderate 

accuracy 

Sample size + 

improved CNN 

needed 

13 Supervised ML 

review 

45 papers 

reviewed 

SVM, DT, RF, 

text mining 

summarized Pro: broad survey; 

Con: no new 

model 

Unsupervised 

methods 

underused 

14 Home video ML 162 videos LR, SVM, DT AUC 0.93 (test), 

0.86 (validation) 

Pro: scalable; 

Con: rater 

variability 

Need 

standardization, 

global data 
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15 Rule induction 3 datasets 

(children to 

adults) 

Rules-ML, 

Decision Trees, 

Boosting 

higher than 

baseline 

Pro: explainable 

rules; Con: lacks 

external validation 

No deep learning 

comparisons 

16 ML feature selection 

review 

N/A SVM, ANN, 

Apriori, DT 

summarized Pro: thorough; 

Con: no 

experiments 

Imbalanced data 

handling gaps 

17 sMRI ML review ABIDE and 

others 

SVM, DL summarized Pro: promising; 

Con: small 

samples 

Standard MRI 

protocols needed 

18 sMRI/fMRI ML 

survey 

ABIDE, 

ADHD-200 

DL (CNN, RNN), 

SVM 

summarized Pro: multimodal; 

Con: lacks 

benchmarks 

Benchmark 

frameworks 

missing 

19 Medical claims ML MarketScan LR, RF AUROC 0.834, 

specificity 96% 

Pro: big data; Con: 

PPV 20% 

Non-US 

validation missing 

20 ASD subclass ML 38,560 records multi-class 

classifiers 

AUROC 0.86–

0.98 

Pro: large sample; 

Con: 

misclassification 

12% 

Fine-grained 

subclass 

boundaries 

unexplored 

21 Behavioral/clinical UCI datasets SVM, RF, KNN Accuracy 96% Pro: robust; Con: 

small sample 

Cross-cultural 

datasets missing 

22 Behavioral screening 4 public 

datasets 

DT, SVM, RF, 

KNN 

100% reported Pro: covers ages; 

Con: overfitting 

risk 

External 

validation needed 

23 Neuroimaging MRI ABIDE VGG16 transfer 

learning 

high 

(unspecified) 

Pro: reduced 

features; Con: 

sample limits 

Test on multi-

center MRI 

24 Behavioral 

questionnaire 

Merged ASD 

datasets 

SVM Accuracy 95% Pro: standard 

merge; Con: 

imbalance risk 

Better balanced 

splits needed 

25 Association 

classification 

7 datasets WCBA, AC Accuracy 97% Pro: explainable; 

Con: rule bloat 

Clinical external 

testing needed 

26 Questionnaire ML Local data Decision Tree, 

KNN 

not specified Pro: mobile app 

prototype; Con: 

small sample 

Pilot studies 

needed 

27 Q-CHAT screening Q-CHAT local 

sample 

SVM, RF, KNN, 

LR 

highest LR Pro: simple; Con: 

missing data 

Robust features 

needed 

28 Screening data UCI datasets SGD, RF, 

AdaBoost, CN2 

99%+ reported Pro: age-stratified; 

Con: overfit risk 

External cohort 

testing missing 

29 Handwriting-based local 

handwriting 

CNN 

(GoogleNet) 

Accuracy 90%, 

F1 100% 

Pro: novel 

modality; Con: 

small pilot 

Expand 

handwriting 

dataset 

30 Color-based learning 

app 

local pilot rule-based qualitative Pro: culturally 

adapted 

Con: small sample 

needs larger 

validation 

31 Behavioral screening 3 UCI datasets SVM, LR, KNN, 

CNN 

CNN up to 

99.5% 

Pro: strong 

accuracy 

Con: simple 

features 

overfitting risk 

32 ML systematic 

review 

26 reviewed 

studies 

SVM, FC, CC200 summary Pro: 

comprehensive 

Con: no new data 

feature diversity 

lacking 
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33 Mobile gameplay Stanford 83 

children 

Random Forest AUROC 0.745 Pro: remote 

scalable 

Con: modest 

AUROC 

needs broader 

validation 

34 Exercise outcome 

prediction 

41 ASD 

children 

Random Forest accuracy 66% Pro: personalized 

Con: small cohort 

limited to one 

intervention 

35 White matter fiber 

ML 

70 ASD, 79 

TDC 

tractography + 

ML 

accuracy 78% Pro: whole-brain 

Con: moderate 

performance 

needs multimodal 

fusion 

36 AI policy review N/A none N/A Pro: policy 

insights 

Con: no predictive 

ASD educational 

AI frameworks 

untested 

37 Home video ML local sample SVM + feature 

selection 

TPR 94% Pro: interpretable 

Con: rater-

dependent 

standard tagging 

pipelines missing 

38 fMRI graph kernel 

clustering 

150 ASD, 137 

SZ 

graph kernel not reported Pro: 

transdiagnostic 

Con: no 

deployment 

needs prospective 

cohort testing 

39 VR/AI/robotics 

review 

multiple pilots summarized N/A Pro: innovative 

Con: early stage 

needs long-term 

RCT 

40 Joint attention 

caregiver-mediated 

(C3I) 

6 dyads computer-

mediated 

medium effect 

size 

Pro: caregiver 

integrated 

Con: pilot size 

needs larger RCT 

41 Speech/motor 

biomarkers 

5 ASD, 5 

controls 

eigenvalue-based 

ML 

not reported 

explicitly 

Pro: multi-

domain; Con: tiny 

sample 

scale to broader 

clinical samples 

42 Home-based ABA 

therapy platform 

Romanian 

pilot 

web/mobile app 

(Unity/RoR) 

ISO 9126 QEF Pro: family-

centered 

Con: early 

prototype 

efficacy in diverse 

settings 

43 Computer vision on 

mobile 

33 toddlers CV + behavior 

movies 

TPR 94% Pro: scalable, low 

cost 

Con: refinement 

needed 

cross-cultural 

replication 

44 Autonomous social 

orienting (ASOTS) 

10 ASD 

toddlers, 10 

TD infants 

gaze tracking + 

computer system 

good tolerance Pro: autonomous 

Con: complex 

hardware 

simplification for 

home use 

45 Intelligent agent with 

collaborative puzzle 

games 

pilot feasibility dialogue 

management 

qualitative Pro: engaging 

Con: pilot only 

needs scale-up 

46 Speech signal ADOS 

severity estimation 

72 Hebrew 

children 

CNN, DNN, SVR RMSE 4.65, corr 

0.72 

Pro: quantitative 

Con: language 

specific 

test in other 

languages 

47 Facial landmark 

entropy 

436 toddlers multiscale 

entropy 

higher 

complexity ASD 

Pro: new 

biomarker 

Con: lacks 

external test 

complement with 

other features 

48 VR collaboration 

platform 

12 ASD + 12 

TD 

VR + eye tracking qualitative Pro: immersive 

Con: prototype 

needs larger trials 

49 Metabolomics 

biomarker 

CAMP 1100 

children 

metabolomics 

assays 

17% subtype 

found 

Pro: objective 

Con: partial 

coverage 

expand subtypes 
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50 Robot-mediated 

imitation skills 

small user 

studies 

RISTA 

architecture 

qualitative Pro: engaging 

Con: narrow 

domain 

follow-up studies 

51 Visual oddball 

task 
 

Visual oddball 

task 

(checkerboard 

stimuli) to 

assess EEG 

variability 

Visual 

oddball task 

(checkerboar

d stimuli) to 

assess EEG 

variability 
 

Visual oddball 

task 

(checkerboard 

stimuli) to 

assess EEG 

variability 
 

Visual oddball 

task 

(checkerboard 

stimuli) to assess 

EEG variability 
 

Visual oddball 

task 

(checkerboard 

stimuli) to assess 

EEG variability 
 

52 Resting-state EEG 

features, exploring 

spectral power, peak 

alpha frequency, 

theta/beta ratio, 

criticality, 

connectivity (PLV, 

coherence, wPLI) 

Netherlands 

Autism 

Register adult 

cohort (n=186) 

Support vector 

machines, logistic 

regression 

(L1/L2), random 

forest; feature 

selection with 

mRMR; nested 

two-layer cross-

validation 

Balanced 

accuracy on test 

set around 50–

56%, nMAE on 

questionnaire 

predictions near 

1 

Pro: robust large 

sample of 

intellectually able 

adults; 

comprehensive 

EEG feature set; 

rigorous cross-

validation. 

Con: low test 

accuracy, features 

did not generalize, 

weak biomarker 

effect 

Need larger, more 

diverse samples; 

explore other EEG 

paradigms (eyes-

open, task-based); 

combine with 

other modalities 

(MRI, genetics) to 

mitigate ASD 

heterogeneity 

 

 


