

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

40

Fundamental Structure of Linux Kernel based Device

Driver and Implementation on Linux Host Machine

Nirav Trivedi
M.Tech. Student

Dept. of Electronics and
Communication

Charusat University, Changa

Himanshu Patel
Faculty of Electronics and

Communication
Charusat University, Changa

Dharmendra Chauhan
Faculty of Electronics and

Communication
Charusat University, Changa

ABSTRACT

This paper discussed about Fundamental structure of device

driver based on Linux Kernel. Motive of the paper is to

implement simple Linux kernel device driver on Linux host

machine. Linux kernel fundamental structure Explained from

root level. In Linux operating system how devices talks with

kernel through driver, different classification of devices in

Linux, key features that Linux offers to us for implementing

device driver demonstrated in this paper. Implementation of

methods to insert and remove kernel module demonstrated.

Motive of paper is to identify the procedure for handling

kernel module. Implementation of sample (hello-world)

kernel module on Linux Host Machine Demonstrated in this

paper.

Keywords

Device driver, Linux kernel module, embedded Linux, hello

world kernel module, Linux kernel structure, classification of

Linux kernel module, implementation of device driver.

1. INTRODUCTION
In Linux system many concurrent processes attend to different

tasks in which each process requires system resources like

computing power, memory, and network connectivity. The

kernel is executable code that handling all such resources. For

better understanding of it, programmer can also split Role of

Kernel in following part:

1.1 Process management
The kernel can create and destroy any processes. Kernel can

also perform Input/output operations on processes.

Communication among different processes through signals,

pipes, interposes communication primitives are also handled

by Kernel. The process management also includes handling

process scheduler which controls how processes share the

CPU (central processing units).

1.2 Memory management
The Linux machine’s memory is a major resource, and the

policy used to handle it is a critical task for kernel. In Linux

each process has its own private address space. This address

space can be divided in three logical segments: text, data and

stack. Text segments contain machine instructions and it is

read only. The data segments contain the uninitialized and

initialized data portion and have read/write permissions. The

stack segments hold run-time stacks of the application and it

also have read/write permissions.

1.3 File systems
Everything on Linux can be treated as file. Linux is

supporting many file system which makes it flexible and

possible to coexist with many other operating system. Linux is

supporting many file system like ext, ext2, Xia, minix,

umsdos, msdos, vfat, proc, smb, ncp, iso9660, sysv, hpfs, affs,

ntfs, ncpfs, ufs, nfs and many other [1]. EXT (extended) file

system is first file system designed for linux. The advantage

of EXT file system is virtual file system. Virtual file system

act as an interface layer, which separates real file system from

operating system and system services.

1.4 Device control
In Linux many system operations maps to a physical/hardware

devices. Programmer has to write code that is specific to the

device which is called device driver. Device driver will

provide path to interact hardware with kernel and for this

programmer has to embed it in kernel.

1.5 Networking
Networking must be managed by Linux kernel. Most of

networking tasks are not specified to process. For example

incoming packets are asynchronous events so the packets

must be collected, identified and dispatched before process

takes care of them. Eventually Linux kernel handles all the

routing and address resolution issues.

2. LINUX KERNEL KEY FEATURES
Linux kernel is portable and can run on most architecture.

One can see the arch/ directory in the kernel source. For

example 32 bit supported architectures are arm, avr32,

blackfin, cris, frv, h8300, m32r, m68k,m68knommu,

microblaze, mips, mn10300, parisc, s390, sparc, um, xtensa

and 64 bit supported architectures are alpha, ia64, sparc64.

[1].

Linux kernel is scalable.it can run on super computer as well

as small development board like raspberry-pi, beagle bone.

(4MB of RAM is enough for Linux kernel)[1].

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

41

(Figure 1 Linux Kernel Architecture [1])

Linux kernel has Exhaustive networking support.

Linux kernel has modularity as it can include kernel module at

run time also.

Linux kernel is open source and easy to program. Many

Resources Available For Learning the Kernel Programing.

2.1 Loadable modules
Linux has good features of ability to extend the kernel at

runtime.it means programmer can add and remove

functionality to the kernel runtime. The piece of code that can

be add/remove is called modules. The Linux kernel offers

deferent type/class of module which is described ahead.

Modules can be dynamically linked at runtime by insmod

command and unlinked by rmmod command.

3. TYPES OF DEVICES AND MODULES
Linux understand different devices as following types:

1. Character devices.

2. Block devices.

3. Network devices.

Thus, each module usually implements one of these types, and

thus is classifiable as a Char module, block module, network

module.

3.1 Character Devices
A character device can be accessed as a stream of bytes. This

type of drivers usually implements open, read, write, and

close system call. Text console (/dev/console) and serial ports

(/dev/ttys0) are examples of this type of devices [2].

3.2 Block Devices
Block devices can handle operation on whole block which

contains multiple bytes. Block devices and char devices defer

by the way data is manage by kernel. Block devices can be

handled by file system nodes in the /dev directory. Block

devices can host file system. Example of block device is

compact disk (C.D.) [1].

3.3 Network Devices
Any network transaction is made through an interface that is

able to exchange data between different hosts. This interface

can be hardware devices as well as software device. Loopback

interface is example of software device. Many network

connections protocol are stream oriented (e.g.TCP) but

networking devices are generally designed to transmit and

receive packages only. Thus network driver handles packets

only not the individual connections between hosts [2].

4. ANATOMY OF DEVICE DRIVERS
Device driver take on a special role in Linux kernel. They are

“black boxes” that make a particular piece of hardware

respond to a well-defined internal programing interface. The

driver translates between the hardware commands understand

by the device and the stylized programing interface used by

the kernel. User activities are performed by means of a set of

standardized calls that are independent of the specific

operations that act on a real hardware is then the role of the

device driver [2].

A device driver has three sides: - One talks to the hardware

and one talk to the user. While one side talks to the rest of the

kernel.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

42

(Figure 2 Anatomy of Device Drivers)

5. WRITING SAMPLE (HELLO-

WORLD) MODULE
Below is demonstration of sample Linux kernel module of

displaying hello-world in kernel space. The structure of

sample hello.c code is given below:

5.1 Linux kernel headers
Upper part of code is Headers specific to the Linux kernel.

But it does not have access to usual C library headers.

e.g.

#include<linux/init.h>

#include<linux/module.h>

#inlcude<linux/kernel.h>

5.2 Initialization function
This function is called when module is loaded and it is

declared by module_init () macro.

e.g.

Static int hello_init (void)

{

Printk (KERN_INFO “hello world sample kernel module”);

}

5.2.1 Function declaration
module_init (hello_init);

It returns o for successful operation while negative value

indicating error. Here, printk is working same as printf for

kernel programing.

5.3 Cleanup function
This function is called when module is unloaded and it is

declared by module_exit () macro.

e.g.

static void hello_exit(void)

{

Printk(KERN_INFO “good bye unloading module ”);

}

5.3.1 Function declaration
module_exit(hello_exit);

5.4 Metadata information

5.4.1 MODULE_DESCRIPTION

It is human readable statement of the module’s description

and module’s purpose.

e.g.

MODULE_DESCRIPTION(“sample linux kernel module”);

5.4.2 MODULE_AUTHOR
It is stating who wrote the module.

e.g.

MODULE_AUTHER(“Nirav,Himanshu and Dharmendra”);

5.4.3 MODULE_LICENCE
It is stating module’s license.

e.g.

MODULE_LICENSE(“GPL”;)

GPL means General public License. GPL allows everybody to

redistribute and sell a product covered by GPL with the

recipient has access to the source code and is able to exercise

the same rights. The Main goal of GPL is to allow the growth

of knowledge by allowing everybody to modify programs.

5.4.4 MODULE_VERSION
It is showing code revision number.

5.5 Kernel log
When new module is loaded related information is available

in the kernel log. Kernel log messages are available through

dmesg command.

5.6 Module symbols
When module is loaded any symbol exported by that module

becomes part of kernel symbol table. Generally module

implements its own functionality without any need to export

any symbols. However programmer can export symbols so

that other modules may have benefit from using them.

One can export symbol by EXPORT_SYSMBOL(name);

6. COMPILING A MODULE
Programmer can compile kernel module in two different

ways:

6.1 Inside the kernel tree
Kernel module is integrated into the kernel configuration

during compilation process. Device driver can be build

statistically if needed.

6.2 Out of kernel tree
This technique is use when Code is outside of the kernel

source tree and located in different directory.

6.2.1 Advantage
It is easier to handle (add/remove) the module than

modification to the whole kernel.

6.2.2 Drawbacks
It needs to be build separately as driver cannot be build

statically and not integrated to the kernel compilation.

Programmer requires the Makefile for compiling sample

driver hello.c. The goal is to generate hello.ko file that can be

inserted into kernel. Sample Makefile structure is given below

in figure:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

43

(Figure 3 Structure of Makefile)

6.2.3 Module Utilities

6.2.3.1 insmod <module_name>.ko
This will load the given module into kernel.

6.2.3.2 rmmod<module_name>
This will remove module from kernel.

6.2.3.3 lsmod
This will displays the list of modules loaded into kernel. It

can be also check from /proc/modules directory.

6.2.3.4 modinfo<module_name>
This will gets information about the module parameters,

module license, module descriptions and dependencies.

6.2.4 Steps to compile and insert/remove module
$sudo make

(This will compile Makefile and generates hello.ko file.)

$sudo insmod hello.ko

$sudo rmmod hello.ko

7. KERNEL SPACE VS USER SPACE
Kernel Modules runs in kernel space whereas application run

in user space, this concept is at the base of operating systems

theory. Every operating system has different operating levels.

These levels have different roles and some operations are

prohibited at lower levels. Kernel executes in higher level

called kernel space (supervisor mode) where everything is

allowed. While applications executes in lower level called

user space (user mode).kernel module runs in kernel space.

8. SIMULATION AND RESULT
The module’s Makefile is interpreted with undefined

KERNELRELESE so it calls the kernel’s Makefile and

passing the module directory with M variable. Kernel’s

Makefile compile module and due to M variable the module’s

Makefile is interpreted with defined KERNELRELESE.

(Figure 4 Module source vs Kernel source)

Successful implementation of sample (hello world) device

driver on our Linux host machine shown below.(Ubuntu

3.13.0.65-generic kernel). Below figures shows how to

compile hello.c file using Makefile and make command. After

successful compilation hello.ko generated, this can be

inserted/removed into/from kernel as module. Kernel console

display shows the messages of insert module/cleanup module

using dmesg command.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

44

(Figure 5 Compiling Hello.c file using Makefile and make command in Linux Host Machine)

(Figure 6 insert module hello.ko (using insmod command) and displaying Kernel console (using dmesg) in Host Machine)

(Figure 7 remove module hello.ko (using rmmod command) and displaying Kernel console (using dmesg) in Host Machine)

9. CONCLUSION AND FUTURE WORK
Basic Structure of Linux kernel loadable module discussed

and evaluated. Fundamental of linux kernel architecture

discussed in brief. linux kernel has advantage of loading

kernel module during run time compare to other operating

system which is one of the reasons why programmer use linux

compare to other operating system. Methods for implementing

kernel module in linux at run time demonstrated. Also

Advantages and Drawbacks of Out of kernel tree module

compilation explained in brief. Simple Hello-World device

driver simulated on linux host machine.

In future programmer can develop and implement Character

Device Driver and miscellaneous device driver on Linux host

machine. Also future aim can be to develop driver on

embedded development board like raspberry pi, beagle bone

black,odorid-XU4 with embedded linux ported on it.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.4, January 2016 – www.ijais.org

45

10. REFERENCES
[1] Jonathan corbet,Alessandro,Rubini,and Greg Kroah-

Hartman. Linux Device Drivers 3e O’REILLY.

[2] XuZhe,

LiuZhuo,ZhangHua,HuangWenjiang.Development of

Linux Baed USB Device Driver for Portable

Spectrometer,2009 IEEE

[3] Shaojie Wang, Sharad Malik. Synthesizing Operating

System Based Device Driver in Embedded System,2003

IEEE.

[4] T.K.Damodharan,V.Rhymend Uthariaraj.USB Printer

Driver Development for Handheld Devcies,26th Int.Conf.

Information Technology Interfaces ITI, JUNE 2004

IEEE.

[5] Juan Zhu,Shuai Wang,Shuyan Zhang,Jinli Wang,Zhaoxi

Li. Embedded Driver System for USB Mouse,2011

IEEE.

[6] Gong Yum,Sun Li-hua.Analysis and Implementation of

USB Driver Based on VxWorks, 2010 IEEE.

[7] Moritz Jodeit,Martin Johns. USB Device Drivers : A

Stepping Stone into your Kernel, 2010 IEEE.

