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ABSTRACT 

This paper conducts an experimental comparison between two 

recently introduced meta-heuristic algorithms, which are the 

Differential Evolution (DE) and the Artificial Bee Colony 

(ABC) algorithm. Both these algorithms are very prominent 

and significant to represent the broader family of algorithms 

to which they belong, i.e., the Evolutionary and Swarm 

Intelligence algorithm families. Both DE and ABC have been 

successfully employed to numerous and diverse problems 

from the fields of mathematics, science and engineering. DE 

is an evolutionary algorithm that computes the vector 

differences between randomly picked candidate solution 

vectors and uses these differences to produce new, improved 

candidate solutions to advance its evolutionary search and 

optimization process. The ABC is a swarm intelligent 

algorithm that mimics the candidate solutions as a swarm of 

bees that forage across a search space for continuously better 

quality food sources (i.e., candidate solutions). The aim and 

focus of this paper is to present a side-by-side comparison of 

these two evolutionary and swarm intelligence algorithms on 

a common set of continuous benchmark problems to achieve a 

better understanding of their strengths, weaknesses and 

characteristics. The experimental results show that ABC is 

more explorative and can consistently avoid the local optima 

to locate the neighborhood of the global minimum, while DE 

is more exploitative to achieve an excellent level of fine 

tuning, but at the risk of premature convergence because of its 

lack of explorative characteristics. 

Keywords 

Evolutionary algorithm, swarm intelligence, artificial bee 
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1. INTRODUCTION 
Recently the research field of heuristic and meta-heuristic 

algorithms has observed the emergence of several successful 

evolutionary algorithms (EAs) and swarm intelligence based 

algorithms (SIAs). Both EAs and SIAs are bio-inspired 

meta-heuristic algorithms that are based on the Darwinian 

theory of evolution and the behavior of intelligent, automated, 

self-organized swarms found in nature, such as bee swarm, 

ant colony, bird flock and fish school. EAs and SIAs have 

been successfully applied on complex mathematical and 

engineering problems, such as continuous optimization [1]–

[3], combinatorial optimization [4], multi-criteria optimization 

[5], process analysis and control [6], engineering design [7], 

planning of digital IIR filters [8], PID controllers [9], artificial 

intelligence [10] and so on [11]. 

Both EAs and SIAs are usually resistant against premature 

convergence. This is because the pool of individuals or swarm 

members that act as candidate solutions can usually preserve 

sufficient amount of diversity and this diversity is necessary 

to continue the explorations around the locally optimal points. 

However, the opposite scenario has also been observed 

sometimes ([12]–[14]) when the pool of candidate solutions 

did completely lose diversity and the optimization procedure 

got stuck around some locally optimal points. Such a scenario 

is known as ‘premature convergence’ in the literature of EAs 

and SIAs. The primary reason behind premature convergence 

is using less amount of exploration and more exploitation by 

the algorithm. But increasing explorations without restrictions 

and at the cost of decreasing exploitations usually lead to 

disappointingly slow convergence speed. This is why a 

balance between the explorative and exploitative properties of 

the algorithm is always desired for good results and 

satisfactory convergence speed, especially for complex, high 

dimensional, multimodal functions that have many local 

optima along each search dimension and the number of local 

optima increasing exponentially with the number of 

dimensions. 

The problem of premature convergence is being addressed by 

both EA and SIA family algorithms. There exist several 

improved variations of many EAs and SIAs that try to avoid 

premature convergence, usually by modifying their selection 

and perturbation operators. This paper makes a careful study 

and comparison of two such improved EA and SIA variants, 

which are the Differential Evolution (DE) and the Artificial 

Bee Colony (ABC) algorithm. DE adopts an automatic 

adaptation of the degrees of explorations and exploitations by 

using the differences among the candidate solutions during 

their perturbations. These differences tend to be large during 

initial generations (i.e., iterations of the algorithm), but 

gradually smaller during the later generations, which ensures 

more explorations during early generations, followed by 

gradually increased exploitations and reduced explorations for 

later generations. In contrast, ABC adopts a more explicit and 

direct approach to handle the exploration vs. exploitation 

problem by partitioning the swarm of bees (i.e., candidate 

solutions) into three groups (i.e., ‘employed’, ‘onlooker’ and 

‘scout’ bees) and explicitly dedicating some of them (i.e., the 

employed and scout bees) for explorations, while dedicating 

the others (i.e., onlooker bees) for exploitations. Thus, DE and 

ABC try to achieve the same goal (i.e., dynamic adaptation of 
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the degrees of explorations and exploitations), but using very 

different methodologies (i.e., automatic, indirect adaptation 

with no explicit control vs. explicit, direct division of work for 

explorations and exploitations). Since DE and ABC 

algorithms belong to different families of algorithms (i.e., EA 

and SIA), they are unlikely to be compared ever before on the 

same set of problems. The primary contribution of this paper 

is an experimental side-by-side comparison between DE and 

ABC with the aim to have valuable insight on their 

characteristics and strengths against premature convergence. 

Following is the organization of the rest of this paper. Section 

2 introduces the continuous optimization problem. Section 3 

briefly describes the DE algorithm. Section 4 introduces the 

ABC algorithm in details. Section 5 presents the parameter 

settings and experimental setup of both DE and ABC and 

makes a comparison of their performance on seven complex, 

high dimensional multimodal functions. Finally, section 6 

concludes the paper with a brief discussion on DE and ABC, 

followed by some suggestions as directions for further 

research with DE and ABC. 

2. CONTINUOUS OPTIMIZATION 

PROBLEM  
A continuous optimization problem can be formalized as 

follows.  

                          

 

Here, the goal is to find a vector xmin such that f (xmin) ≤ f (x) 

for all xS, where the search space S is a bounded subset of 

Rn and the objective function f (.) is an n dimensional real 

valued function that is to be optimized over its parameter x. 

Each element xi of the vector x is a real valued variable, i.e.,   

x = [x1, x2, … , xn]
T 

There exist many real world problems that can be formulated 

as optimization problems of its parameters or variables, most 

(or, all) of which assume values from the continuous domain. 

Thus the problem converts into the task of optimizing a 

continuous objective function. The generic term of 

‘continuous optimization’ is often referred by many other 

different names, such as function optimization, numeric 

optimization and real parameter optimization. All of them 

essentially refer to the same undertaking of finding a globally 

optimum point (i.e., solution) across a real valued search 

space such that the point gives the best (minimum or 

maximum) value of the objective function. In the subsequent 

sections, this paper presents how the problem of continuous 

optimization is addressed by DE and ABC, which may also 

act as a model of how continuous optimization problems are 

dealt with the existing EAs and SIAs.  

3. DIFFERENTIAL EVOLUTION 

DE maintains a population of N vectors, each one being an 

n-dimensional real valued vector xi = [xi1, xi2, …, xin]S; 

where S R
n
 and i = 1, 2, …, N. This population of vectors 

(i.e., candidate solutions) gradually evolves, generation by 

generation, by the DE operators of mutation and crossover. 

During every generation, DE uses its mutation operation on 

every individual vector xi,G (also called the target vector) to 

produce the mutated vector vi,G, then crossover operation on 

the target and mutated vectors to produce the trial vector ui,G, 

followed by the selection operation on the target and trial 

vectors to select the better one of them for the next generation.  

Mutation Operation:  

For each individual (i.e., target vector) xi,G during generation 

G, an associated mutated vector vi,G = [vi1,G , vi2,G , …, vin,G] is 

produced by using any of the following five strategies.  

Strategy DE/best/1:   

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G) 

Strategy DE/rand/1:  

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G) 
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1
,G  – xr

2
,G) + F . (xr

3
,G – xr
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,G) 

Strategy DE/rand/2:  

vi,G = xr
1
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2
,G  – xr

3
,G) + F . (xr

4
,G  – xr
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Strategy DE/current-to-best/1: 

  vi,G = xi,G + F . (xbest,G  – xi,G) + F . (xr
1
,G  – xr

2
,G) 

Here, the indices r1, r2, r3, r4, r5 are random integers which are 

different from each other and generated uniformly at random 

from the range [1, N]. They are also different from i (i.e., the 

index of the current vector). The vector xbest,G is the best 

individual vector with highest fitness value in the current 

generation G, and F is a parameter of the algorithm that takes 

values from the range (0, 1+) which acts as a scaling factor for 

the vector differences. 

Crossover operation: 
After the mutation operation, as explained above, the 

crossover operation takes place between each pair of target 

vector xi,G and the corresponding mutated vector vi,G to 

produce a trial vector ui,G = [ui1,G , ui2,G , …, uin,G].  

for j = 1, 2, …, n 

 ,
,

,

, if 0,1 or =

, otherwise

randjij G
ij G

ij G

 rand CR j j

 

v
u

x

   
 


 

Here, the crossover rate CR is a user specified parameter of 

DE in the range of [0,1). The integer jrand is randomly picked 

from [1,n] to ensure that the trial vector ui,G is always 

different from the original target vector xi,G by at least one 

parameter.  

Selection operation: 

DE employs a greedy selection procedure between each pair 

of target vector and trial vector. The fitness value of each trial 

vector ui,G is computed and compared with the fitness value of 

the corresponding target vector xi,G. If the trial vector ui,G has 

smaller or equal function value (for a minimization problem) 

than the corresponding target vector xi,G, then ui,G will replace 

the original vector xi,G and be included into the population for 

the next generation. Otherwise, the original target vector xi,G 

will be kept and ui,G will be discarded. 

4. ARTIFICIAL BEE COLONY (ABC) 

ALGORITHM  
Bees have to forage over a vast area in search of good food 

sources (i.e., nectar). After an initial exploration stage, more 

and more bees are employed to collect honey from more 

profitable food sources whereas fewer bees are assigned to the 

less worthy sources. After returning the hive, each bee goes to 

the ‘dance floor’ and performs a special dance known as the 

‘waggle dance’ to share the information of the food source it 

Minimize f (x); subject to xS  
        x 
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has found. The ‘onlooker’ bees, waiting around the dance 

floor, observe the waggle dances of the ‘employed’ bees and 

pick any of them to follow and collect nectar from the vicinity 

of its food source. Some scout bees are also assigned for 

random explorations of the search space to find new food 

sources. The basic ABC algorithm mimics the food foraging 

behavior of honey bees with the same three groups of bees — 

employed, onlooker and scout bees. A bee working to forage a 

particular food source (i.e., candidate solution) and searching 

only around its vicinity is called an employed bee. Onlooker 

bees randomly pick and follow any of the employed bees. The 

probability of picking an employed bee is proportional to the 

quality of its food source. Scout bees can perform random 

explorations of the search space to find new food sources. If 

the employed and onlooker bees, even after limit attempts, fail 

to find a better food position around a particular food xi, then 

xi is abandoned and replaced by initiating a scout bee and its 

food source is placed uniformly at random across the search 

space. In the original implementation of the ABC algorithm, 

half of the colony is employed bees, the other half is onlooker 

bees, and scout bees are created on demand only when a food 

source fails to improve with several attempts. Each cycle (i.e., 

iteration) of ABC consists of foraging by the employed bees, 

then foraging by the onlookers, followed by placement of the 

scout bees (if necessary). Each of these stages is briefly 

described below. 

Foraging by employed bees: Suppose, an employed bee is 

currently positioned at a food source position xi. During this 

stage, each employed bee searches in the vicinity of its current 

position xi to produce new trial food source vi using (1), where 

j   {1, 2, …, D} and k   {1, 2, …, SN} are randomly picked 

indices, D is dimensionality of the problem, SN is the number 

of food positions and φij is a uniform random value ~  [-1, 1]. 

 vij = xij + φij (xkj – xij)         (1) 

Thus, the new solution vi is produced from xi by perturbing its 

randomly picked j-th parameter and using the information of 

xi and another randomly picked solution xk. If vi has better 

‘fitness’ than the old food position xi, then xi is replaced by vi. 

For the problem of function optimization, where f is the 

function to be minimized, ABC computes the ‘fitness’ of a 

candidate solution xi by using (2). 

                  
(2)

 

Foraging by onlooker bees: During this stage, each onlooker 

bee randomly picks an employed bee to follow and forages 

only around the vicinity of its food source. The probability wi 

that the employed bee with food source xi would be picked by 

an onlooker bee is computed using (3), which makes the 

probability wi to be proportional to fitness (xi). 

                     
(3)

 

Like the employed bees, each onlooker bee also employs (1) 

to produce trial food source vi in the vicinity of its current 

food source position xi. If vi has better fitness than xi, then xi 

is replaced by vi. Otherwise, vi is discarded.  

Placement of Scout bees: A scout bee is created only when a 

particular food source xi failed to be improved over the last 

‘limit’ iterations. The bee employed to xi now becomes a 

scout bee and its food source is replaced randomly across the 

search space using (4), where j = 1, 2, …, D and [minj, maxj] 

is the search space along the j-th dimension. 

 xij = minj + rand (0,1) * (maxj – minj)  (4) 

The detailed pseudo code of the ABC algorithm is presented 

in details in the following few points. 

Step 1) Generate an initial population of N individuals. Each 

individual is a food source (i.e. solution) and has D attributes, 

where D is the dimensionality of the problem. 

Step 2) Evaluate the fitness of each individual.  

Step 3) Each employed bee searches in the neighborhood of 

its current position to find a better food source. For each 

employed bee, generate a new solution, vi around its current 

position, xi using (1). 

Step 4) Compute the fitness of both xi and vi by using (2). 

Apply greedy selection scheme to choose the better one and 

discard the other. 

Step 5) Calculate the selection probability, wi for each 

solution, xi and normalize the probability value by using (3).   

Step 6) Assign each onlooker bee to an employed bee, xi at 

random with probability proportional to wi. 

Step 7) Produce new food positions (i.e. solutions), vi for each 

onlooker bee using its employed bee xi by using (1).  

Step 8) Evaluate the fitness of each employed bee, xi and the 

newly produced food position, vi. Apply greedy selection to 

keep the one with better fitness and discard the other.    

Step 9) If a particular solution has not been improved over the 

past ‘limit’ cycles (say, limit = 100 cycles), then select it for 

abandonment. Replace it by placing a scout bee at a food 

source placed uniformly at random over the entire search 

space by using (4).  

Step 10) Keep track of the best solution found so far. 

Step 11) Check for termination. If the best solution found is 

acceptable or maximum number of iterations has elapsed, stop 

and return the best solution found so far. Otherwise go back to 

step 2 and repeat.  

5. EXPERIMENTAL STUDIES 
In order to compare the performance of ABC and DE, this 

paper uses a standard benchmark suite of continuous 

optimization problems, consisting of seven complex, high 

dimensional, multi-modal functions [1]–[3], [15], [16]. An 

overview of the continuous objective functions is presented in 

Table 1. For optimizing any multimodal function, DE and 

ABC must exhibit both exploitative and explorative 

properties, because the algorithm has to explore many locally 

optimal points without getting trapped around any of them. 

Most of the multimodal functions have numerous local 

optima, even when the dimensionality is just two or three. 

Increasing the number of dimensions cause the number of 

local optima to grow exponentially. For example, the Ackley 

function f3 has one narrow global minimum basin, but with 

exponentially many minor local minima. The Griewank 

function f4 has a component creating linkage among the 

variables, which complicates the search by perturbing any 

subset of the variables. Any technique that tries to optimize 

each variable separately without considering the others will 
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fail for this function. The difficulty for the Schwefel function 

f1 arises from its deep local minima which are far from the 

single global minimum. All these multimodal functions have 

exponentially many local minima and the number of local 

minima increases exponentially with their high dimensionality 

(i.e., D = 30), making their optimization extremely difficult 

for any algorithm 

 

Table 1:  The seven continuous benchmark functions used in experimental studies. Here, D: dimensionality of the function, 

S: search space, fmin: function value at the global minimum, C:  function characteristics with the following values —

M: Multimodal, S: Separable, N: Non-separable 

No Function C D S fmin 

f1 Schwefel 2.26 MS 30 [–500, 500]D –12569.5 

f2 Rastrigin MS 30 [–5.12, 5.12]D 0 

f3 Ackley MN 30 [–32, 32]D 0 

f4 Griewank MN 30 [–600, 600]D 0 

f5 Rosenbrock MS 30 [–30, 30]D 0 

f6 Penalized MN 30 [–50, 50]D 0 

f7 Penalized2 MN 30 [–50, 50]D 0 

 

Table 2:  Performance comparison of ABC and two DE variants on seven benchmark functions. The values indicate the error 

(i.e., difference between global minimum and the minimum possible function value found by ABC and DE variants) on the 

different functions. The best performance (i.e., minimum error) on each function is marked with boldface font 

No fmin Generations DE/best/1/exp DE/rand/1/exp ABC 
Best  

Performance by     

f1 –12569.5 9000 7.69e+03 1.34e–02 7.28e–11 ABC 

f2 0 5000 1.48e–201 2.31e–64 6.12e–16 DE/best/1/exp 

f3 0 1500 20.01 20.02 1.22e–11 ABC 

f4 0 2000 5.78e–82 6.48e–27 7.31e–16 DE/best/1/exp 

f5 0 20000 9.03e–29 0 2.77e–02 DE/rand/1/exp 

f6 0 1500 7.39e–14 7.40e–14 1.22e–11 DE/best/1/exp 

f7 0 1500 2.61e–03 2.61e–03 6.95e–16 ABC 

 

Table 2 presents the results of ABC and DE on the seven 

benchmark functions. The common parameter of both the 

algorithms is the population/swarm size N, which is set to 

100. The no. of maximum generations is different for the 

different functions, as shown in Table 2. The F and CR 

parameters of DE are set to 0.5 and 0.9, respectively. The 

limit parameter of ABC is set to 100. All these values are 

selected after some initial experiments, and not meant to be 

optimum. The important observations on the results in Table 2 

are summarized in the following few points.  

 Out of the seven functions f1 – f7, ABC outperforms both 

the DE variants on three functions (i.e., f1, f3, f7), while 

DE performs better on the remaining four. 

 For all the seven functions, ABC has reached sufficiently 

close to the global minimum (error ≈ 0), while the DE 

variants have failed to do so on as many as three 

functions (f1, f3 and f7).   

 The overall performance of the algorithms can be 

compared based on their mean absolute error (MAE) 

over the seven functions. The MAE of ABC is only 

3.96e–03, which is much smaller than both 

DE/best/1/exp (MAE = 1.10e+03) and DE/rand/1/exp 

(MAE = 2.86e+00). Thus, the overall performance of 

ABC is better than its DE counterparts.  

 From the viewpoint of exploration vs. exploitation 

phenomenon, the DE variants are much more 

exploitative than ABC. This becomes apparent from their 

extremely low error values for some functions (e.g., f2, f4 

and f5). But such intense exploitations come at the cost of 

unsatisfactory explorations, causing DE to fail for some 

functions (e.g., f1 and f3) by prematurely converging 

around the locally optimal points of the search space. In 

contrast, ABC is sufficiently explorative to locate the 

neighborhood of the global minimum for all these 
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functions, though it may not perform as intense fine 

tuning as DE on some functions (e.g., f2, f4 and f5).  

To summarize the experimental findings, ABC is more 

explorative than DE, and hence it can locate the neighborhood 

of the global minimum for all the seven functions, without 

showing any sign of premature convergence. In contrast, DE 

is more exploitative, hence it can perform excellent fine 

tuning once it reaches near the global minimum, but it may 

also converge prematurely because of its lack of explorative 

properties (e.g., for f1 and f3).  

6. CONCLUSION  
This paper presents an experimental evaluation and 

comparison of two different meta-heuristic algorithms — one 

from the evolutionary algorithm family (i.e., DE) and the 

other from swarm intelligence family (i.e., ABC) using 

several benchmark problems on continuous optimization. 

Results indicate that ABC is more robust against premature 

convergence because of its more explorative design (i.e., 

explicit explorations by employed and scout bees), while DE 

is better for fine tuning and exploitations, but with the risk of 

premature convergence because of its lack of explorations.  

There might be several possible future research directions 

based on DE and ABC. Firstly, since DE is more exploitative 

than ABC, it might be possible to hybridize them together into 

a new, single algorithm. This new algorithm may deploy ABC 

during the early generations when more explorations are 

desired, but later may switch to more exploitation by 

employing the DE variants, especially the DE/best/1/exp 

variant which is extremely exploitative. Secondly, both DE 

and ABC might be compared on easier unimodal and low 

dimensional functions to gain further insights on their 

strengths and weaknesses. Thirdly, the possibility of 

improving the final solution quality might be investigated by 

using an efficient local searcher (or, the DE/best/1/exp 

variant). This may make their performance even better. 

Finally, this paper employs DE and ABC only on continuous 

benchmark functions. It might be interesting to observe and 

compare their performance on many other existing problems, 

especially the discrete and real world problems. 
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