

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

35

Experimental Comparison between Differential Evolution

and Artificial Bee Colony Algorithm: A Case Study with

Continuous Optimization Problems

Mohammad Shafiul
Alam

Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

Raiyan Yousuf
Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

Faria Alam
Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

Hossain Shaikh
Saadi

Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

ABSTRACT

This paper conducts an experimental comparison between two

recently introduced meta-heuristic algorithms, which are the

Differential Evolution (DE) and the Artificial Bee Colony

(ABC) algorithm. Both these algorithms are very prominent

and significant to represent the broader family of algorithms

to which they belong, i.e., the Evolutionary and Swarm

Intelligence algorithm families. Both DE and ABC have been

successfully employed to numerous and diverse problems

from the fields of mathematics, science and engineering. DE

is an evolutionary algorithm that computes the vector

differences between randomly picked candidate solution

vectors and uses these differences to produce new, improved

candidate solutions to advance its evolutionary search and

optimization process. The ABC is a swarm intelligent

algorithm that mimics the candidate solutions as a swarm of

bees that forage across a search space for continuously better

quality food sources (i.e., candidate solutions). The aim and

focus of this paper is to present a side-by-side comparison of

these two evolutionary and swarm intelligence algorithms on

a common set of continuous benchmark problems to achieve a

better understanding of their strengths, weaknesses and

characteristics. The experimental results show that ABC is

more explorative and can consistently avoid the local optima

to locate the neighborhood of the global minimum, while DE

is more exploitative to achieve an excellent level of fine

tuning, but at the risk of premature convergence because of its

lack of explorative characteristics.

Keywords

Evolutionary algorithm, swarm intelligence, artificial bee

colony algorithm, differential evolution, continuous

optimization

1. INTRODUCTION
Recently the research field of heuristic and meta-heuristic

algorithms has observed the emergence of several successful

evolutionary algorithms (EAs) and swarm intelligence based

algorithms (SIAs). Both EAs and SIAs are bio-inspired

meta-heuristic algorithms that are based on the Darwinian

theory of evolution and the behavior of intelligent, automated,

self-organized swarms found in nature, such as bee swarm,

ant colony, bird flock and fish school. EAs and SIAs have

been successfully applied on complex mathematical and

engineering problems, such as continuous optimization [1]–

[3], combinatorial optimization [4], multi-criteria optimization

[5], process analysis and control [6], engineering design [7],

planning of digital IIR filters [8], PID controllers [9], artificial

intelligence [10] and so on [11].

Both EAs and SIAs are usually resistant against premature

convergence. This is because the pool of individuals or swarm

members that act as candidate solutions can usually preserve

sufficient amount of diversity and this diversity is necessary

to continue the explorations around the locally optimal points.

However, the opposite scenario has also been observed

sometimes ([12]–[14]) when the pool of candidate solutions

did completely lose diversity and the optimization procedure

got stuck around some locally optimal points. Such a scenario

is known as ‘premature convergence’ in the literature of EAs

and SIAs. The primary reason behind premature convergence

is using less amount of exploration and more exploitation by

the algorithm. But increasing explorations without restrictions

and at the cost of decreasing exploitations usually lead to

disappointingly slow convergence speed. This is why a

balance between the explorative and exploitative properties of

the algorithm is always desired for good results and

satisfactory convergence speed, especially for complex, high

dimensional, multimodal functions that have many local

optima along each search dimension and the number of local

optima increasing exponentially with the number of

dimensions.

The problem of premature convergence is being addressed by

both EA and SIA family algorithms. There exist several

improved variations of many EAs and SIAs that try to avoid

premature convergence, usually by modifying their selection

and perturbation operators. This paper makes a careful study

and comparison of two such improved EA and SIA variants,

which are the Differential Evolution (DE) and the Artificial

Bee Colony (ABC) algorithm. DE adopts an automatic

adaptation of the degrees of explorations and exploitations by

using the differences among the candidate solutions during

their perturbations. These differences tend to be large during

initial generations (i.e., iterations of the algorithm), but

gradually smaller during the later generations, which ensures

more explorations during early generations, followed by

gradually increased exploitations and reduced explorations for

later generations. In contrast, ABC adopts a more explicit and

direct approach to handle the exploration vs. exploitation

problem by partitioning the swarm of bees (i.e., candidate

solutions) into three groups (i.e., ‘employed’, ‘onlooker’ and

‘scout’ bees) and explicitly dedicating some of them (i.e., the

employed and scout bees) for explorations, while dedicating

the others (i.e., onlooker bees) for exploitations. Thus, DE and

ABC try to achieve the same goal (i.e., dynamic adaptation of

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

36

the degrees of explorations and exploitations), but using very

different methodologies (i.e., automatic, indirect adaptation

with no explicit control vs. explicit, direct division of work for

explorations and exploitations). Since DE and ABC

algorithms belong to different families of algorithms (i.e., EA

and SIA), they are unlikely to be compared ever before on the

same set of problems. The primary contribution of this paper

is an experimental side-by-side comparison between DE and

ABC with the aim to have valuable insight on their

characteristics and strengths against premature convergence.

Following is the organization of the rest of this paper. Section

2 introduces the continuous optimization problem. Section 3

briefly describes the DE algorithm. Section 4 introduces the

ABC algorithm in details. Section 5 presents the parameter

settings and experimental setup of both DE and ABC and

makes a comparison of their performance on seven complex,

high dimensional multimodal functions. Finally, section 6

concludes the paper with a brief discussion on DE and ABC,

followed by some suggestions as directions for further

research with DE and ABC.

2. CONTINUOUS OPTIMIZATION

PROBLEM
A continuous optimization problem can be formalized as

follows.

Here, the goal is to find a vector xmin such that f (xmin) ≤ f (x)

for all xS, where the search space S is a bounded subset of

Rn and the objective function f (.) is an n dimensional real

valued function that is to be optimized over its parameter x.

Each element xi of the vector x is a real valued variable, i.e.,

x = [x1, x2, … , xn]
T

There exist many real world problems that can be formulated

as optimization problems of its parameters or variables, most

(or, all) of which assume values from the continuous domain.

Thus the problem converts into the task of optimizing a

continuous objective function. The generic term of

‘continuous optimization’ is often referred by many other

different names, such as function optimization, numeric

optimization and real parameter optimization. All of them

essentially refer to the same undertaking of finding a globally

optimum point (i.e., solution) across a real valued search

space such that the point gives the best (minimum or

maximum) value of the objective function. In the subsequent

sections, this paper presents how the problem of continuous

optimization is addressed by DE and ABC, which may also

act as a model of how continuous optimization problems are

dealt with the existing EAs and SIAs.

3. DIFFERENTIAL EVOLUTION

DE maintains a population of N vectors, each one being an

n-dimensional real valued vector xi = [xi1, xi2, …, xin]S;

where S R
n
 and i = 1, 2, …, N. This population of vectors

(i.e., candidate solutions) gradually evolves, generation by

generation, by the DE operators of mutation and crossover.

During every generation, DE uses its mutation operation on

every individual vector xi,G (also called the target vector) to

produce the mutated vector vi,G, then crossover operation on

the target and mutated vectors to produce the trial vector ui,G,

followed by the selection operation on the target and trial

vectors to select the better one of them for the next generation.

Mutation Operation:

For each individual (i.e., target vector) xi,G during generation

G, an associated mutated vector vi,G = [vi1,G , vi2,G , …, vin,G] is

produced by using any of the following five strategies.

Strategy DE/best/1:

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G)

Strategy DE/rand/1:

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G)

Strategy DE/best/2:

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G) + F . (xr

3
,G – xr

4
,G)

Strategy DE/rand/2:

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G) + F . (xr

4
,G – xr

5
,G)

Strategy DE/current-to-best/1:

 vi,G = xi,G + F . (xbest,G – xi,G) + F . (xr
1
,G – xr

2
,G)

Here, the indices r1, r2, r3, r4, r5 are random integers which are

different from each other and generated uniformly at random

from the range [1, N]. They are also different from i (i.e., the

index of the current vector). The vector xbest,G is the best

individual vector with highest fitness value in the current

generation G, and F is a parameter of the algorithm that takes

values from the range (0, 1+) which acts as a scaling factor for

the vector differences.

Crossover operation:
After the mutation operation, as explained above, the

crossover operation takes place between each pair of target

vector xi,G and the corresponding mutated vector vi,G to

produce a trial vector ui,G = [ui1,G , ui2,G , …, uin,G].

for j = 1, 2, …, n

 ,
,

,

, if 0,1 or =

, otherwise

randjij G
ij G

ij G

 rand CR j j

v
u

x

Here, the crossover rate CR is a user specified parameter of

DE in the range of [0,1). The integer jrand is randomly picked

from [1,n] to ensure that the trial vector ui,G is always

different from the original target vector xi,G by at least one

parameter.

Selection operation:

DE employs a greedy selection procedure between each pair

of target vector and trial vector. The fitness value of each trial

vector ui,G is computed and compared with the fitness value of

the corresponding target vector xi,G. If the trial vector ui,G has

smaller or equal function value (for a minimization problem)

than the corresponding target vector xi,G, then ui,G will replace

the original vector xi,G and be included into the population for

the next generation. Otherwise, the original target vector xi,G

will be kept and ui,G will be discarded.

4. ARTIFICIAL BEE COLONY (ABC)

ALGORITHM
Bees have to forage over a vast area in search of good food

sources (i.e., nectar). After an initial exploration stage, more

and more bees are employed to collect honey from more

profitable food sources whereas fewer bees are assigned to the

less worthy sources. After returning the hive, each bee goes to

the ‘dance floor’ and performs a special dance known as the

‘waggle dance’ to share the information of the food source it

Minimize f (x); subject to xS
 x

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

37

has found. The ‘onlooker’ bees, waiting around the dance

floor, observe the waggle dances of the ‘employed’ bees and

pick any of them to follow and collect nectar from the vicinity

of its food source. Some scout bees are also assigned for

random explorations of the search space to find new food

sources. The basic ABC algorithm mimics the food foraging

behavior of honey bees with the same three groups of bees —

employed, onlooker and scout bees. A bee working to forage a

particular food source (i.e., candidate solution) and searching

only around its vicinity is called an employed bee. Onlooker

bees randomly pick and follow any of the employed bees. The

probability of picking an employed bee is proportional to the

quality of its food source. Scout bees can perform random

explorations of the search space to find new food sources. If

the employed and onlooker bees, even after limit attempts, fail

to find a better food position around a particular food xi, then

xi is abandoned and replaced by initiating a scout bee and its

food source is placed uniformly at random across the search

space. In the original implementation of the ABC algorithm,

half of the colony is employed bees, the other half is onlooker

bees, and scout bees are created on demand only when a food

source fails to improve with several attempts. Each cycle (i.e.,

iteration) of ABC consists of foraging by the employed bees,

then foraging by the onlookers, followed by placement of the

scout bees (if necessary). Each of these stages is briefly

described below.

Foraging by employed bees: Suppose, an employed bee is

currently positioned at a food source position xi. During this

stage, each employed bee searches in the vicinity of its current

position xi to produce new trial food source vi using (1), where

j {1, 2, …, D} and k {1, 2, …, SN} are randomly picked

indices, D is dimensionality of the problem, SN is the number

of food positions and φij is a uniform random value ~ [-1, 1].

 vij = xij + φij (xkj – xij) (1)

Thus, the new solution vi is produced from xi by perturbing its

randomly picked j-th parameter and using the information of

xi and another randomly picked solution xk. If vi has better

‘fitness’ than the old food position xi, then xi is replaced by vi.

For the problem of function optimization, where f is the

function to be minimized, ABC computes the ‘fitness’ of a

candidate solution xi by using (2).

(2)

Foraging by onlooker bees: During this stage, each onlooker

bee randomly picks an employed bee to follow and forages

only around the vicinity of its food source. The probability wi

that the employed bee with food source xi would be picked by

an onlooker bee is computed using (3), which makes the

probability wi to be proportional to fitness (xi).

(3)

Like the employed bees, each onlooker bee also employs (1)

to produce trial food source vi in the vicinity of its current

food source position xi. If vi has better fitness than xi, then xi

is replaced by vi. Otherwise, vi is discarded.

Placement of Scout bees: A scout bee is created only when a

particular food source xi failed to be improved over the last

‘limit’ iterations. The bee employed to xi now becomes a

scout bee and its food source is replaced randomly across the

search space using (4), where j = 1, 2, …, D and [minj, maxj]

is the search space along the j-th dimension.

 xij = minj + rand (0,1) * (maxj – minj) (4)

The detailed pseudo code of the ABC algorithm is presented

in details in the following few points.

Step 1) Generate an initial population of N individuals. Each

individual is a food source (i.e. solution) and has D attributes,

where D is the dimensionality of the problem.

Step 2) Evaluate the fitness of each individual.

Step 3) Each employed bee searches in the neighborhood of

its current position to find a better food source. For each

employed bee, generate a new solution, vi around its current

position, xi using (1).

Step 4) Compute the fitness of both xi and vi by using (2).

Apply greedy selection scheme to choose the better one and

discard the other.

Step 5) Calculate the selection probability, wi for each

solution, xi and normalize the probability value by using (3).

Step 6) Assign each onlooker bee to an employed bee, xi at

random with probability proportional to wi.

Step 7) Produce new food positions (i.e. solutions), vi for each

onlooker bee using its employed bee xi by using (1).

Step 8) Evaluate the fitness of each employed bee, xi and the

newly produced food position, vi. Apply greedy selection to

keep the one with better fitness and discard the other.

Step 9) If a particular solution has not been improved over the

past ‘limit’ cycles (say, limit = 100 cycles), then select it for

abandonment. Replace it by placing a scout bee at a food

source placed uniformly at random over the entire search

space by using (4).

Step 10) Keep track of the best solution found so far.

Step 11) Check for termination. If the best solution found is

acceptable or maximum number of iterations has elapsed, stop

and return the best solution found so far. Otherwise go back to

step 2 and repeat.

5. EXPERIMENTAL STUDIES
In order to compare the performance of ABC and DE, this

paper uses a standard benchmark suite of continuous

optimization problems, consisting of seven complex, high

dimensional, multi-modal functions [1]–[3], [15], [16]. An

overview of the continuous objective functions is presented in

Table 1. For optimizing any multimodal function, DE and

ABC must exhibit both exploitative and explorative

properties, because the algorithm has to explore many locally

optimal points without getting trapped around any of them.

Most of the multimodal functions have numerous local

optima, even when the dimensionality is just two or three.

Increasing the number of dimensions cause the number of

local optima to grow exponentially. For example, the Ackley

function f3 has one narrow global minimum basin, but with

exponentially many minor local minima. The Griewank

function f4 has a component creating linkage among the

variables, which complicates the search by perturbing any

subset of the variables. Any technique that tries to optimize

each variable separately without considering the others will

1
; if 0

1

1 otherwise

i

ii

i

fitness

f
f

f

x
xx

x

1

i
i SN

n

n

fitness x
w

fitness x

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

38

fail for this function. The difficulty for the Schwefel function

f1 arises from its deep local minima which are far from the

single global minimum. All these multimodal functions have

exponentially many local minima and the number of local

minima increases exponentially with their high dimensionality

(i.e., D = 30), making their optimization extremely difficult

for any algorithm

Table 1: The seven continuous benchmark functions used in experimental studies. Here, D: dimensionality of the function,

S: search space, fmin: function value at the global minimum, C: function characteristics with the following values —

M: Multimodal, S: Separable, N: Non-separable

No Function C D S fmin

f1 Schwefel 2.26 MS 30 [–500, 500]D –12569.5

f2 Rastrigin MS 30 [–5.12, 5.12]D 0

f3 Ackley MN 30 [–32, 32]D 0

f4 Griewank MN 30 [–600, 600]D 0

f5 Rosenbrock MS 30 [–30, 30]D 0

f6 Penalized MN 30 [–50, 50]D 0

f7 Penalized2 MN 30 [–50, 50]D 0

Table 2: Performance comparison of ABC and two DE variants on seven benchmark functions. The values indicate the error

(i.e., difference between global minimum and the minimum possible function value found by ABC and DE variants) on the

different functions. The best performance (i.e., minimum error) on each function is marked with boldface font

No fmin Generations DE/best/1/exp DE/rand/1/exp ABC
Best

Performance by

f1 –12569.5 9000 7.69e+03 1.34e–02 7.28e–11 ABC

f2 0 5000 1.48e–201 2.31e–64 6.12e–16 DE/best/1/exp

f3 0 1500 20.01 20.02 1.22e–11 ABC

f4 0 2000 5.78e–82 6.48e–27 7.31e–16 DE/best/1/exp

f5 0 20000 9.03e–29 0 2.77e–02 DE/rand/1/exp

f6 0 1500 7.39e–14 7.40e–14 1.22e–11 DE/best/1/exp

f7 0 1500 2.61e–03 2.61e–03 6.95e–16 ABC

Table 2 presents the results of ABC and DE on the seven

benchmark functions. The common parameter of both the

algorithms is the population/swarm size N, which is set to

100. The no. of maximum generations is different for the

different functions, as shown in Table 2. The F and CR

parameters of DE are set to 0.5 and 0.9, respectively. The

limit parameter of ABC is set to 100. All these values are

selected after some initial experiments, and not meant to be

optimum. The important observations on the results in Table 2

are summarized in the following few points.

 Out of the seven functions f1 – f7, ABC outperforms both

the DE variants on three functions (i.e., f1, f3, f7), while

DE performs better on the remaining four.

 For all the seven functions, ABC has reached sufficiently

close to the global minimum (error ≈ 0), while the DE

variants have failed to do so on as many as three

functions (f1, f3 and f7).

 The overall performance of the algorithms can be

compared based on their mean absolute error (MAE)

over the seven functions. The MAE of ABC is only

3.96e–03, which is much smaller than both

DE/best/1/exp (MAE = 1.10e+03) and DE/rand/1/exp

(MAE = 2.86e+00). Thus, the overall performance of

ABC is better than its DE counterparts.

 From the viewpoint of exploration vs. exploitation

phenomenon, the DE variants are much more

exploitative than ABC. This becomes apparent from their

extremely low error values for some functions (e.g., f2, f4

and f5). But such intense exploitations come at the cost of

unsatisfactory explorations, causing DE to fail for some

functions (e.g., f1 and f3) by prematurely converging

around the locally optimal points of the search space. In

contrast, ABC is sufficiently explorative to locate the

neighborhood of the global minimum for all these

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

39

functions, though it may not perform as intense fine

tuning as DE on some functions (e.g., f2, f4 and f5).

To summarize the experimental findings, ABC is more

explorative than DE, and hence it can locate the neighborhood

of the global minimum for all the seven functions, without

showing any sign of premature convergence. In contrast, DE

is more exploitative, hence it can perform excellent fine

tuning once it reaches near the global minimum, but it may

also converge prematurely because of its lack of explorative

properties (e.g., for f1 and f3).

6. CONCLUSION
This paper presents an experimental evaluation and

comparison of two different meta-heuristic algorithms — one

from the evolutionary algorithm family (i.e., DE) and the

other from swarm intelligence family (i.e., ABC) using

several benchmark problems on continuous optimization.

Results indicate that ABC is more robust against premature

convergence because of its more explorative design (i.e.,

explicit explorations by employed and scout bees), while DE

is better for fine tuning and exploitations, but with the risk of

premature convergence because of its lack of explorations.

There might be several possible future research directions

based on DE and ABC. Firstly, since DE is more exploitative

than ABC, it might be possible to hybridize them together into

a new, single algorithm. This new algorithm may deploy ABC

during the early generations when more explorations are

desired, but later may switch to more exploitation by

employing the DE variants, especially the DE/best/1/exp

variant which is extremely exploitative. Secondly, both DE

and ABC might be compared on easier unimodal and low

dimensional functions to gain further insights on their

strengths and weaknesses. Thirdly, the possibility of

improving the final solution quality might be investigated by

using an efficient local searcher (or, the DE/best/1/exp

variant). This may make their performance even better.

Finally, this paper employs DE and ABC only on continuous

benchmark functions. It might be interesting to observe and

compare their performance on many other existing problems,

especially the discrete and real world problems.

7. REFERENCES

[1] D. Karaboga and B. Basturk, On the performance of

artificial bee colony (ABC) algorithm, Applied Soft

Computing 8 (1) (2008) 687–697.

[2] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[3] X. Yao, Y. Liu and G. Lin, “Evolutionary programming

made faster”, IEEE Transactions on Evolutionary

Computation 3 (2) (1999) 82–102.

[4] S. Sobti and P. Singla, Solving travelling salesman

problem using bee colony based approach, Int. Journal of

Engg. Research and Technology 2 (6) (2013) 186–189.

[5] K. Naidu, H. Mokhlis and A.H.A. Bakar, Multiobjective

optimization using weighted sum Artificial Bee Colony

algorithm for Load Frequency Control, International

Journal of Electrical Power and Energy Systems 55 (2)

(2014) 657–667.

[6] R. Mukherjee, D. Goswami and S. Chakraborty,

Parametric optimization of Nd:YAG laser beam

machining process using artificial bee colony algorithm,

Journal of Industrial Engineering, vol. 2013, Article ID

570250, 15 pages, 2013. DOI: 10.1155/2013/570250.

[7] H. Garg, Solving structural engineering design

optimization problems using an artificial bee colony

algorithm, Journal of Industrial and Management

Optimization, 10 (3) (2014) 777–794.

[8] Z. Zhao, D. Yin and Y. Jiang, Improved bee colony

algorithm based on knowledge strategy for digital filter

design, International Journal of Computer Applications,

47 (2) (2013) 241–248.

[9] A. Mishra, A. Khanna, N. Singh and V. Mishra, Speed

control of DC motor using bee colony optimization,

Universal Journal of Electrical and Electronic

Engineering 1 (3) (2013) 68–75.

[10] A. Karegowda and M. Darshan, Optimizing feed forward

neural network connection weights using artificial bee

colony algorithm, International Journal of Advanced

Research in Computer Science and Software Engineering

3 (7) (2013) 452–454.

[11] A. Bolaji, A. Khader, M. Betar and M. Awadallah, Bee

colony algorithm, its variants and applications: A survey,

Journal of Theoretical and Applied Technology 47 (2)

(2013) 434–459.

[12] T. Park and K. R. Ryu, A Dual population genetic

algorithm for adaptive diversity control, IEEE Trans.

Evolutionary Computation 14 (6) (2010) 865–884.

[13] R. K. Ursem, Diversity guided evolutionary algorithms,

in Proc. 7th Int. Conf. Parallel Problem Solving from

Nature (PPSN), 2002, pp. 462–474.

[14] J. Lampinen and I. Zelinka, On stagnation of the

differential evolution algorithm, in Proc. 6th Int. Mendel

Conf. Soft Computing, Brno, Czech Republic, 2000,

pp. 76–83.

[15] T. Bäck and H.–P. Schwefel, “An overview of

evolutionary algorithms for parameter optimization”,

Evolutionary Computation 1 (1) (1993) 1–23.

[16] W. Lee and W. Cai, A novel artificial bee colony

algorithm with diversity strategy, in Proc. 7th Int. Conf.

Natural Computation, 2011, pp. 1441–1444.

