

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

33

On Characterized Once-in-a-Lifetime Workload patterns

for Periodic Static Scaling
Ravi (Ravinder) Prakash G.

Senior Professor Research,
BMS Institute of Technology

Dodaballapur Road,
Avalahalli, Yelahanka,
Bangalore – 560 064

Kiran M.
Research Scholar

School of Computing & Information Technology
REVA University, Yelahanka, Bengaluru - 560064

ABSTRACT

Measurability is a concept in periodic static scaling based on

the following two conditions: (a) a cloud service provider

should be cautious, that is, should not exclude any cloud

consumer’s resource pooling pattern strategy from

consideration; and (b) a cloud service provider should

consider the cloud consumers’ resource pooling pattern

preferences, that is, should deem a cloud consumer’s resource

pooling pattern strategy ki infinitely more likely than k'i if it

premises the cloud consumer to prefer ki to k'i. A resource

pooling pattern strategy is measurable if it can optimally be

chosen under common resource pooling pattern conjecture in

the events (a) and (b). In this paper we present an algorithm

that for every finite periodic static scaling operation computes

the set of all measurable resource pooling pattern strategies.

The algorithm is based on the new idea of an Once-in-a-

Lifetime Workload preference limitation, which is a pair (ki,

Vi) consisting of a resource pooling pattern strategy ki, and a

subset of resource pooling pattern strategies Vi, for cloud

service provider i. The interpretation is that cloud service

provider i prefers some resource pooling pattern strategy in Vi

to ki. The algorithm proceeds by successively adding Once-in-

a-Lifetime Workload preference limitations to the periodic

static scaling.

Keywords

Periodic static scaling, measurability, Once-in-a-Lifetime

Workload, preference limitation, resource pooling pattern,

Totally Ordered Data-Intensive Systems

1. INTRODUCTION
In an periodic static scaling, it is natural to assume that a

cloud service provider reasons about its cloud consumers

before making a decision. Namely, in order to evaluate the

possible consequences of a decision, the cloud service

provider must form some resource pooling pattern conjecture

about its cloud consumers’ choices which, in turn, must be

based on some resource pooling pattern conjecture about its

cloud consumers’ conjecture about their cloud consumers’

choices, and so on. It is the goal of periodic static scaling [1]

[28] [29[to formally describe such reasoning processes, and

to investigate their behavioral implications.

Throughout this paper we take a cloud service provider set

perspective to analyze periodic static scaling-theoretic

situations. That is, we always view the periodic static scaling

from the perspective of cloud service provider set, and put

restrictions only on the conjecture of this particular cloud

service provider set – including conjecture about the cloud

consumers’ conjecture – without imposing restrictions on the

actual conjecture of the cloud consumers. We premise this

approach to be plausible; as we cannot look inside the cloud

consumers at the time we make an Once-in-a-Lifetime

Workload choice. So, can only base Once-in-a-Lifetime

Workload choice on conjecture about the cloud consumers,

and not on the actual conjecture and Once-in-a-Lifetime

Workload choices of cloud consumers. But then, if we want to

analyze the reasonable Once-in-a-Lifetime Workload choices

a cloud service provider can make in an periodic static

scaling, it is sufficient to concentrate only on the conjecture of

this particular cloud service provider set, as they encompass

everything that can be used to make a decision. Although we

premise the cloud service provider set perspective to be very

natural, it crucially differs from the usual approach to periodic

static scaling in papers and articles, which typically proceed

by imposing restrictions on the conjecture of all cloud service

provider set, and not only cloud service provider set.

Measurability is a concept within periodic static scaling that is

based upon the following two assumptions:

 A cloud service provider should be cautious, that is, a

cloud service provider should not exclude any cloud

consumer’s resource pooling pattern strategy from

consideration;

 A cloud service provider should consider the cloud

consumers’ resource pooling pattern preferences, that is,

if the cloud service provider premises that an cloud

consumer prefers resource pooling pattern strategy ki to

resource pooling pattern strategy k'i, then the cloud

service provider should deem ki much more likely k'i.

Any resource pooling pattern strategy that can be chosen

optimally under common resource pooling pattern conjecture

in these two events is called measurable.

In order to define measurability formally we can no longer

model the cloud service providers’ conjecture by standard

probability distributions. Suppose, for instance, that cloud

service provider 1 premises that cloud service provider 2

prefers resource pooling pattern strategy a to resource pooling

pattern strategy b. If cloud service provider 1’s resource

pooling pattern conjecture about 2’s choice would be modeled

by a single probability distribution then cloud service provider

1 should assign probability 0 to b, since it must consider 2’s

resource pooling pattern preferences. This, however, would

contradict the assumption that it is cautious.

A possible way to define measurability is by means of

sequences of probability distributions, or by using totally

ordered Data-intensive systems [9], [10], [12], [14] [11], [24].

Both frameworks can model a state of mind in which you

deem some cloud consumer’s resource pooling pattern

strategy ki infinitely more likely than some other resource

pooling pattern strategy k'i, without completely discarding the

latter choice.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

34

The practical disadvantage of these richer frameworks is that,

it makes the computation of measurable resource pooling

pattern strategies rather difficult. This is probably also the

reason that measurability, despite its strong intuitive appeal,

has not received as much attention as many other concepts in

periodic static scaling. It would therefore be very useful to

have an algorithm helping us to compute this measurable

resource pooling pattern strategies. A procedure, called

iteratively trembling, that for any given α > 0 yields the set of

α-measurable resource pooling pattern strategies. By letting α

tend to zero, we finally would obtain the set of measurable

resource pooling pattern strategies. So, in a sense, this

procedure only indirectly leads to the set of measurable

resource pooling pattern strategies, as we first have to apply

the procedure for a sequence of small α’s, and then let α go to

zero.

There is another algorithm designed for measurability, called

iterated backward inference. This procedure does not exactly

yield the set of measurable resource pooling pattern strategies,

as its output may contain resource pooling pattern strategies

that are not measurable. The output, however, always includes

the set of measurable resource pooling pattern strategies.

In this paper we present an algorithm, called iterated addition

of Once-in-a-Lifetime Workload preference limitations that

directly delivers the set of all measurable resource pooling

pattern strategies in every finite periodic static scaling

operation [17], [19], [23]. The algorithm is based on the new

notion of an Once-in-a-Lifetime Workload preference

limitation. Formally, an Once-in-a-Lifetime Workload

preference limitation for cloud service provider i is a pair (ki,

Vi), where ki is a resource pooling pattern strategy and Vi a

subset of resource pooling pattern strategies for cloud service

provider i. The interpretation is that cloud service provider i

prefers some resource pooling pattern strategy Vi in to ki,

without specifying which one (unless Vi contains only one

resource pooling pattern strategy, of course). A totally

ordered resource pooling pattern conjecture for cloud service

provider i about its cloud consumers’ resource pooling pattern

strategies is a finite sequence ψi = (ψi
1, . . . , ψi

P) of probability

distributions on K−i, the set of cloud consumers’ resource

pooling pattern strategy combinations, such that every

resource pooling pattern strategy combination k−i in K−i

receives positive probability under some probability

distribution ψi
p in this sequence. For every p {1, . . . , P}, we

call ψi
p the level p resource pooling pattern conjecture.

The totally ordered resource pooling pattern conjecture ψi

deems some resource pooling pattern strategy combination k−i

infinitely more likely than some other resource pooling pattern

strategy combination k'−i if there is some level p such that k−i

receives positive probability under the level p resource

pooling pattern conjecture ψi
P, whereas k'−i receives

probability zero under the first p levels. We say that ψi

consider an Once-in-a-Lifetime Workload preference

limitation (kj, Vj), for cloud consumer j if it deems some

resource pooling pattern strategy in Vj infinitely more likely

than kj. This thus mimics the condition in measurability that i

must consider j’s resource pooling pattern preferences. The

totally ordered resource pooling pattern conjecture ψi is said to

assume a subset E−i K−i of resource pooling pattern strategy

combinations if it deems every element in E−i infinitely more

likely than every element outside E−i.

The algorithm we present proceeds by inductively adding

Once-in-a-Lifetime Workload preference limitations [6], [2],

[4], [3], [8], [5], [26] until no further Once-in-a-Lifetime

Workload preference limitations can be produced. At round 1,

we start with the empty set of Once-in-a-Lifetime Workload

preference limitations for all cloud service providers. In every

subsequent round, we add an Once-in-a-Lifetime Workload

preference limitation (ki, Vi) for cloud service provider i if

every totally ordered resource pooling pattern conjecture on

K−i that consider all current Once-in-a-Lifetime Workload

preference limitations for i’s cloud consumers, assumes some

subset E−i K−i on which ki is weakly dominated by some

randomized resource pooling pattern strategy on Vi. We

continue this process until no further Once-in-a-Lifetime

Workload preference limitation can be added. Among the

final set of Once-in-a-Lifetime Workload preference

limitations for cloud service provider i, we look for those

resource pooling pattern strategies ki that are not part of any

Once-in-a-Lifetime Workload preference limitation (ki, Vi).

We show that these resource pooling pattern strategies are

exactly the measurable resource pooling pattern strategies for

cloud service provider i.

So, at every round the algorithm produces, for each cloud

service provider, a set of Once-in-a-Lifetime Workload

preference limitations. As the set of Once-in-a-Lifetime

Workload preference limitations can only grow at every

round, and there are only finitely many possible Once-in-a-

Lifetime Workload preference limitations, the algorithm must

stop after finitely many rounds.

Not only can this algorithm be used to compute the

measurable resource pooling pattern strategies in an periodic

static scaling, it also represents a natural inductive reasoning

procedure for the cloud service providers that eventually lead

them to measurable resource pooling pattern choices. The

central object in this reasoning process is that of an Once-in-a-

Lifetime Workload preference limitation. If we add an Once-

in-a-Lifetime Workload preference limitation (ki, Vi) for cloud

service provider i, then normally this means that i’s cloud

consumers premises that i prefers some resource pooling

pattern strategy in Vi to ki. Moreover, if i’s cloud consumers

consider i’s resource pooling pattern preferences, as we

assume in measurability, then i’s cloud consumers will also

deem some resource pooling pattern strategy in Vi infinitely

more likely than ki. Thus, by adding Once-in-a-Lifetime

Workload preference limitations at every round, we further

and further limit the possible totally ordered conjecture that

cloud service providers can plausibly hold about their cloud

consumers’ choices. In a sense, what the algorithm shows is

that, in order to reason your way toward measurable resource

pooling pattern strategies, it is sufficient to keep track of the

cloud service providers’ Once-in-a-Lifetime Workload

preference limitations. At every round, by considering the

current Once-in-a-Lifetime Workload preference limitations,

we can possibly derive new Once-in-a-Lifetime Workload

preference limitations, thus further limitations the cloud

service providers’ possible totally ordered conjecture, until

this reasoning process cannot produce any new Once-in-a-

Lifetime Workload preference limitations. This is where the

reasoning procedure ends, and by looking at the final Once-in-

a-Lifetime Workload preference limitations we can find the

entire measurable resource pooling pattern strategies in the

periodic static scaling.

In the algorithm we present, the objects of output are different

than in previous procedure. There, the procedure delivers at

every round and for every cloud service provider i, a set of

full support probability distributions on cloud service provider

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

35

i’s resource pooling pattern strategy, where this set becomes

smaller with every round. As there are infinitely many

possible sets of full support probability distributions, previous

procedure can produce infinitely many possible outputs in

every round. This is a major difference with the algorithm we

propose, where at every round there are only a finite number

of possible outputs, namely the Once-in-a-Lifetime Workload

preference limitations at that round. Note also that the

algorithm in this paper is fundamentally different from most

other inductive concepts in periodic static scaling, which

usually proceed by successively eliminating resource pooling

pattern strategies from the periodic static scaling. Think, for

instance, of iterated elimination of strictly (weakly) dominated

resource pooling pattern strategies. So, why did we not base

the algorithm on elimination of resource pooling pattern

strategies as well? The reason is that iterated elimination of

strategies cannot work for measurability. In Section 2 we

provide an algorithm for measurability must necessarily be of

a different nature than the ones we are used to.

The outline of the paper is as follows. In Section 2 we show,

why successive elimination of resource pooling pattern

strategies does not work for measurability. In Section 3 we

give a formal necessary and sufficient condition of

measurability, by making use of totally ordered Data-intensive

systems [9], [10], [12], [14] [11]. In Section 4 we present the

algorithm, illustrate it by means of our main proposition

showing that the algorithm produces exactly the set of

measurable resource pooling pattern strategies. In Section 5

we discuss some important properties of the algorithm: We

show how the algorithm can be viewed as a natural inductive
reasoning procedure, and explain why the order in which we

add Once-in-a-Lifetime Workload preference limitations does

not matter for the eventual output. In section 6 we include

conclusion and future scope.

2. WHY ELIMINATION OF RESOURCE

POOLING PATTERN STRATEGIES

DOES NOT WORK
Most algorithms in the periodic static scaling literature [1],

[27] proceed by successively modifying resource pooling

pattern strategies from the operation cycle. Think, for

instance, of iterated elimination of strictly (weakly) dominated

resource pooling pattern strategies. As announced, the

algorithm we propose for measurability is of a different nature

since it is based on successively adding Once-in-a-Lifetime

Workload preference limitations rather than eliminating

resource pooling pattern strategies. A natural question is why

we do not stick to the process of eliminating resource pooling

pattern strategies here. In this section we show why

elimination of resource pooling pattern strategies does not

work for measurability.

Let us first be precise about the class of resource pooling

pattern strategy elimination procedures we consider. All the

elimination procedures mentioned above have in common that

at each round, only weakly dominated resource pooling

pattern strategies in the cloud consumer cycle of periodic

static scaling cycle [18], [20], [22] (but not necessarily all) are

eliminated. Now, say that a resource pooling pattern strategy

elimination procedure is regular if at every round, it

eliminates a (possibly empty) subset of the set of weakly

dominated resource pooling pattern strategies in the cloud

consumer of periodic static scaling cycle [21].

3. NECESSARY AND SUFFICIENT

CONDITION OF MEASURABILITY

3.1 Totally Ordered Data-Intensive

Systems
Totally ordered Data-intensive systems have been formally

introduced as a possible way to represent a decision maker’s

resource pooling pattern conjecture about the data-intensive

state of the data-intensive world. The essential feature is that

it allows the decision maker to deem one data-intensive state

much more likely (in fact, infinitely more likely) than some

other data-intensive state, without completely ignoring the

latter data-intensive state when making a decision.

More formally, let N be some finite set of data-intensive

states. By θ(N) we denote the set of all probability

distributions on N. A Totally ordered Data-intensive systems

(TODIS) on N is a finite sequence of probability distributions

ψ = (ψ1, ψ2, . . ., ψP),

with ψp θ(N) for all p {1, . . . , P}. We refer to ψ1 as the

decision maker’s level 1 resource pooling pattern conjecture,

to ψ2 as its level 2 resource pooling pattern conjecture, and so

on. The interpretation is that the decision maker attaches

much more importance to its level 1 resource pooling pattern

conjecture than to its level 2 resource pooling pattern

conjecture, attaches much more importance to its level 2

resource pooling pattern conjecture than to its level 3 resource

pooling pattern conjecture, and so on, without completely

discarding any of these conjecture. For every data-intensive

state n N, let lp(n,ψ) be the first level p for which ψp(n)>0.

If ψp(n) = 0 for every p {1, . . . , P}, set lp(n,ψ) = ∞. We call

lp(n,ψ) the rank of data-intensive state n within the TODIS ψ.

We say that the TODIS ψ deems data-intensive state n

infinitely more likely than some other data-intensive state

Proposition if n has a lower rank that Proposition.

3.2 Periodic static scaling Planning Model
Consider a finite static periodic static scaling δ = (Ki , xi)i I

where I is the finite set of cloud service providers, the finite

set Ki denotes the set of strategies for cloud service provider i,

and xi : ∏j I Kj →F denotes cloud service provider i’s utility

function. We assume that cloud service provider i does not

only have a resource pooling pattern conjecture about its

cloud consumers’ resource pooling pattern strategy choices,

but also about the possible conjecture that its cloud consumers

could have about the other cloud service providers’ resource

pooling pattern strategy choices, and about the possible

conjecture that the cloud consumers could have about the

possible conjecture that their cloud consumers could have

about the other cloud service providers’ resource pooling

pattern strategy choices, and so on. That is, cloud service

provider i hold a full resource pooling pattern conjecture

hierarchy about the cloud consumers’ choices and the cloud

consumers’ conjecture. If we assume, moreover, that each of

the conjecture in this hierarchy can be represented by a

TODIS, this leads to the following periodic static scaling

planning model [7], [13], [15], [16], [25].

Necessary and sufficient condition 3.1 (periodic static

scaling planning model). A finite periodic static scaling

planning model for the periodic static scaling δ is a tuple (Ti,

ψi)i I where, for all cloud service providers i, Ti is a finite set

of Once-in-a-Lifetime Workload types, and ψi is a function

that assigns to every Once-in-a-Lifetime Workload type ti Ti

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

36

some TODIS ψi(ti) on the set K−i×T−i of cloud consumers’

strategy–Once-in-a-Lifetime Workload type combinations.

Here, K−i:=∏j≠i Kj denotes the set of cloud consumers’ strategy

combinations, and T−i:=∏j≠i Tj the set of cloud consumers’

Once-in-a-Lifetime Workload type combinations. The

interpretation is that ψi(ti) represents the resource pooling

pattern conjecture that Once-in-a-Lifetime Workload type ti

has about its cloud consumers’ choices and conjecture. For

instance, the marginal of ψi(ti) on Pj represents the resource

pooling pattern conjecture that ti has about cloud consumer j’s

choice. Since every cloud consumer’s type tj holds a resource

pooling pattern conjecture about the other cloud service

providers’ choices, we can derive from ψi(ti) as well the

resource pooling pattern conjecture that Once-in-a-Lifetime

Workload type ti has about the resource pooling pattern

conjecture that cloud service provider j has about its cloud

consumers’ choices, and so on. In fact, from ψi(ti) we can

derive the full resource pooling pattern conjecture hierarchy

that cloud service provider i has about its cloud consumers’

choices and conjecture.

The reader may wonder why we limit attention to periodic

static scaling planning models with finitely many Once-in-a-

Lifetime Workload types for every cloud service provider. In

principle, we could allow for infinitely many Once-in-a-

Lifetime Workload types for every cloud service provider,

and define measurability for such infinite periodic static

scaling planning models. But it can be shown that every

measurable strategy in a finite periodic static scaling can be

supported by a measurable Once-in-a-Lifetime Workload type

within an periodic static scaling planning model with finitely

many Once-in-a-Lifetime Workload types only. So, we do not

“overlook” any measurable strategies by concentrating on

finite Once-in-a-Lifetime Workload type spaces only. As

working with finite sets of Once-in-a-Lifetime Workload

types makes things easier, we have decided to solely

concentrate on finite periodic static scaling planning models

in this paper.

Note that within an periodic static scaling planning model, the

totally ordered resource pooling pattern conjecture ψi(ti) =

(ψi
1, . . . , ψi

P) of an Once-in-a-Lifetime Workload type ti is,

mathematically speaking, an TODIS on the set of data-

intensive states K−i×T−i. For every cloud consumers’ resource

pooling pattern strategy–Once-in-a-Lifetime Workload type

combination (k−i , t−i) K−i×T−i, we can thus define the rank

lp((k−i , t−i), ψi(ti)) of (k−i , t−i) within ψi(ti), being the lowest

level p such that ψi
p(k−i , t−i)>0. Remember that, by

convention, lp((k−i , t−i), ψi(ti))=∞ whenever (k−i , t−i) does not

receive positive probability anywhere in ψi(ti). We say that

Once-in-a-Lifetime Workload type ti deems the resource

pooling pattern strategy–Once-in-a-Lifetime Workload type

combination (k−i, t−i) infinitely more likely than some other

combination (k'−i , t'−i) if the rank of (k−i , t−i) is lower than the

rank of (k'−i , t'−i).

Similarly, we can define for every event A K−i×T−i

of cloud consumers’ resource pooling pattern strategy–Once-

in-a-Lifetime Workload type combinations the associated rank

by

lp(A,ψi(ti))= min{l((k−i , t−i), ψi(ti)|(k−i , t−i) A}.

Hence, the rank of A is the lowest level p such that ψi
p assigns

positive probability to some element in A. This necessary and

sufficient condition then allows us to define the rank of an

individual cloud consumer’s resource pooling pattern

strategy–Once-in-a-Lifetime Workload type pair (kj, tj),

simply by taking the rank of the event

{kj} × ∏ Kp× {tj} × ∏ Tp.

 p≠i,j p≠i,j

So, we first take the marginal of the TODIS ψi(ti) on Kj×Tj,

and then take the rank of (kj , tj) inside this marginal TODIS.

In a similar fashion, we can also define the rank of an

individual cloud consumer’s Once-in-a-Lifetime Workload

type tj, and of an individual cloud consumer’s resource

pooling pattern strategy kj. As such, we can formally data-

intensive state expressions like “ψi(ti) deems (kj, tj) infinitely

more likely than(k'j, t'j) for cloud consumer j” or “ψi(ti) deems

kj infinitely more likely than k'j for cloud consumer j”, which

means that the rank of the former is smaller than the rank of

the latter.

We say that Once-in-a-Lifetime Workload type ti deems

possible some event A K−i×T−i if there is some level p with

ψi
p(A)>0. That is, A is deemed possible if and only if lp(A,

ψi(ti)) ≠ ∞. Since we have defined the rank also for individual

resource pooling pattern strategy–Once-in-a-Lifetime

Workload type pairs (kj, tj) and for individual Once-in-a-

Lifetime Workload types tj, we can also formally define the

event that Once-in-a-Lifetime Workload type ti deems

possible a resource pooling pattern strategy–Once-in-a-

Lifetime Workload type pair (kj, tj) for cloud consumer j, and

that ti deems possible an cloud consumer’s Once-in-a-Lifetime

Workload type tj. It simply means that the associated rank is

not ∞.

3.3 Cautious Once-in-a-Lifetime Workload

Types
Intuitively, caution means that the cloud service provider

should not fully exclude any cloud consumer’s Once-in-a-

Lifetime Workload choice from consideration. The formal

necessary and sufficient condition is, however – in data-

intensive states that an Once-in-a-Lifetime Workload type ti

should not exclude any strategy choice for any cloud

consumer’s Once-in-a-Lifetime Workload type tj considers

possible. Hence, for every resource pooling pattern conjecture

hierarchy that ti deems possible for its cloud consumer j, and

for every measurable strategy kj that j can possibly choose,

Once-in-a-Lifetime Workload type ti should deem possible the

event that its cloud consumer holds this resource pooling

pattern conjecture hierarchy and chooses kj.

Necessary and sufficient condition 3.2 (Cautious Once-in-a-

Lifetime Workload type). Consider an periodic static scaling

planning model with sets of Once-in-a-Lifetime Workload

types Ti for every cloud service provider i. Once-in-a-Lifetime

Workload type t Ti is cautious if, for every cloud consumer

j, every Once-in-a-Lifetime Workload type t Tj it considers

possible, and every resource pooling pattern strategy choice kj

 Kj, Once-in-a-Lifetime Workload type ti deems possible the

strategy–Once-in-a-Lifetime Workload type pair (kj, tj).

3.4 Considering the Cloud Consumers’

Resource Pooling Pattern Preferences
The key condition for measurability is that an Once-in-a-

Lifetime Workload type should consider its cloud consumers’

Once-in-a-Lifetime Workload resource pooling pattern

preferences. In words it means that, whenever Once-in-a-

Lifetime Workload type ti premises that its cloud consumer j

prefers some resource pooling pattern strategy kj to some other

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

37

resource pooling pattern strategy k'j, then it should deem kj

infinitely more likely than k'j. We must first define what it

means, within our periodic static scaling planning model, that

an Once-in-a-Lifetime Workload type prefers some resource

pooling pattern strategy to another resource pooling pattern

strategy.

Consider an Once-in-a-Lifetime Workload type ti with an

TODIS ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i. Then,

for every level p {1, . . . , P} and every resource

pooling pattern strategy ki, we can define the level p expected

utility

xi(ki, ψi
p):= Σ ψi

P (k−i , t−i) xi(ki , k−i).

 (k−i ,t−i) K−i×T−i

This is the expected utility that would result by choosing ki

under the resource pooling pattern conjecture ψi
P.

Necessary and sufficient condition 3.3 (An Once-in-a-

Lifetime Workload type’s preference relation over resource

pooling pattern strategies). Let ti Ti be an Once-in-a-Lifetime

Workload type with TODIS ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i.

Once-in-a-Lifetime Workload type ti prefers resource pooling

pattern strategy ki to some other resource pooling pattern

strategy k'i if there is some level p {1, . . . , P} such that

xi(ki, ψi
o) > xi(k'i, ψi

o) and xi(ki, ψi
o) = xi(k'i, ψi

o) for all o<p.

For later purposes, we say that Once-in-a-Lifetime Workload

type ti weakly prefers ki to k'i if ti does not prefer k'i to ki.

Necessary and sufficient condition 3.4 (Considering the

cloud consumers’ resource pooling pattern preferences). Let

ti Ti be a cautious Once-in-a-Lifetime Workload type. Once-

in-a-Lifetime Workload type ti consider the cloud consumer’s

resource pooling pattern preferences if, for every cloud

consumer j, every Once-in-a-Lifetime Workload type tj Tj

deemed possible by ti, and every two strategies kj, k'j such that

tj prefers kj to k'j, Once-in-a-Lifetime Workload type ti deems

the pair (kj, tj) infinitely more likely than the pair (k'j, tj).

3.5 Measurability
We say that an Once-in-a-Lifetime Workload type ti is

measurable if ti is cautious and consider the cloud consumers’

resource pooling pattern preferences, premises that all cloud

consumers are cautious and consider their cloud consumers’

resource pooling pattern preferences, premises that all cloud

consumers premise that their cloud consumers are cautious

and consider their cloud consumers’ resource pooling pattern

preferences, and so on. In other words, ti is cautious and

consider the cloud consumers’ resource pooling pattern

preferences, and expresses common resource pooling pattern

conjecture in the event that cloud service providers are

cautious and consider the cloud consumers’ resource pooling

pattern preferences.

Necessary and sufficient condition 3.5 (Common resource

pooling pattern conjecture in “caution and consider of the

cloud consumers’ resource pooling pattern preferences”). An

Once-in-a-Lifetime Workload type ti expresses common

resource pooling pattern conjecture in the event that cloud

service providers are cautious and consider the cloud

consumers’ resource pooling pattern preferences if ti only

deems possible cloud consumers’ Once-in-a-Lifetime

Workload types that are cautious and consider their cloud

consumers’ resource pooling pattern preferences, only deems

possible cloud consumers’ Once-in-a-Lifetime Workload

types that only deem possible cloud consumers’ Once-in-a-

Lifetime Workload types that are cautious and consider their

cloud consumers’ resource pooling pattern preferences, and so

on.

By additionally assuming that ti itself is cautious and consider

the cloud consumers’ resource pooling pattern preferences, we

obtain the necessary and sufficient condition of a measurable

Once-in-a-Lifetime Workload type.

Necessary and sufficient condition 3.6 (measurable Once-

in-a-Lifetime Workload type). An Once-in-a-Lifetime

Workload type ti is measurable if it is cautious and consider

the cloud consumers’ resource pooling pattern preferences,

and moreover expresses common resource pooling pattern

conjecture in the event that cloud service providers are

cautious and consider the cloud consumers’ resource pooling

pattern preferences.

Finally, we say that a resource pooling pattern strategy ki is

measurable for cloud service provider i if it is optimal for

some measurable Once-in-a-Lifetime Workload type.

Formally, a resource pooling pattern strategy ki is called

optimal for Once-in-a-Lifetime Workload type ti if ti weakly

prefers ki to any other resource pooling pattern strategy.

Necessary and sufficient condition 3.7 (measurable resource

pooling pattern strategy). A resource pooling pattern strategy

ki for cloud service provider i is measurable if there is some

finite periodic static scaling planning model (Ti, ψi)i I and

some measurable Once-in-a-Lifetime Workload type ti Ti

such that ki is optimal for ti.

As we already mentioned before, the concept of a measurable

resource pooling pattern strategy would not change if we

would allow for infinite periodic static scaling planning

models here.

4. ALGORITHM
In this section we will present an algorithm that always

delivers all measurable resource pooling pattern strategies.

Before doing so, we first provide some intuitive arguments

that eventually will lead to the algorithm. Finally, we state our

main result, namely that the algorithm yields precisely the set

of measurable resource pooling pattern strategies in every

periodic static scaling.

4.1 Road to the Algorithm
In Section II we have seen that elimination of (subsets of)

weakly dominated resource pooling pattern strategies cannot

work for measurability. So, what kind of procedure could

work here? We start our informal investigation with the

following well-known fact:

Step 1. Suppose that resource pooling pattern strategy ki is

weakly dominated on K−i by some randomized resource

pooling pattern strategy γi θ(Vi), where Vi is a subset of

resource pooling pattern strategies. Then, if cloud service

provider i is cautious, it will prefer some resource pooling

pattern strategy in Vi to ki. We say that (ki, Vi) is a resource

pooling pattern Once-in-a-Lifetime Workload preference

limitation for cloud service provider i.

Here, θ(Vi) denotes the set of probability distributions on Vi.

The reason for this fact is simple: If ki is weakly dominated by

resource pooling pattern γi, then under every cautious totally

ordered resource pooling pattern conjecture, ki will be worse

than γi, and hence there must be some vi Vi which is better

than ki under such a cautious totally ordered resource pooling

pattern conjecture. So, (ki, Vi) will be a resource pooling

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

38

pattern Once-in-a-Lifetime Workload preference limitation for

cloud service provider i.

Suppose now that cloud service provider i premise its cloud

consumers are cautious and that it consider its cloud

consumers’ resource pooling pattern preferences. If some

cloud consumer’s resource pooling pattern strategy kj is

weakly dominated on K−j by some randomized resource

pooling pattern strategy γi θ(Vi), then we know by Step 1

that cloud service provider j will prefer some resource pooling

pattern strategy in Vj to kj in case it is cautious. As cloud

service provider i indeed premises it is cautious, and consider

j’s resource pooling pattern preferences, cloud service

provider i must deem some resource pooling pattern strategy

in Vj infinitely more likely than kj. We say that cloud service

provider i’s totally ordered resource pooling pattern

conjecture consider the preference limitation (kj, Vj). This

leads to the following observation:

Step 2. Suppose cloud service provider i premises its cloud

consumers are cautious, and consider its cloud consumers’

resource pooling pattern preferences. Then, i’s totally ordered

resource pooling pattern conjecture must consider every cloud

consumer’s resource pooling pattern Once-in-a-Lifetime

Workload preference limitation (kj, Vj) generated in Step 1.

Say that a totally ordered resource pooling pattern conjecture

for cloud service provider i assumes a set E−i K−i of cloud

consumers’ resource pooling pattern strategy combinations if

it deems all resource pooling pattern strategy combinations

inside E−i infinitely more likely than all resource pooling

pattern strategy combinations outside E−i. Suppose now that

i’s totally ordered resource pooling pattern conjecture is

cautious, and assumes some set E−i of cloud consumers’

resource pooling pattern strategy combinations. Assume,

moreover, that its resource pooling pattern strategy ki is

weakly dominated on E−i by a randomized resource pooling

pattern strategy γi θ(Vi). Then, i must prefer some resource

pooling pattern strategy in Vi to ki. The argument is basically

the same as for Step 1, if we would “reduce” the periodic

static scaling to cloud consumers’ resource pooling pattern

strategy combinations in E−i. We thus obtain the following

step:

Step 3. Suppose that every totally ordered resource pooling

pattern conjecture for cloud service provider i considering all

Once-in-a-Lifetime Workload preference limitations from

Step 1, assumes some E−i K−ion which ki is weakly

dominated by some γi θ(Vi). Suppose, moreover, that cloud

service provider i is cautious, premises its cloud consumers

are cautious, and consider the cloud consumers’ resource

pooling pattern preferences. Then, i must prefer some

resource pooling pattern strategy in Vi to ki. We say that (ki,

Vi) is a new Once-in-a-Lifetime Workload preference

limitation for cloud service provider i.

Of course, we can iterate this argument if we assume that

cloud service provider i is cautious, consider the cloud

consumers’ resource pooling pattern preferences, and

expresses common resource pooling pattern conjecture in the

event that cloud service providers are cautious and consider

the cloud consumers’ resource pooling pattern preferences.

That is, if we assume that cloud service provider i’s Once-in-

a-Lifetime Workload type is measurable. The inductive step

would then look as follows:

Inductive step. Suppose that every totally ordered resource

pooling pattern conjecture for i that consider all Once-in-a-

Lifetime Workload preference limitations generated so far,

assumes some E−i K−ion which ki is weakly dominated by

some γi θ(Vi). Then, if i is of a measurable Once-in-a-

Lifetime Workload type, it must prefer some resource pooling

pattern strategy in Vi to ki. So, (ki, Vi) would be a new Once-

in-a-Lifetime Workload preference limitation for cloud

service provider i.

This would thus generate an inductive procedure in which at

every step (possibly) some new Once-in-a-Lifetime Workload

preference limitations would be added for the cloud service

providers. Since there are only finitely many possible Once-

in-a-Lifetime Workload preference limitations for the cloud

service providers, this procedure must end after finitely many

steps. Now, consider some cloud service provider i, and its set

of Once-in-a-Lifetime Workload preference limitations

generated by the procedure above.

If cloud service provider i is of some measurable Once-in-a-

Lifetime Workload type, we know from our arguments above

that it will never choose a resource pooling pattern strategy ki

if it is part of some Once-in-a-Lifetime Workload preference

limitation (ki, Vi). In that case, namely, it would always prefer

some resource pooling pattern strategy in Vi to ki, so ki could

not be optimal.

So, the procedure above rules out resource pooling pattern

strategies that is certainly not measurable. But what about the

converse? So, what about resource pooling pattern strategies

that are not ruled out by the procedure above? The main

proposition in this paper, Proposition 4.6, will show that the

“surviving” resource pooling pattern strategies are all

measurable! Hence, the procedure above will always select

exactly those resource pooling pattern strategies that are

measurable – not more and not less.

4.2 Description of the algorithm
Before we state the algorithm, we first formally necessary and

sufficient condition the new concepts we described above,

such as Once-in-a-Lifetime Workload preference limitations,

what it means for a totally ordered resource pooling pattern

conjecture to consider an Once-in-a-Lifetime Workload

preference limitation, and so on.

Necessary and sufficient condition 4.1 (Once-in-a-Lifetime

Workload preference limitation). An Once-in-a-Lifetime

Workload preference limitation for cloud service provider i is

a pair (ki, Vi) where ki is a resource pooling pattern strategy,

and Vi a nonempty subset of resource pooling pattern

strategies.

The interpretation is that cloud service provider i prefers at

least one resource pooling pattern strategy from Vi to ki. Now,

consider a totally ordered resource pooling pattern conjecture

ψi on K−i, which is simply a TODIS on K−i. From here on, we

will always assume that such a totally ordered resource

pooling pattern conjecture ψi has full support on K−i, that is,

every resource pooling pattern strategy combination in K−i

receives positive probability in some level of ψi.

Necessary and sufficient condition 4.2 (Considering a

Once-in-a-Lifetime Workload preference limitation).A totally

ordered resource pooling pattern conjecture ψi on K−i consider

an Once-in-a-Lifetime Workload preference limitation (kj, Vj)

for cloud service provider j if ψi deems some resource pooling

pattern strategy in Vj infinitely more likely than kj.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

39

This, in a sense, mimics the requirement that cloud service

provider i must consider j’s resource pooling pattern

preferences.

Necessary and sufficient condition 4.3 (Assuming a set of

cloud consumers’ resource pooling pattern strategy

combinations). Consider a subset E−i K−i of cloud

consumers’ resource pooling pattern strategy combinations,

and a totally ordered resource pooling pattern conjecture ψi on

K−i. The totally ordered resource pooling pattern conjecture ψi

assumes the set E−i if ψi deems all resource pooling pattern

strategy combinations inside E−i infinitely more likely than all

resource pooling pattern strategy combinations outside E−i.

Note that a totally ordered resource pooling pattern conjecture

ψi= (ψi
1, . . . , ψi

P) on K−i assumes a subset E−i K−i if and

only if, there is some level p {1, . . . , P} such that

Uo≤p supp() = E−i. Here, supp(ψi
o)denotes the support of the

probability distribution ψi
o. A randomized resource pooling

pattern strategy for cloud service provider i is a probability

distribution γi θ(Ki).on cloud service provider i’s resource

pooling pattern strategies. For a subset Vi Ki, we denote by

θ(Vi) the set of randomized resource pooling pattern strategies

that assign positive probability only to resource pooling

pattern strategies in Vi. For some cloud consumers’ resource

pooling pattern strategy combination k−i K−i, let

xi(γi , k−i) := Σ γi(ki) xi(ki , k−i)

 ki Ki

denote i’s expected utility from the randomized resource

pooling pattern strategy γi and the cloud consumers’ resource

pooling pattern strategy combination k−i.

Necessary and sufficient condition 4.4 (Weakly dominated

resource pooling pattern strategy). Let E−i K−i be a subset

of the cloud consumers’ resource pooling pattern strategy

combinations. Resource pooling pattern Strategy ki is said to

be weakly dominated by randomized resource pooling pattern

strategy γi on E−i if xi(γi , k−i) ≥ xi(ki , k−i) for all k−i E−i, with

strict in equality for at least some k−i E−i.

We are now ready to present the algorithm. The idea is to start

with the empty set of Once-in-a-Lifetime Workload

preference limitations for all cloud service providers, and at

every round to add new Once-in-a-Lifetime Workload

preference limitations, if possible. For that reason, the

algorithm is called “iterated addition of Once-in-a-Lifetime

Workload preference limitations”.

Algorithm 4.5 (Iterated addition of Once-in-a-Lifetime

Workload preference limitations). In round 1, begin for all

cloud service providers i with the empty set of Once-in-a-

Lifetime Workload preference limitations.

At every further round q ≥ 2, limit for every cloud service

provider i to those totally ordered resource pooling pattern

conjecture on K−i that consider all cloud consumers’ Once-in-

a-Lifetime Workload preference limitations generated so far.

Add a new Once-in-a-Lifetime Workload preference

limitation (ki, Vi) for cloud service provider i if every such

totally ordered resource pooling pattern conjecture assumes

some set E−i K−i on which ki is weakly dominated by some

γi θ(Vi).

Since the number of Once-in-a-Lifetime Workload preference

limitations is finite, this algorithm must end after a finite

number of rounds. We say that resource pooling pattern

strategy ki survives the algorithm of iterated addition of Once-

in-a-Lifetime Workload preference limitations if ki is not part

of any Once-in-a-Lifetime Workload preference limitation (ki,

Vi) generated by the algorithm. Namely, if ki were to be part of

an Once-in-a-Lifetime Workload preference limitation (ki, Vi)

produced by the algorithm, then cloud service provider i

would prefer at least one strategy in Vi to ki, and hence ki could

not be optimal.

4.3 Main Proposition
Our main proposition states that the algorithm of iterated

addition of Once-in-a-Lifetime Workload preference

limitations yields exactly the set of measurable resource

pooling pattern strategies for every cloud service provider.

Proposition 4.6 (Algorithm yields precisely the set of

measurable resource pooling pattern strategies). Consider a

finite static periodic static scaling. Then, a resource pooling

pattern strategy ki is measurable, if and only if, ki survives the

algorithm of iterated addition of Once-in-a-Lifetime Workload

preference limitations.

The easier direction is to show that every measurable resource

pooling pattern strategy survives iterated addition of Once-in-

a-Lifetime Workload preference limitation. So, a measurable

resource pooling pattern strategy ki can never be part of an

Once-in-a-Lifetime Workload preference limitation (ki, Vi)

generated by the algorithm. The more difficult direction is to

prove that every resource pooling pattern strategy ki that is not

part of any such Once-in-a-Lifetime Workload preference

limitation (ki, Vi) is measurable. Hence, we must construct an

periodic static scaling planning model in which each of this

resource pooling pattern strategies ki is supported by some

measurable Once-in-a-Lifetime Workload type. This

construction is rather delicate.

From the proposition, we can easily derive the following

observation: If in a given periodic static scaling no resource

pooling pattern strategy is weakly dominated, then all

resource pooling pattern strategies for the cloud service

providers are measurable. Namely, the algorithm we present

will only generate Once-in-a-Lifetime Workload preference

limitations at the first round if there is at least some resource

pooling pattern strategy that is weakly dominated within the

full periodic static scaling. Otherwise, the algorithm will not

generate any Once-in-a-Lifetime Workload preference

limitation at all, and hence all resource pooling pattern

strategies would survive the algorithm.

4.4 A Finite Formulation of the Algorithm
The algorithm of iterated addition of Once-in-a-Lifetime

Workload preference limitations as we have formulated it

proceeds by adding Once-in-a-Lifetime Workload preference

limitations and deleting totally ordered conjecture at every

round. More precisely, we start with the empty set of Once-in-

a-Lifetime Workload preference limitations and the full set of

totally ordered conjecture. At the first round we see whether

we can add some Once-in-a-Lifetime Workload preference

limitations. If so, then this would reduce the set of totally

ordered conjecture, which at the next round could add some

further Once-in-a-Lifetime Workload preference limitations,

and so on.

What is somewhat undesirable from a computational point of

view is that there are infinitely many possible totally ordered

conjecture in the periodic static scaling. This would suggest

that at every round in the algorithm we must scan through

infinitely many totally ordered conjecture. This, however, is

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

40

not necessary. What matters for the algorithm is not so much

the precise probabilities in the totally ordered resource

pooling pattern conjecture, but the induced “likelihood

resource pooling pattern ordering” on cloud consumers’

resource pooling pattern strategy combinations. More

precisely, let ψi= (ψi
1, . . . , ψi

P) be a totally ordered resource

pooling pattern conjecture on K−i. Remember our convention

that ψi has full support on K−i, that is, every k−i K−i receives

positive probability in some level ψi
p. Let Oi= (Oi

1, . . . ,

Oi
Z)be the ordered sequence of disjoint subsets Oi

z K−i such

that (a) ψi deems every k−i Oi
z infinitely more likely than

every K−i Oi
z+1 for every z {1, . . . ,Z − 1}, (b) for every

m and every k'−i , k−i Oi
z, the TODIS ψi does not deem k−i

infinitely more likely than k'−i, nor vice versa, and (c) the

union of the sets in Oi is K−i. We call Oi the likelihood

ordering induced by ψi. Formally, we have the following

necessary and sufficient condition.

Necessary and sufficient condition 4.7 (Likelihood

ordering). A likelihood ordering for cloud service provider i

on the cloud consumers’ resource pooling pattern strategy

combinations is an ordered sequence Oi= (Oi
1, . . . , Oi

Z

)where Oi
1, . . . , Oi

Z are pair-wise disjoint subsets of K−i

whose union is equal to K−i.

So, the interpretation is that Oi deems all resource pooling

pattern strategy combinations in Oi
1 infinitely more likely than

all resource pooling pattern strategy combinations in Oi
2,

deems all resource pooling pattern strategy combinations in

Oi
2 infinitely more likely than all resource pooling pattern

strategy combinations in Oi
3, and so on. It is clear that there

are only finitely many likelihood orderings in the periodic

static scaling, since there are only finitely many resource

pooling pattern strategies for every cloud service provider.

We can now easily extend the necessary and sufficient

condition of “considering an Once-in-a-Lifetime Workload

preference limitation” and “assuming a set of cloud

consumers’ resource pooling pattern strategy combinations”

to likelihood orderings. Say that a likelihood resource pooling

pattern ordering Oi= (Oi
1, . . . , Oi

Z) consider an Once-in-a-

Lifetime Workload preference limitation (kj , Vj) if Oi deems

some resource pooling pattern strategy in Vj infinitely more

likely than kj. Also, the likelihood ordering Oi is said to

assume the set E−i of cloud consumers’ resource pooling

pattern strategy combinations if Oi deems all resource pooling

pattern strategy combinations inside E−i, infinitely more likely

than all resource pooling pattern strategy combinations

outside E−i. The algorithm of iterated addition of Once-in-a-

Lifetime Workload preference limitations can thus

alternatively be stated as follows:

Algorithm 4.8 (Finite version). In round 1, begin for all cloud

service providers i with the empty set of Once-in-a-Lifetime

Workload preference limitations.

At every further round q ≥ 2, limit for every cloud service

provider i to those likelihood resource pooling pattern

orderings on K−i that consider all cloud consumers’ Once-in-a-

Lifetime Workload preference limitations generated so far.

Add a new Once-in-a-Lifetime Workload preference

limitation (ki, Vi) for cloud service provider i if every such

likelihood resource pooling pattern ordering assumes some set

E−i K−ion which ki is weakly dominated by some γi θ(Vi).

The advantage of this formulation is that at every round, we

only have to scan through finitely many objects, as there are

only finitely many Once-in-a-Lifetime Workload preference

limitations and likelihood resource pooling pattern orderings

in the periodic static scaling. Obviously, this algorithm

generates precisely the same set of Once-in-a-Lifetime

Workload preference limitations as the original procedure. As

such, the measurable resource pooling pattern strategies are

precisely those resource pooling pattern strategies that survive

this alternative algorithm.

5. DISCUSSION
In this section we will discuss some important properties of

the algorithm.

5.1 Algorithm as an inductive reasoning

procedure
The algorithm is not merely a tool to compute the measurable

resource pooling pattern strategies in an periodic static

scaling, but can also be interpreted as an inductive reasoning

process that can be used by a cloud service provider who

reasons in the spirit of measurability. Consider namely a fixed

cloud service provider in the periodic static scaling, say cloud

service provider i. In round 2, the algorithm would add for

every cloud consumer j an Once-in-a-Lifetime Workload

preference limitation (kj, Vj) if kj would be weakly dominated

on K−j by a mixture on Vj. In that case, cloud service provider i

would store the Once-in-a-Lifetime Workload preference

limitation (kj, Vj) in its mind, meaning that he premises that

cloud service provider j prefers some resource pooling pattern

strategy in Vj to kj. If i consider j’s resource pooling pattern

preferences, then it should consequently deem some resource

pooling pattern strategy in Vj infinitely more likely than kj.

That is, the Once-in-a-Lifetime Workload preference

limitations that cloud service provider i would store in its

mind at round 2 would limit the possible totally ordered

conjecture it could hold about its cloud consumers’ choices.

Moreover, if cloud service provider i premises that its cloud

consumers reason similarly, then cloud service provider i can

actually deduce the possible totally ordered conjecture that its

cloud consumers may hold at this round.

In the next round of its reasoning procedure, cloud service

provider i would then ask for every cloud consumer j: Given

its limited set of conjecture, would cloud service provider j

always assume some set E−j K−j on which some resource

pooling pattern strategy kj would always be weakly dominated

by a mixture on Vj? If yes, then cloud service provider i will

store (kj , Vj) as a new Once-in-a-Lifetime Workload

preference limitation in its mind. By doing so, cloud service

provider i would then further limit the possible totally ordered

conjecture it could hold about its cloud consumers. Cloud

service provider i could continue this inductive reasoning

procedure until no new Once-in-a-Lifetime Workload

preference limitation could be added, and hence its possible

totally ordered conjecture could not be limited any further.

So we see that the algorithm may serve very well as an

intuitive reasoning procedure for cloud service providers that

will eventually lead them to the measurable resource pooling

pattern strategies in the periodic static scaling. What is crucial

in this reasoning procedure is that a cloud service provider

only needs to keep track of Once-in-a-Lifetime Workload

preference limitations, which substantially simplifies matters

compared to the original necessary and sufficient condition of

measurability. In that light, our main proposition thus says

that in order to find the measurable resource pooling pattern

strategies in an periodic static scaling, it is sufficient for a

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

41

cloud service provider to think in terms of Once-in-a-Lifetime

Workload preference limitations, and to reason in accordance

with the algorithm.

In the periodic static scaling literature [1], there are other

algorithms that can nicely be interpreted as intuitive reasoning

procedures. Take, for instance, the concept of common

resource pooling pattern conjecture in measurability and the

associated algorithm of iterated elimination of strictly

dominated resource pooling pattern strategies. Here, the

algorithm can be seen as a reasoning procedure in which a

cloud service provider successively deletes cloud consumers’

resource pooling pattern strategies, since they can no longer

be optimal. At every round, this would then limit the cloud

service provider’s possible conjecture as it must assign

probability zero to these resource pooling pattern strategies.

These additional limitations on the cloud service providers’

conjecture could then induce further resource pooling pattern

strategies that can be deleted, and so on. So, in that procedure

the cloud service providers’ possible (non-totally ordered)

conjecture are limited further and further by deleting resource

pooling pattern strategies, whereas in our procedure the

(totally ordered) conjecture are limited further and further by

adding new Once-in-a-Lifetime Workload preference

limitations.

A similar story can be told for the concept of iterated

assumption of measurability within a complete Once-in-a-

Lifetime Workload type structure and the associated algorithm

of iterated elimination of weakly dominated resource pooling

pattern strategies. Here, the algorithm reflects a reasoning

procedure in which a cloud service provider with totally

ordered conjecture iteratedly deletes weakly dominated

resource pooling pattern strategies from its mind. At every

round of this procedure, the cloud service provider will then

deem all surviving resource pooling pattern strategies

infinitely more likely than all deleted resource pooling pattern

strategies, thus limiting the possible totally ordered conjecture

it can hold. So also in this procedure, the cloud service

provider’s possible conjecture is limited in every round by

deleting resource pooling pattern strategies.

5.2 Order Independence
For the algorithm, it can be shown that the order and speed in

which we add preference restrictions does not matter for the

eventual result. That is, it does not matter whether in every

round we add all preference restrictions that can possibly be

generated, or only some of these.

To see this, let us compare two procedures, Procedure 1 and

Procedure 2, where in the first we always add all possible

Once-in-a-Lifetime Workload preference limitations at every

round, and in the second we only add some of the possible

Once-in-a-Lifetime Workload preference limitations every

time. Then, first of all, Procedure 1 will at every round

generate at least as many Once-in-a-Lifetime Workload

preference limitations as Procedure 2. Namely, at round 2

Procedure 1 generates as least as many Once-in-a-Lifetime

Workload preference limitations, by necessary and sufficient

condition. Therefore, at round 3 Procedure 1 limits to a

smaller set of totally ordered conjecture than Procedure 2. But

then, under Procedure 1 it will be “easier” to generate new

Once-in-a-Lifetime Workload preference limitations at round

3 than under Procedure 2. Hence, at round 3 Procedure 1 will,

again, generate at least as many Once-in-a-Lifetime Workload

preference limitations as Procedure 2, and so on. So,

eventually, Procedure 1 will generate at least as many Once-

in-a-Lifetime Workload preference limitations as Procedure 2.

The key argument here was that a larger set of Once-in-a-

Lifetime Workload preference limitations will lead to a

smaller set of possible totally ordered conjecture, and a

smaller set of possible totally ordered conjecture will in turn

lead to a larger set of induced Once-in-a-Lifetime Workload

preference limitations. So, the algorithm is monotone in this

sense.

On the other hand, it can also be shown that every Once-in-a-

Lifetime Workload preference limitation generated by

Procedure 1 will also eventually be generated by Procedure 2.

Suppose, namely, that Procedure 1 would generate some

Once-in-a-Lifetime Workload preference limitation that

would not be generated at all by Procedure 2. Then, let p be

the first round at which Procedure 1 would generate an Once-

in-a-Lifetime Workload preference limitation, say (ki, Vi), not

generated by Procedure 2 at all. By construction of the

algorithm, every totally ordered resource pooling pattern

conjecture for cloud service provider i that consider all Once-

in-a-Lifetime Workload preference limitations generated by

Procedure 1 before round p, must assume some set E−i on

which ki is weakly dominated by some γi θ(Vi). By our

assumption, all these Once-in-a-Lifetime Workload

preference limitations generated by Procedure 1 before round

p are also eventually generated by Procedure 2, let us say

before round z ≥ p. But then, every totally ordered resource

pooling pattern conjecture for cloud service provider i that

consider all Once-in-a-Lifetime Workload preference

limitations generated by Procedure 2 before round z, assumes

a set E−i on which ki is weakly dominated by some γi θ(Vi).

Hence, Procedure 2 must add the Once-in-a-Lifetime

Workload preference limitation (ki, Vi) sooner or later, which

is a contradiction since we assumed that Procedure 2 does not

generate Once-in-a-Lifetime Workload preference limitation

(ki, Vi) at all. We thus conclude that every Once-in-a-Lifetime

Workload preference limitation added by Procedure 1 is also

finally added by Procedure 2. As such, Procedures 1 and 2

eventually generate exactly the same set of Once-in-a-

Lifetime Workload preference limitations. So, indeed, the

order and speed in which we add Once-in-a-Lifetime

Workload preference limitations is irrelevant to the algorithm.

6. CONCLUSION AND FUTURE SCOPE
In this section we conclude, stating that the algorithm of

iterated addition of Once-in-a-Lifetime Workload preference

limitations selects exactly the set of measurable resource

pooling pattern strategies in the periodic static scaling. For our

conclusion, we recall the necessary and sufficient condition of

a likelihood resource pooling pattern ordering induced by a

TODIS. Consider a TODIS ψi = (ψi
1, . . . , ψi

P)on K−i.

Remember our convention that ψi has full support on K−i, that

is, every k−i K−i receives positive probability in some level

ψi
p. Let Oi= (Oi

1, . . . , Oi
Z)be the ordered sequence of disjoint

subsets Oi
z K−i such that (a) ψi deems every k−i Oi

z

infinitely more likely than every k'−i Oi
z+1, for every z {1,

. . . ,Z − 1},(b) for every z and every k−i , k'−i Oi
z, the TODIS

ψi does not deem k−i infinitely more likely than k'−i, nor vice

versa, and(c) the union of the sets in Oi is K−i. We call Oi the

likelihood resource pooling pattern ordering induced by ψi.

Our conclusion characterizes, for a given resource pooling

pattern strategy ki and set Vi Ki, those likelihood resource

pooling pattern orderings on K−i that admit an TODIS under

which ki is weakly preferred to all resource pooling pattern

strategies in Vi. Despite the progress on our interpretation is

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

42

made the following three open problems are available for

further research.

Open Problem 6.1 Let ψi be a TODIS on K−i, let ki be a

resource pooling pattern strategy and Vi Ki a subset of

resource pooling pattern strategies.(a) If under the TODIS ψi,

resource pooling pattern strategy ki is weakly preferred to all

resource pooling pattern strategies in Vi. Does ψi assume any

E−i K−i on which ki is weakly dominated by a mixture on Vi?

(b) If ψi does not assume any E−i K−i on which ki is weakly

dominated by a mixture on Vi. Does some TODIS ϕi, inducing

the same likelihood resource pooling pattern ordering as ψi,

under which ki is weakly preferred to all resource pooling

pattern strategies in Vi?

Open Problem 6.2 Let ti be a measurable Once-in-a-Lifetime

Workload type. Does ti’s totally ordered resource pooling

pattern conjecture on K−i consider every Once-in-a-Lifetime

Workload preference limitation in F∞
−i?

Open Problem 6.3 (Property of Once-in-a-Lifetime Workload

preference limitations not generated by the algorithm). For

every cloud service provider i, let Fi
not be the set of Once-in-a-

Lifetime Workload preference limitations not generated by the

algorithm. Does for every (ki, Vi) Fi
not is there an TODIS ψi

on K−i such that (1) under ψi, resource pooling pattern

strategy ki is weakly preferred to all resource pooling pattern

strategies in Vi, and (2) for every cloud consumer’s resource

pooling pattern strategy kj, the pair ((kj, Vj
−(kj, ψi)) is in Fj

not?

7. REFERENCES
[1] Kiran M., Saikat Mukherjee, Ravi Prakash G.,

Characterization of Randomized Shuffle and Sort

Quantifiability in MapReduce Model, International

Journal of Computer Applications, 51-58, Volume 79,

No. 5, October 2013.

[2] Amresh Kumar, Kiran M., Saikat Mukherjee, Ravi

Prakash G., Verification and Validation of MapReduce

Program model for Parallel K-Means algorithm on

Hadoop Cluster, International Journal of Computer

Applications, 48-55, Volume 72, No. 8, June 2013.

[3] Barroso, L.A., Ho¨lzle, U.: The datacenter as a computer:

an introduction to the design of warehouse-scale

machines. Synth. Lect. Comput. Architect. 4, 1–45

(2009).

[4] Kiran M., Amresh Kumar, Saikat Mukherjee, Ravi

Prakash G., Verification and Validation of MapReduce

Program Model for Parallel Support Vector Machine

Algorithm on Hadoop Cluster, International Journal of

Computer Science Issues, 317-325, Vol. 10, Issue 3, No.

1, May 2013.

[5] Ravi Prakash G, Kiran M. Saikat Mukherjee, On

Randomized Preference Limitation Protocol for

Quantifiable Shuffle and Sort Behavioral Implications in

MapReduce Programming Model, Parallel & Cloud

Computing, Vol. 3, Issue 1, 1-14, January 2014.

[6] Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A

collection of patterns for cloud types, cloud service

models, and cloud-based application architectures.

Technical report, University of Stuttgart (2011)

[7] Ravi Prakash G, Kiran M, On The Least Economical

MapReduce Sets for Summarization Expressions,

International Journal of Computer Applications, 13-20,

Volume 94, No.7, May 2014.

[8] Ravi (Ravinder) Prakash G, Kiran M., On Randomized

Minimal MapReduce Sets for Filtering Expressions,

International Journal of Computer Applications, Volume

98, No. 3, Pages 1-8, July 2014.

[9] Fehling, C., Leymann, F., Retter, R., Schumm, D.,

Schupeck, W.: An architectural pattern language of

cloud-based applications. In: Proceedings of the 18th

Conference on Pattern Languages of Programs (PLoP),

Portland, (2011).

[10] Fehling, C., Leymann, F., Rutschlin, J., Schumm, D.:

Pattern-based development and management of cloud

applications. Future Internet 4, 110–141 (2012).

(doi:10.3390/fi4010110)

[11] Ravi (Ravinder) Prakash G, Kiran M., How Minimal are

MapReduce Arrangements for Binning Expressions.

International Journal of Computer Applications Volume

99 (11): 7-14, August 2014.

[12] Ravi (Ravinder) Prakash G, Kiran M., Shuffling

Expressions with MapReduce Arrangements and the

Role of Binary Path Symmetry. International Journal of

Computer Applications 102(16): 19-24, September 2014.

[13] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and

Distributed Computation: Numerical Methods, Athena

Scientific, Hardcover Edition (appeared in 2015), ISBN:

1-886529-15-9 Publication: 2015, 735 pages.

[14] Ravi (Ravinder) Prakash G, Kiran M; How Replicated

Join Expressions Equal Map Phase or Reduce Phase in a

MapReduce Structure? International Journal of Computer

Applications, Volume 107 (12): 43-50, December 2014.

[15] Fehling, C., Ewald, T., Leymann, F., Pauly, M.,

Ru¨tschlin, J., Schumm, D.: Capturing cloud computing

knowledge and experience in patterns. In: Proceedings of

the 5th IEEE International Conference on Cloud

Computing (CLOUD), Honolulu, (2012).

[16] Bauer, E., Adams, R.: Reliability and Availability of

Cloud Computing. Wiley-IEEE Press, Hoboken (2012).

[17] Ravi (Ravinder) Prakash G, Kiran M., On Composite

Join Expressions of Map-side with many Reduce Phase.

International Journal of Computer Applications Volume

110(9): 37-44, January 2015.

[18] Dimitri P. Bertsekas, Convex Optimization Algorithms,

Athena Scientific, Hardcover Edition ISBN: 1-886529-

28-0, 978-1-886529-28-1, Publication: February, 2015,

576 pages.

[19] Ravi (Ravinder) Prakash G, Kiran M; How Reduce Side

Join Part File Expressions Equal MapReduce Structure

into Task Consequences, Performance? International

Journal of Computer Applications, Volume 105(2):8-15,

November 2014

[20] Ravi (Ravinder) Prakash G, Kiran M. "On the

MapReduce Arrangements of Cartesian product Specific

Expressions". International Journal of Computer

Applications 112(9):34-41, February 2015.

[21] Ravi (Ravinder) Prakash G, Kiran M., On Job Chaining

MapReduce Meta Expressions of Mapping and Reducing

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 – No.6, March 2016 – www.ijais.org

43

Entropy Densities. International Journal of Computer

Applications 113(15): 20-27, March 2015.

[22] Ravi (Ravinder) Prakash G, Kiran M. "On Chain Folding

Problems of Chain Mapper and Chain Reducer Meta

Expressions". International Journal of Computer

Applications 116(16): 35-42, April 2015.

[23] Ravi (Ravinder) Prakash G, Kiran M."On Job Merging

MapReduce Meta Expressions for Multiple

Decomposition Mapping and Reducing". International

Journal of Computer Applications 118 (13):14-21, May

2015.

[24] Ravi (Ravinder) Prakash G, Kiran M." Characterization

of Randomized External Source Output Map Reduce

Expressions". International Journal of Computer

Applications 123(14):9-16, August 2015.

[25] Ravi (Ravinder) Prakash G, Kiran M., Does there Exist

Pruning Decomposition for MapReduce Expressions

Arrangements?. International Journal of Computer

Applications 125(12): 41-48, September 2015.

[26] Ravi (Ravinder) Prakash G, Kiran M: Can one find

External Source Input Expressions for which there exist

Map Reduce Configurations? International Journal of

Computer Applications 128(12): 14-21, October 2015.

[27] Ravi (Ravinder) Prakash G. and Kiran M.. Is It True for

Static Scaling Cloud Model there Exists a Centrally

Asymmetric Static Workload Pattern?. Communications

on Applied Electronics 3(4):39-48, November 2015.

[28] Ravi (Ravinder) Prakash. G and Kiran M., Given a Static

Workload Cloud Computing Patterns does it have an

Elastic Scaling? Communications on Applied Electronics

4(2): 17-26, January 2016.

[29] Ravi (Ravinder) Prakash G. and Kiran M., How can

Periodic Workload Cloud Pattern benefit from

Periodically Peaking Utilization?. International Journal

of Applied Information Systems 10(5):27-36, February

2016.

