

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.5, February 2016 – www.ijais.org

54

TripleFetchQL: A Platform for Integrating Relational and

NoSQL Databases

Oluwafemi E. Ooju
Department of Mathematics,

Ahmadu Bello University,
Nigeria

Sahalu B. Junaidu
Department of Mathematics,

Ahmadu Bello University,
Nigeria

S.E. Abdullahi

Department of Mathematics,
Ahmadu Bello University,

Nigeria

ABSTRACT
There has been an unprecedented growth and increase in the

domain unstructured/semi-structured data is increasing over the

years. While relational database systems remain popular and

relevant, they are incapable of handling the growth level of

unstructured data in the area of web applications. Conflating the

benefits of a simple NoSQL storage engine with the relational

databases and the unique ability of presenting query results from

the duo to users at minimal costs have been a critical challenge in

the research community. So far so good there has been a

tremendous works such as using SQL with an extension of NQP

on transformed NoSQL data which is store as SQL virtual

relation, querying Apache Cassandra with SQL after altering the

data structure, querying both world of relational and NoSQL and

produced two results instead of single output. The TripleFetchQL

system developed enables users to query relational and NoSQL

databases and presents query results as if they were querying the

familiar relational database alone. Furthermore, TripleFetchQL

provide applications the ability of leveraging the benefits of

relational and NoSQL databases at the small cost of learning the

simple syntax of the TripleFetchQL system.

Keywords

ACID, CAP, NOSQL, TFQL

1. INTRODUCTION
Database was introduced in 1960 as a simple layer that would

serve as fundamental principle behind Information systems. New

architecture of separating application from data was introduced

[Codd, 1970]. In 1970s Edgar Codd proposed Relational model

for storing Data. Relational model uses SQL to let applications

find data within tables [Smith, 2013].

In recent years, applications began to produce wide range of data

through complex systems. These large amounts of data gave rise

to concerns like database structure, scalability, and availability of

data which emerged the term NoSQL [Stonebraker, et al., 2007].

Different databases are designed to solve different problems.

Using a single database engine for all of the requirements usually

leads to non-performant solutions. RDBMS solutions are good at

enforcing that relationships exist. [Pramod & Martin, 2012].

A relational database is no more an ideal database system that is

fit for the massive growth and the unstructured data of certain

modern web applications in terms of the immense amount of

data, yet some data are still relational bounded.

The now increasingly popular NoSQL alternatives enable

applications to sacrifice data consistency which is part of SQL

ACID (Atomicity, Consistency, Isolation, Durability) properties

in benefit of the factors more important to modern web

applications which are: availability, scalability and performance

[Brewer, 2012].

Large websites must now be able to serve billions of pages every

day and web users expect that their data are ubiquitously

accessible at the speed of light no matter the time of day.

A NoSQL database provides a mechanism for storage and

retrieval of data that is modeled in means other than the tabular

relations used in relational databases. Motivations for this

approach include simplicity of design, horizontal scaling and

finer control over availability. NoSQL databases are increasingly

used in big data and real-time web applications.

These databases intend to be almost schema-less and not as strict

as their relational counterparts on what concerns the data model,

in order to achieve higher scalability.

In this paper, there is an attempt to combine both relational and

NoSQL world on a single platform to enable users and

developers exploit the benefits of both on a click in the proposed

TripleFetchQL System and Aggregate Query Syntax with the

introduction of transformation agent.

Considering the proposal, the system was implemented and used

to query MySQL, MongoDB and Apache Cassandra databases

respectively. This solution eliminates any manual alterations by

users and unified results from the three involving databases into

one tabular SQL-Like format. The prototype system was tested

and worked well and it’s believed it can be adapted into practical

environment.

The rest of the paper is organized as follows. Section 2 highlights

related work, Section 3 presents the proposed TripleFetchQL

System, in Section 4, System evaluation and performance was

done over others. Section 5 handles the conclusion while

references are given in Section 6.

2. RELATED WORKS
Overview of the current and up-to-date research on the works

related to the intended goal of this paper was discussed in this

section.

In 2009, an overview of non-relational data models and how they

are differing from relational model was placed on scholar palm

by [Varley 2009]. He tries to determine which is best among the

two model paradigms; using data modeling by considering their

strengths and weaknesses. His research provides a good

background to this work, but the issue of combination and data

retrieval was not addressed.

[Strauch 2011] gave an in-depth introduction to NoSQL. He

describes the rationales behind the NoSQL, techniques and

algorithms for solving some issues of concerns. He concluded

that NoSQL is not a replacement for SQL which gives rooms for

rational thinking of bringing the two together in a single

application which he didn’t mentioned.

The very first extensible framework for coordinating queries

across SQL and NoSQL using ANSI SQL queries on top of

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.5, February 2016 – www.ijais.org

55

Cassandra was presented by [Ferreira 2012]. His tactic allows

migration of data from both data stores without losing the

transactional guarantees given by the traditional relational

system. His approach did not look into the situation where there

will be need for data combination from both databases.

[Roijackers 2012] attempts to bridge the gap between the SQL

and NoSQL with the idea of transforming the NoSQL data into

triple format and incorporate the triples into SQL database as a

virtual relation. His implementation accepts a single query

language which is SQL queries which is extended with NoSQL

query patters. The original NoSQL is reconstructed via series of

joins from the relations. This approach requires a lot of

transformation of data from one form to another which in process

could lead to data loss and also delay in data access.

The most recent closest related work in this area is the work of

[Adeyi et al 2013/2014]. They create a system called

DualFetchQL System which integrates Relational and NoSQL

databases and also claimed to present a unified output on using

the derived aggregate query syntax. This obviously did not

happened in there finally output which leads to manual

alterations by users before full knowledge of data pulls from the

databases.

3. TRIPLEFETCHQL SYSTEM

3.1 Theoretical Framework
The architecture of the system is made up of five major phases

namely, Application, Abstraction Layer, TripleFetchQL

Function, Transformation Agent and the databases as show in

Figure 2.

Figure 2: The TripleFetchQL System Architecture

Application phase of the design enables users to input queries in

either SQL or NoSQL in addition to the aggregate query as well

as the unique capability of displaying the result of the processes.

Abstraction Layer is the domain of the user. It contains

basically two parts; the part where users can enter query and the

other part where result of query is being displayed. User query is

passed on to the TripleFetchQL Function. When the Execute

action is initiated by the user, the TripleFetchQL Function

processes the query and sends back the result to the Abstraction

Layer.

TripleFetchQL Function oversees the relationship between

other components of the system. It also determines how the

system functions. It extracts the query entered by a client from

the Abstraction Layer, determines the type of query and interacts

with the databases and finally sends back result of the query to

the Abstraction Layer for display.

Transformation Agent is responsible for transforming the

output of the aggregate query across all the databases with the

result being displayed in a tabular form. This helps users to

eliminate manual edit needed in combining the data.

Apache Cassandra is the environment where the Apache

Cassandra server resides. All the Cassandra related queries which

were handed over by TripleFetchQL Function for execution are

handled here. The result of the query will be sent back to the

TripleFetchQL Function which will in turn transfer it to

Abstraction Layer.

MongoDB is the environment where the MongoDB’s server

resides. All MongoDB related queries are handed over to the

MongoDB by the TripleFetchQL Function for execution. The

query is executed with the result returned back to the

TripleFetchQL Function.

MySQL, this is the MySQL database’s server side. All SQL

related queries are handed over to the MySQL by the

TripleFetchQL Function for execution. The query is executed

with the result returned back to the TripleFetchQL Function.

3.2 TripleFetchQL Implementation
In other to successfully implement TFQL System, the three

involving databases which are MySQL server as the SQL

database manager, MongoDB as Document-Store family of

NoSQL and Apache Cassandra as a Column-Store family of

NoSQL was choosing carefully based on the fact that no other

researcher has worked with three databases across the two world,

acceptability of the databases, fault tolerant, ease of use and

maintenance, free to use/open source, among the top 10 ranking

databases, among many other reasons. They are also chosen

because of their Java API ability which aids easy

communication.

TFQL System uses derived aggregate query syntax to query data

across all the databases and present to the user a unified result

with the help of the transformation agent. The TFQL only

transform the data pulled from the databases to SQL like tabular

form without any alteration to the data in the databases.

3.3 Aggregate Query Syntax
New query syntax was developed to query all the three

databases. The purpose of this query syntax is to bridge the

communication gaps between the relational and NoSQL

databases. It is made up of two major component which is

separated with key word “and”. The NoSQL component of

the query was later partitioned into two components using

the same keyword “and”. There are actually three major

keywords: SQL, NoSQL and AND. The SQL keyword enables

the system to recognize query that’s pertaining to SQL while the

NoSQL enable the system to recognize query pertaining to

NoSQL. The keyword AND helps in separating the query

accordingly to their various databases servers for execution and

also tell the system that the users is communicating with more

than one database. Find below the syntax of the aggregate query:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.5, February 2016 – www.ijais.org

56

SQL[SQL Query Syntax] and NoSQL[MongoDB Query Syntax

and Cassandra Query Syntax]

3.4 System Workflow

Figure 3: The System Workflow of TFQL

The workflow illustrates how the system executes the different

user queries in line with the “of type” ability of the system.

4. SYSTEM EVALUATION AND

COMPARISON
In order to prove the capability of the TFQL System, some

screenshot of the system were made when it’s performing

aggregate query functionality with and without the

transformation agent. This is to prove to the world that there are

lot benefits when the relational world and NoSQL world were

brought together.

Figure 4a show to us data pulled from the three databases

according to the aggregate query statement issued by the user

before the operation of transformation agent.

Figure 4b show to us the effect of transformation agent on the

result of the aggregate query displayed in figure 4.1 and how it

helps unified the result without the need of any manual

alterations for the users, no identification of which database hold

which data and finally, the result is SQL like.

Figure 4b: Screenshot of Aggregate Query with

Transformation Agent

Table 1 shows both similarities and differences between TFQL

and that of (Roijackers, 2012) and (Adeyi, 2014) in terms of

platform acceptability for more databases, query support,

aggregate functionality and unified output of aggregate query.

5. CONCLUSION
TFQL System was designed to acts as a software layer for

querying both relational and NoSQL databases with the help of

the derived aggregate query syntax when there is need for unified

data across the three sampled databases.

TFQL was tested with the aggregate query syntax against

MySQL, MongoDB and Apache Cassandra and showed how it

handled the issued query with no hesitation and produced the

required result in a unified form.

To further enhance this research, the following areas can be

looked into:

 Looking into the time taken to transform the data pulled

from the databases by the users query into the tabular

output by the transformation agent.

 Reviewing the Aggregate Query Syntax by merging the

three components into just one so as to avoid the users the

burden of knowing more than two query languages.

This system is built basically on MongoDB and Apache

Cassandra as a sample of NoSQL family, research can exploit

other members apart from the column store and data store.

Table 1: Result Evaluation and Comparison with other

Systems

 Roijackers

2012

Adeyi

2013/2014

TripleFetchQL

2015

SQL

Select Yes Yes Yes

Create Yes Yes Yes

Insert Yes Yes Yes

Update Yes Yes Yes

Delete No Yes Yes

Alter No Yes Yes

Grant No Yes Yes

Revoke

MONGO DB

Find() No Yes Yes

Remove() No Yes Yes

Drop() No Yes Yes

Update() No Yes Yes

Insert() No Yes Yes

Figure 4a: Screenshot of Aggregate Query without

Transformation

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.5, February 2016 – www.ijais.org

57

Create() No Yes Yes

CASSANDRA DB

Select No No Yes

Insert No No Yes

Create No No Yes

Create

Keyspace

No No Yes

Delete No No Yes

Update No No Yes

Alter No No Yes

Drop No No Yes

Grant No No Yes

Revoke No No Yes

AGGREGATE FUNCTIONALITY

Aggregate

Query

No Yes Yes

Single

Result/Output

No No Yes

6. REFERENCES
[1] Adeyi, T. S., Abdullahi, S. E., & Junaidu, S. B. (2013).

DualFetchQL System: A Platform for Integrating Relational

and NoSQL Databases. IJERT Vol. 2, Issue 12, December,

1973 - 1981.

[2] Brewer, E. A. (2012). CAP twelve years later: how the

‘rules’ have changed. Computer, Vol. 45 No. 2, 22 - 29.

[3] Codd, E. F. (1970). A relational model of data for large

shared data banks. Communications of the ACM, 13(6), 377-

387.

[4] Desire, A. (2014). Can SQL and NoSQL databases live

happily together? An Article Retrieved:

http://www.techradar.com/news/internet/web/can-sql-and-

nosql-databases-live-happily-together--1278322/1.

[5] Ferreira, L. (2012). Bridging the Gap between SQL and

NoSQL: SQL and ACID over a VLSD. Master Thesis,

Universidade do Minho.

[6] Nance et al. NOSQL VS RDBMS - WHY THERE IS

ROOM FOR BOTH. Proceedings of the Southern

Association for Information Systems Conference, Savannah,

GA, USA, March 8th–9th, 2013

[7] Pramod, J. S., & Martin, F. (2012). NoSQL Distilled: A

Brief Guide to the Emerging World of Polyglot Persistence.

Retrieved:

http://www.thoughtworks.com/insights/blog/nosql-

databases-overview.

[8] Roijackers, J. (2012). Bridging SQL and NoSQL. Master

Thesis. Eindhoven University of Technology.

[9] Roijackers, J., & Fletcher, G. H. (2013). On bridging

relational and document-centric data stores. BNCOD' 13

Proceeding of the 29th British National Conference on Big

Data., 135 - 148.

[10] Smith, S. (2013, October 13). Why NoSQL database is used

by Facebook, Google and LinkedIn Application? Retrieved

from http://blog.outsourcing-partners.com/2012/10/why-

nosql-database-is-used-by-facebook-google-and-linkedin-

applications/.

[11] Stonebraker, M., Madden, S., Abadi, D. J., Harizopoul, S.,

Hachem, N., & Helland, P. (2007). The end of an

architectural era: (it's time for a complete rewrite)," in

Proceedings of the 33rd international conference on Very

large data bases.

[12] Strauch, C. (2011). NoSQL Databases - NoSQL

Introduction and Overview. Paper retrieved:

http://highscalability.com/blog/2011/4/13/paper-nosql-

databases-nosql-introduction-and-overview.html.

[13] Varley, I. T. (2009). No Relation: The Mixed Blessings of

Non-Relational Databases. Master Thesis in The University

of Texasat Austin. Retrieved:

http://ianvarley.com/UT/MR/Varley_MastersReport_Full_2

009-08-07.pdf.

