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ABSTRACT 

Measurability is a concept in periodic static scaling based on 

the following two conditions: (a) a cloud service provider 

should be cautious, that is, should not exclude any cloud 

consumer’s resource pooling pattern strategy from 

consideration; and (b) a cloud service provider should 

consider the cloud consumers’ resource pooling pattern 

preferences, that is, should deem a cloud consumer’s resource 

pooling pattern strategy ki infinitely more likely than k'i if it 

premises the cloud consumer to prefer ki to  k'i. A resource 

pooling pattern strategy is measurable if it can optimally be 

chosen under common resource pooling pattern conjecture in 

the events (a) and (b). In this paper we present an algorithm 

that for every finite periodic static scaling operation computes 

the set of all measurable resource pooling pattern strategies. 

The algorithm is based on the new idea of an Once-in-a-

Lifetime Workload preference limitation, which is a pair (ki, 

Vi) consisting of a resource pooling pattern strategy ki, and a 

subset of resource pooling pattern strategies Vi, for cloud 

service provider i. The interpretation is that cloud service 

provider i prefers some resource pooling pattern strategy in Vi 

to ki. The algorithm proceeds by successively adding Once-in-

a-Lifetime Workload preference limitations to the periodic 

static scaling.  
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1. INTRODUCTION 
In an periodic static scaling, it is natural to assume that a 

cloud service provider reasons about its cloud consumers 

before making a decision. Namely, in order to evaluate the 

possible consequences of a decision, the cloud service 

provider must form some resource pooling pattern conjecture 

about its cloud consumers’ choices which, in turn, must be 

based on some resource pooling pattern conjecture about its 

cloud consumers’ conjecture about their cloud consumers’ 

choices, and so on. It is the goal of periodic static scaling  [1] 

[28] [29[ to formally describe such reasoning processes, and 

to investigate their behavioral implications. 

Throughout this paper we take a cloud service provider set 

perspective to analyze periodic static scaling-theoretic 

situations. That is, we always view the periodic static scaling 

from the perspective of cloud service provider set, and put 

restrictions only on the conjecture of this particular cloud 

service provider set – including conjecture about the cloud 

consumers’ conjecture – without imposing restrictions on the 

actual conjecture of the cloud consumers. We premise this 

approach to be plausible; as we cannot look inside the cloud 

consumers at the time we make an Once-in-a-Lifetime 

Workload choice. So, can only base Once-in-a-Lifetime 

Workload choice on conjecture about the cloud consumers, 

and not on the actual conjecture and Once-in-a-Lifetime 

Workload choices of cloud consumers. But then, if we want to 

analyze the reasonable Once-in-a-Lifetime Workload choices 

a cloud service provider can make in an periodic static 

scaling, it is sufficient to concentrate only on the conjecture of 

this particular cloud service provider set, as they encompass 

everything that can be used to make a decision. Although we 

premise the cloud service provider set perspective to be very 

natural, it crucially differs from the usual approach to periodic 

static scaling in papers and articles, which typically proceed 

by imposing restrictions on the conjecture of all cloud service 

provider set, and not only cloud service provider set. 

Measurability is a concept within periodic static scaling that is 

based upon the following two assumptions: 

 A cloud service provider should be cautious, that is, a 

cloud service provider should not exclude any cloud 

consumer’s resource pooling pattern strategy from 

consideration; 

 A cloud service provider should consider the cloud 

consumers’ resource pooling pattern preferences, that is, 

if the cloud service provider premises that an cloud 

consumer prefers resource pooling pattern strategy ki to 

resource pooling pattern strategy k'i, then the cloud 

service provider should deem ki  much more likely k'i. 

Any resource pooling pattern strategy that can be chosen 

optimally under common resource pooling pattern conjecture 

in these two events is called measurable. 

In order to define measurability formally we can no longer 

model the cloud service providers’ conjecture by standard 

probability distributions. Suppose, for instance, that cloud 

service provider 1 premises that cloud service provider 2 

prefers resource pooling pattern strategy a to resource pooling 

pattern strategy b. If cloud service provider 1’s resource 

pooling pattern conjecture about 2’s choice would be modeled 

by a single probability distribution then cloud service provider 

1 should assign probability 0 to b, since it must consider 2’s 

resource pooling pattern preferences. This, however, would 

contradict the assumption that it is cautious. 

A possible way to define measurability is by means of 

sequences of probability distributions, or by using totally 

ordered Data-intensive systems [9], [10], [12], [14] [11], [24]. 

Both frameworks can model a state of mind in which you 

deem some cloud consumer’s resource pooling pattern 

strategy ki infinitely more likely than some other resource 

pooling pattern strategy k'i, without completely discarding the 

latter choice. 
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The practical disadvantage of these richer frameworks is that, 

it makes the computation of measurable resource pooling 

pattern strategies rather difficult. This is probably also the 

reason that measurability, despite its strong intuitive appeal, 

has not received as much attention as many other concepts in 

periodic static scaling. It would therefore be very useful to 

have an algorithm helping us to compute this measurable 

resource pooling pattern strategies. A procedure, called 

iteratively trembling, that for any given α > 0 yields the set of                  

α-measurable resource pooling pattern strategies. By letting α 

tend to zero, we finally would obtain the set of measurable 

resource pooling pattern strategies. So, in a sense, this 

procedure only indirectly leads to the set of measurable 

resource pooling pattern strategies, as we first have to apply 

the procedure for a sequence of small α’s, and then let α go to 

zero. 

There is another algorithm designed for measurability, called 

iterated backward inference. This procedure does not exactly 

yield the set of measurable resource pooling pattern strategies, 

as its output may contain resource pooling pattern strategies 

that are not measurable. The output, however, always includes 

the set of measurable resource pooling pattern strategies. 

In this paper we present an algorithm, called iterated addition 

of Once-in-a-Lifetime Workload preference limitations that 

directly delivers the set of all measurable resource pooling 

pattern strategies in every finite periodic static scaling 

operation [17], [19], [23]. The algorithm is based on the new 

notion of an Once-in-a-Lifetime Workload preference 

limitation. Formally, an Once-in-a-Lifetime Workload 

preference limitation for cloud service provider i is a pair (ki, 

Vi), where ki is a resource pooling pattern strategy and Vi a 

subset of resource pooling pattern strategies for cloud service 

provider i. The interpretation is that cloud service provider i 

prefers some resource pooling pattern strategy Vi in to ki, 

without specifying which one (unless Vi contains only one 

resource pooling pattern strategy, of course). A totally 

ordered resource pooling pattern conjecture for cloud service 

provider i about its cloud consumers’ resource pooling pattern 

strategies is a finite sequence ψi = (ψi
1, . . . , ψi

P) of probability 

distributions on K−i, the set of cloud consumers’ resource 

pooling pattern strategy combinations, such that every 

resource pooling pattern strategy combination k−i in K−i 

receives positive probability under some probability 

distribution ψi
p in this sequence. For every p   {1, . . . , P}, we 

call ψi
p the level p resource pooling pattern conjecture.  

The totally ordered resource pooling pattern conjecture ψi 

deems some resource pooling pattern strategy combination k−i 

infinitely more likely than some other resource pooling pattern 

strategy combination k'−i if there is some level p such that k−i 

receives positive probability under the level p resource 

pooling pattern conjecture ψi
P, whereas k'−i receives 

probability zero under the first p levels. We say that ψi 

consider an Once-in-a-Lifetime Workload preference 

limitation (kj, Vj), for cloud consumer j if it deems some 

resource pooling pattern strategy in Vj infinitely more likely 

than kj. This thus mimics the condition in measurability that i 

must consider j’s resource pooling pattern preferences. The 

totally ordered resource pooling pattern conjecture ψi is said to 

assume a subset E−i K−i of resource pooling pattern strategy 

combinations if it deems every element in E−i infinitely more 

likely than every element outside E−i. 

The algorithm we present proceeds by inductively adding    

Once-in-a-Lifetime Workload preference limitations [6], [2], 

[4], [3], [8], [5], [26] until no further Once-in-a-Lifetime 

Workload preference limitations can be produced. At round 1, 

we start with the empty set of Once-in-a-Lifetime Workload 

preference limitations for all cloud service providers. In every 

subsequent round, we add an Once-in-a-Lifetime Workload 

preference limitation (ki, Vi) for cloud service provider i if 

every totally ordered resource pooling pattern conjecture on 

K−i that consider all current Once-in-a-Lifetime Workload 

preference limitations for i’s cloud consumers, assumes some 

subset E−i K−i on which ki is weakly dominated by some 

randomized resource pooling pattern strategy on Vi. We 

continue this process until no further Once-in-a-Lifetime 

Workload preference limitation can be added. Among the 

final set of Once-in-a-Lifetime Workload preference 

limitations for cloud service provider i, we look for those 

resource pooling pattern strategies ki that are not part of any 

Once-in-a-Lifetime Workload preference limitation (ki, Vi). 

We show that these resource pooling pattern strategies are 

exactly the measurable resource pooling pattern strategies for 

cloud service provider i. 

So, at every round the algorithm produces, for each cloud 

service provider, a set of Once-in-a-Lifetime Workload 

preference limitations. As the set of Once-in-a-Lifetime 

Workload preference limitations can only grow at every 

round, and there are only finitely many possible Once-in-a-

Lifetime Workload preference limitations, the algorithm must 

stop after finitely many rounds. 

Not only can this algorithm be used to compute the 

measurable resource pooling pattern strategies in an periodic 

static scaling, it also represents a natural inductive reasoning 

procedure for the cloud service providers that eventually lead 

them to measurable resource pooling pattern choices. The 

central object in this reasoning process is that of an Once-in-a-

Lifetime Workload preference limitation. If we add an Once-

in-a-Lifetime Workload preference limitation (ki, Vi) for cloud 

service provider i, then normally this means that i’s cloud 

consumers premises that i prefers some resource pooling 

pattern strategy in Vi to ki. Moreover, if i’s cloud consumers 

consider i’s resource pooling pattern preferences, as we 

assume in measurability, then i’s cloud consumers will also 

deem some resource pooling pattern strategy in Vi infinitely 

more likely than ki. Thus, by adding Once-in-a-Lifetime 

Workload preference limitations at every round, we further 

and further limit the possible totally ordered conjecture that 

cloud service providers can plausibly hold about their cloud 

consumers’ choices. In a sense, what the algorithm shows is 

that, in order to reason your way toward measurable resource 

pooling pattern strategies, it is sufficient to keep track of the 

cloud service providers’ Once-in-a-Lifetime Workload 

preference limitations. At every round, by considering the 

current Once-in-a-Lifetime Workload preference limitations, 

we can possibly derive new Once-in-a-Lifetime Workload 

preference limitations, thus further limitations the cloud 

service providers’ possible totally ordered conjecture, until 

this reasoning process cannot produce any new Once-in-a-

Lifetime Workload preference limitations. This is where the 

reasoning procedure ends, and by looking at the final Once-in-

a-Lifetime Workload preference limitations we can find the 

entire measurable resource pooling pattern strategies in the 

periodic static scaling. 

In the algorithm we present, the objects of output are different 

than in previous procedure. There, the procedure delivers at 

every round and for every cloud service provider i, a set of 

full support probability distributions on cloud service provider 
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i’s resource pooling pattern strategy, where this set becomes 

smaller with every round. As there are infinitely many 

possible sets of full support probability distributions, previous 

procedure can produce infinitely many possible outputs in 

every round. This is a major difference with the algorithm we 

propose, where at every round there are only a finite number 

of possible outputs, namely the Once-in-a-Lifetime Workload 

preference limitations at that round. Note also that the 

algorithm in this paper is fundamentally different from most 

other inductive concepts in periodic static scaling, which 

usually proceed by successively eliminating resource pooling 

pattern strategies from the periodic static scaling. Think, for 

instance, of iterated elimination of strictly (weakly) dominated 

resource pooling pattern strategies. So, why did we not base 

the algorithm on elimination of resource pooling pattern 

strategies as well? The reason is that iterated elimination of 

strategies cannot work for measurability. In Section 2 we 

provide an algorithm for measurability must necessarily be of 

a different nature than the ones we are used to. 

The outline of the paper is as follows. In Section 2 we show, 

why successive elimination of resource pooling pattern 

strategies does not work for measurability. In Section 3 we 

give a formal necessary and sufficient condition of 

measurability, by making use of totally ordered Data-intensive 

systems [9], [10], [12], [14] [11]. In Section 4 we present the 

algorithm, illustrate it by means of our main proposition 

showing that the algorithm produces exactly the set of 

measurable resource pooling pattern strategies. In Section 5 

we discuss some important properties of the algorithm: We 

show how the algorithm can be viewed as a natural inductive 
reasoning procedure, and explain why the order in which we 

add Once-in-a-Lifetime Workload preference limitations does 

not matter for the eventual output. In section 6 we include 

conclusion and future scope. 

2. WHY ELIMINATION OF RESOURCE 

POOLING PATTERN STRATEGIES 

DOES NOT WORK 
Most algorithms in the periodic static scaling literature [1], 

[27] proceed by successively modifying resource pooling 

pattern strategies from the operation cycle. Think, for 

instance, of iterated elimination of strictly (weakly) dominated 

resource pooling pattern strategies. As announced, the 

algorithm we propose for measurability is of a different nature 

since it is based on successively adding Once-in-a-Lifetime 

Workload preference limitations rather than eliminating 

resource pooling pattern strategies. A natural question is why 

we do not stick to the process of eliminating resource pooling 

pattern strategies here. In this section we show why 

elimination of resource pooling pattern strategies does not 

work for measurability. 

Let us first be precise about the class of resource pooling 

pattern strategy elimination procedures we consider. All the 

elimination procedures mentioned above have in common that 

at each round, only weakly dominated resource pooling 

pattern strategies in the cloud consumer cycle of periodic 

static scaling cycle [18], [20], [22] (but not necessarily all) are 

eliminated. Now, say that a resource pooling pattern strategy 

elimination procedure is regular if at every round, it 

eliminates a (possibly empty) subset of the set of weakly 

dominated resource pooling pattern strategies in the cloud 

consumer of periodic static scaling cycle [21]. 

3. NECESSARY AND SUFFICIENT 

CONDITION OF MEASURABILITY 

3.1 Totally Ordered Data-Intensive 

Systems 
Totally ordered Data-intensive systems have been formally 

introduced as a possible way to represent a decision maker’s 

resource pooling pattern conjecture about the data-intensive 

state of the data-intensive world. The essential feature is that 

it allows the decision maker to deem one data-intensive state 

much more likely (in fact, infinitely more likely) than some 

other data-intensive state, without completely ignoring the 

latter data-intensive state when making a decision. 

More formally, let N be some finite set of data-intensive 

states. By θ(N) we denote the set of all probability 

distributions on N. A Totally ordered Data-intensive systems 

(TODIS) on N is a finite sequence of probability distributions  

ψ = (ψ1, ψ2, . . ., ψP), 

with ψp   θ(N) for all p   {1, . . . , P}. We refer to ψ1 as the 

decision maker’s level 1 resource pooling pattern conjecture, 

to ψ2 as its level 2 resource pooling pattern conjecture, and so 

on. The interpretation is that the decision maker attaches 

much more importance to its level 1 resource pooling pattern 

conjecture than to its level 2 resource pooling pattern 

conjecture, attaches much more importance to its level 2 

resource pooling pattern conjecture than to its level 3 resource 

pooling pattern conjecture, and so on, without completely 

discarding any of these conjecture. For every   data-intensive 

state n   N, let lp(n,ψ) be the first level p for which ψp(n)>0. 

If ψp(n) = 0 for every p   {1, . . . , P}, set lp(n,ψ) = ∞. We call 

lp(n,ψ) the rank of data-intensive state n within the TODIS ψ. 

We say that the TODIS ψ deems data-intensive state n 

infinitely more likely than some other data-intensive state 

Proposition if n has a lower rank that Proposition. 

3.2 Periodic static scaling Planning Model 
Consider a finite static periodic static scaling δ = (Ki , xi)i I 

where I is the finite set of cloud service providers, the finite 

set Ki denotes the set of strategies for cloud service provider i, 

and xi : ∏j I Kj →F denotes cloud service provider i’s utility 

function. We assume that cloud service provider i does not 

only have a resource pooling pattern conjecture about its 

cloud consumers’ resource pooling pattern strategy choices, 

but also about the possible conjecture that its cloud consumers 

could have about the other cloud service providers’ resource 

pooling pattern strategy choices, and about the possible 

conjecture that the cloud consumers could have about the 

possible conjecture that their cloud consumers could have 

about the other cloud service providers’ resource pooling 

pattern strategy choices, and so on. That is, cloud service 

provider i hold a full resource pooling pattern conjecture 

hierarchy about the cloud consumers’ choices and the cloud 

consumers’ conjecture. If we assume, moreover, that each of 

the conjecture in this hierarchy can be represented by a 

TODIS, this leads to the following periodic static scaling 

planning model [7], [13], [15], [16], [25]. 

Necessary and sufficient condition 3.1 (periodic static 

scaling planning model). A finite periodic static scaling 

planning model for the periodic static scaling δ is a tuple (Ti, 

ψi)i I where, for all cloud service providers i, Ti is a finite set 

of Once-in-a-Lifetime Workload types, and ψi is a function 

that assigns to every Once-in-a-Lifetime Workload type ti Ti 
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some TODIS ψi(ti) on the set K−i×T−i of cloud consumers’ 

strategy–Once-in-a-Lifetime Workload type combinations. 

Here, K−i:=∏j≠i Kj denotes the set of cloud consumers’ strategy 

combinations, and T−i:=∏j≠i Tj the set of cloud consumers’ 

Once-in-a-Lifetime Workload type combinations. The 

interpretation is that ψi(ti) represents the resource pooling 

pattern conjecture that Once-in-a-Lifetime Workload type ti 

has about its cloud consumers’ choices and conjecture. For 

instance, the marginal of ψi(ti) on Pj represents the resource 

pooling pattern conjecture that ti has about cloud consumer j’s 

choice. Since every cloud consumer’s type tj holds a resource 

pooling pattern conjecture about the other cloud service 

providers’ choices, we can derive from ψi(ti) as well the 

resource pooling pattern conjecture that Once-in-a-Lifetime 

Workload type ti has about the resource pooling pattern 

conjecture that cloud service provider j has about its cloud 

consumers’ choices, and so on. In fact, from ψi(ti) we can 

derive the full resource pooling pattern conjecture hierarchy 

that cloud service provider i has about its cloud consumers’ 

choices and conjecture. 

The reader may wonder why we limit attention to periodic 

static scaling planning models with finitely many Once-in-a-

Lifetime Workload types for every cloud service provider. In 

principle, we could allow for infinitely many Once-in-a-

Lifetime Workload types for every cloud service provider, 

and define measurability for such infinite periodic static 

scaling planning models. But it can be shown that every 

measurable strategy in a finite periodic static scaling can be 

supported by a measurable Once-in-a-Lifetime Workload type 

within an periodic static scaling planning model with finitely 

many Once-in-a-Lifetime Workload types only. So, we do not 

“overlook” any measurable strategies by concentrating on 

finite Once-in-a-Lifetime Workload type spaces only. As 

working with finite sets of Once-in-a-Lifetime Workload 

types makes things easier, we have decided to solely 

concentrate on finite periodic static scaling planning models 

in this paper. 

Note that within an periodic static scaling planning model, the 

totally ordered resource pooling pattern conjecture    ψi(ti) = 

(ψi
1, . . . , ψi

P) of an Once-in-a-Lifetime Workload type ti is, 

mathematically speaking, an TODIS on the set of data-

intensive states K−i×T−i. For every cloud consumers’ resource 

pooling pattern strategy–Once-in-a-Lifetime Workload type 

combination (k−i , t−i)  K−i×T−i, we can thus define the rank 

lp((k−i , t−i ), ψi(ti)) of (k−i , t−i) within ψi(ti), being the lowest 

level p such that ψi
p(k−i , t−i)>0. Remember that, by 

convention, lp((k−i , t−i), ψi(ti))=∞ whenever (k−i , t−i) does not 

receive positive probability anywhere in ψi(ti). We say that 

Once-in-a-Lifetime Workload type ti deems the resource 

pooling pattern strategy–Once-in-a-Lifetime Workload type 

combination (k−i, t−i) infinitely more likely than some other 

combination (k'−i , t'−i) if the rank of (k−i , t−i) is lower than the 

rank of (k'−i , t'−i). 

Similarly, we can define for every event A K−i×T−i                       

of cloud consumers’ resource pooling pattern strategy–Once-

in-a-Lifetime Workload type combinations the associated rank 

by 

lp(A,ψi(ti))= min{l((k−i , t−i), ψi(ti)|(k−i , t−i)   A}. 

Hence, the rank of A is the lowest level p such that ψi
p assigns 

positive probability to some element in A. This necessary and 

sufficient condition then allows us to define the rank of an 

individual cloud consumer’s resource pooling pattern 

strategy–Once-in-a-Lifetime Workload type pair (kj, tj), 

simply by taking the rank of the event 

{kj} × ∏ Kp× {tj} × ∏ Tp. 

          p≠i,j                          p≠i,j 
 

So, we first take the marginal of the TODIS ψi(ti) on Kj×Tj, 

and then take the rank of (kj , tj) inside this marginal TODIS. 

In a similar fashion, we can also define the rank of an 

individual cloud consumer’s Once-in-a-Lifetime Workload 

type tj, and of an individual cloud consumer’s resource 

pooling pattern strategy kj. As such, we can formally data-

intensive state expressions like “ψi(ti) deems (kj, tj) infinitely 

more likely than(k'j, t'j) for cloud consumer j” or “ψi(ti) deems 

kj infinitely more likely than k'j for cloud consumer j”, which 

means that the rank of the former is smaller than the rank of 

the latter. 

We say that Once-in-a-Lifetime Workload type ti deems 

possible some event  A K−i×T−i if there is some level p with 

ψi
p(A)>0. That is, A is deemed possible if and only if lp(A, 

ψi(ti)) ≠ ∞. Since we  have defined the rank also for individual 

resource pooling pattern    strategy–Once-in-a-Lifetime 

Workload type pairs (kj, tj) and for individual Once-in-a-

Lifetime Workload types tj, we can also formally define the 

event that Once-in-a-Lifetime Workload type ti deems 

possible a resource pooling pattern strategy–Once-in-a-

Lifetime Workload type pair (kj, tj) for cloud consumer j, and 

that ti deems possible an cloud consumer’s Once-in-a-Lifetime 

Workload type tj. It simply means that the associated rank is 

not ∞. 

3.3 Cautious Once-in-a-Lifetime Workload 

Types 
Intuitively, caution means that the cloud service provider 

should not fully exclude any cloud consumer’s Once-in-a-

Lifetime Workload choice from consideration. The formal 

necessary and sufficient condition is, however – in data-

intensive states that an Once-in-a-Lifetime Workload type ti 

should not exclude any strategy choice for any cloud 

consumer’s Once-in-a-Lifetime Workload type tj considers 

possible. Hence, for every resource pooling pattern conjecture 

hierarchy that ti deems possible for its cloud consumer j, and 

for every measurable strategy kj that j can possibly choose, 

Once-in-a-Lifetime Workload type ti should deem possible the 

event that its cloud consumer holds this resource pooling 

pattern conjecture hierarchy and chooses kj. 

Necessary and sufficient condition 3.2 (Cautious Once-in-a-

Lifetime Workload type). Consider an periodic static scaling 

planning model with sets of Once-in-a-Lifetime Workload 

types Ti for every cloud service provider i. Once-in-a-Lifetime 

Workload type t  Ti is cautious if, for every cloud consumer 

j, every Once-in-a-Lifetime Workload type t  Tj it considers 

possible, and every resource pooling pattern strategy choice kj 

  Kj, Once-in-a-Lifetime Workload type ti deems possible the 

strategy–Once-in-a-Lifetime Workload type pair (kj, tj). 

3.4 Considering the Cloud Consumers’ 

Resource Pooling Pattern Preferences 
The key condition for measurability is that an Once-in-a-

Lifetime Workload type should consider its cloud consumers’ 

Once-in-a-Lifetime Workload resource pooling pattern 

preferences. In words it means that, whenever Once-in-a-

Lifetime Workload type ti premises that its cloud consumer j 

prefers some resource pooling pattern strategy kj to some other 
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resource pooling pattern strategy k'j, then it should deem kj 

infinitely more likely than k'j. We must first define what it 

means, within our periodic static scaling planning model, that 

an Once-in-a-Lifetime Workload type prefers some resource 

pooling pattern strategy to another resource pooling pattern 

strategy. 

Consider an Once-in-a-Lifetime Workload type ti with an 

TODIS                        ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i. Then, 

for every level             p   {1, . . . , P} and every resource 

pooling pattern strategy ki, we can define the level p expected 

utility 

xi(ki, ψi
p):=             Σ              ψi

P (k−i , t−i) xi(ki , k−i ). 

                         (k−i ,t−i )  K−i×T−i 

This is the expected utility that would result by choosing ki 

under the resource pooling pattern conjecture ψi
P. 

Necessary and sufficient condition 3.3 (An Once-in-a-

Lifetime Workload type’s preference relation over resource 

pooling pattern strategies). Let ti Ti be an Once-in-a-Lifetime 

Workload type with TODIS ψi(ti) = (ψi
1, . . . , ψi

P) on K−i×T−i. 

Once-in-a-Lifetime Workload type ti prefers resource pooling 

pattern strategy ki to some other resource pooling pattern 

strategy k'i if there is some    level p   {1, . . . , P} such that 

xi(ki, ψi
o) > xi(k'i, ψi

o) and xi(ki, ψi
o) = xi(k'i, ψi

o) for all o<p. 

For later purposes, we say that Once-in-a-Lifetime Workload 

type ti weakly prefers ki to k'i if ti does not prefer k'i to ki. 

Necessary and sufficient condition 3.4 (Considering the 

cloud consumers’ resource pooling pattern preferences). Let 

ti Ti be a cautious Once-in-a-Lifetime Workload type. Once-

in-a-Lifetime Workload type ti consider the cloud consumer’s 

resource pooling pattern preferences if, for every cloud 

consumer j, every Once-in-a-Lifetime Workload type tj  Tj 

deemed possible by ti, and every two  strategies kj, k'j such that 

tj prefers kj to k'j, Once-in-a-Lifetime Workload type ti deems 

the pair (kj, tj) infinitely more likely than the    pair (k'j, tj). 

3.5 Measurability 
We say that an Once-in-a-Lifetime Workload type ti is 

measurable if ti is cautious and consider the cloud consumers’ 

resource pooling pattern preferences, premises that all cloud 

consumers are cautious and consider their cloud consumers’ 

resource pooling pattern preferences, premises that all cloud 

consumers premise that their cloud consumers are cautious 

and consider their cloud consumers’ resource pooling pattern 

preferences, and so on. In other words, ti is cautious and 

consider the cloud consumers’ resource pooling pattern 

preferences, and expresses common resource pooling pattern 

conjecture in the event that cloud service providers are 

cautious and consider the cloud consumers’ resource pooling 

pattern preferences. 

Necessary and sufficient condition 3.5 (Common resource 

pooling pattern conjecture in “caution and consider of the 

cloud consumers’ resource pooling pattern preferences”). An 

Once-in-a-Lifetime Workload type ti expresses common 

resource pooling pattern conjecture in the event that cloud 

service providers are cautious and consider the cloud 

consumers’ resource pooling pattern preferences if ti only 

deems possible cloud consumers’ Once-in-a-Lifetime 

Workload types that are cautious and consider their cloud 

consumers’ resource pooling pattern preferences, only deems 

possible cloud consumers’ Once-in-a-Lifetime Workload 

types that only deem possible cloud consumers’ Once-in-a-

Lifetime Workload types that are cautious and consider their 

cloud consumers’ resource pooling pattern preferences, and so 

on. 

By additionally assuming that ti itself is cautious and consider 

the cloud consumers’ resource pooling pattern preferences, we 

obtain the necessary and sufficient condition of a measurable 

Once-in-a-Lifetime Workload type. 

Necessary and sufficient condition 3.6 (measurable Once-

in-a-Lifetime Workload type). An Once-in-a-Lifetime 

Workload type ti is measurable if it is cautious and consider 

the cloud consumers’ resource pooling pattern preferences, 

and moreover expresses common resource pooling pattern 

conjecture in the event that cloud service providers are 

cautious and consider the cloud consumers’ resource pooling 

pattern preferences. 

Finally, we say that a resource pooling pattern strategy ki is 

measurable for cloud service provider i if it is optimal for 

some measurable Once-in-a-Lifetime Workload type. 

Formally, a resource pooling pattern strategy ki is called 

optimal for Once-in-a-Lifetime Workload type ti if ti weakly 

prefers ki to any other resource pooling pattern strategy. 

Necessary and sufficient condition 3.7 (measurable resource 

pooling pattern strategy). A resource pooling pattern strategy 

ki for cloud service provider i is measurable if there is some 

finite periodic static scaling planning model (Ti, ψi)i I and 

some measurable Once-in-a-Lifetime Workload type ti  Ti 

such that ki is optimal for ti. 

As we already mentioned before, the concept of a measurable 

resource pooling pattern strategy would not change if we 

would allow for infinite periodic static scaling planning 

models here. 

4. ALGORITHM 
In this section we will present an algorithm that always 

delivers all measurable resource pooling pattern strategies. 

Before doing so, we first provide some intuitive arguments 

that eventually will lead to the algorithm. Finally, we state our 

main result, namely that the algorithm yields precisely the set 

of measurable resource pooling pattern strategies in every 

periodic static scaling. 

4.1 Road to the Algorithm 
In Section II we have seen that elimination of (subsets of) 

weakly dominated resource pooling pattern strategies cannot 

work for measurability. So, what kind of procedure could 

work here? We start our informal investigation with the 

following well-known fact: 

Step 1. Suppose that resource pooling pattern strategy ki is 

weakly dominated on K−i by some randomized resource 

pooling pattern strategy γi   θ(Vi), where Vi is a subset of 

resource pooling pattern strategies. Then, if cloud service 

provider i is cautious, it will prefer some resource pooling 

pattern strategy in Vi to ki. We say that (ki, Vi) is a resource 

pooling pattern Once-in-a-Lifetime Workload preference 

limitation for cloud service provider i. 

Here, θ(Vi) denotes the set of probability distributions on Vi. 

The reason for this fact is simple: If ki is weakly dominated by 

resource pooling pattern γi, then under every cautious totally 

ordered resource pooling pattern conjecture, ki will be worse 

than γi, and hence there must be some vi   Vi which is better 

than ki under such a cautious totally ordered resource pooling 

pattern conjecture. So, (ki, Vi) will be a resource pooling 
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pattern Once-in-a-Lifetime Workload preference limitation for 

cloud service provider i. 

Suppose now that cloud service provider i premise its cloud 

consumers are cautious and that it consider its cloud 

consumers’ resource pooling pattern preferences. If some 

cloud consumer’s resource pooling pattern strategy kj is 

weakly dominated on K−j by some randomized resource 

pooling pattern strategy γi   θ(Vi), then we know by Step 1 

that cloud service provider j will prefer some resource pooling 

pattern strategy in Vj to kj in case it is cautious. As cloud 

service provider i indeed premises it is cautious, and consider 

j’s resource pooling pattern preferences, cloud service 

provider i must deem some resource pooling pattern strategy 

in Vj infinitely more likely than kj. We say that cloud service 

provider i’s totally ordered resource pooling pattern 

conjecture consider the preference limitation (kj, Vj). This 

leads to the following observation: 

Step 2. Suppose cloud service provider i premises its cloud 

consumers are cautious, and consider its cloud consumers’ 

resource pooling pattern preferences. Then, i’s totally ordered 

resource pooling pattern conjecture must consider every cloud 

consumer’s resource pooling pattern Once-in-a-Lifetime 

Workload preference limitation (kj, Vj) generated in Step 1. 

Say that a totally ordered resource pooling pattern conjecture 

for cloud service provider i assumes a set E−i K−i of cloud 

consumers’ resource pooling pattern strategy combinations if 

it deems all resource pooling pattern strategy combinations 

inside E−i infinitely more likely than all resource pooling 

pattern strategy combinations outside E−i. Suppose now that 

i’s totally ordered resource pooling pattern conjecture is 

cautious, and assumes some set E−i of cloud consumers’ 

resource pooling pattern strategy combinations. Assume, 

moreover, that its resource pooling pattern strategy ki is 

weakly dominated on E−i by a randomized resource pooling 

pattern strategy γi   θ(Vi). Then, i must prefer some resource 

pooling pattern strategy in Vi to ki. The argument is basically 

the same as for Step 1, if we would “reduce” the periodic 

static scaling to cloud consumers’ resource pooling pattern 

strategy combinations in E−i. We thus obtain the following 

step: 

Step 3. Suppose that every totally ordered resource pooling 

pattern conjecture for cloud service provider i considering all 

Once-in-a-Lifetime Workload preference limitations from 

Step 1, assumes some E−i K−ion which ki is weakly 

dominated by some γi   θ(Vi). Suppose, moreover, that cloud 

service provider i is cautious, premises its cloud consumers 

are cautious, and consider the cloud consumers’ resource 

pooling pattern preferences. Then, i must prefer some 

resource pooling pattern strategy in Vi to ki. We say that (ki, 

Vi) is a new Once-in-a-Lifetime Workload preference 

limitation for cloud service provider i. 

Of course, we can iterate this argument if we assume that 

cloud service provider i is cautious, consider the cloud 

consumers’ resource pooling pattern preferences, and 

expresses common resource pooling pattern conjecture in the 

event that cloud service providers are cautious and consider 

the cloud consumers’ resource pooling pattern preferences. 

That is, if we assume that cloud service provider i’s Once-in-

a-Lifetime Workload type is measurable. The inductive step 

would then look as follows: 

Inductive step. Suppose that every totally ordered resource 

pooling pattern conjecture for i that consider all Once-in-a-

Lifetime Workload preference limitations generated so far, 

assumes some E−i K−ion which ki is weakly dominated by 

some γi   θ(Vi). Then, if i is of a measurable Once-in-a-

Lifetime Workload type, it must prefer some resource pooling 

pattern strategy in Vi to ki. So, (ki, Vi) would be a new Once-

in-a-Lifetime Workload preference limitation for cloud 

service provider i. 

This would thus generate an inductive procedure in which at 

every step (possibly) some new Once-in-a-Lifetime Workload 

preference limitations would be added for the cloud service 

providers. Since there are only finitely many possible Once-

in-a-Lifetime Workload preference limitations for the cloud 

service providers, this procedure must end after finitely many 

steps. Now, consider some cloud service provider i, and its set 

of Once-in-a-Lifetime Workload preference limitations 

generated by the procedure above.  

If cloud service provider i is of some measurable Once-in-a-

Lifetime Workload type, we know from our arguments above 

that it will never choose a resource pooling pattern strategy ki 

if it is part of some Once-in-a-Lifetime Workload preference 

limitation (ki, Vi). In that case, namely, it would always prefer 

some resource pooling pattern strategy in Vi to ki, so ki could 

not be optimal. 

So, the procedure above rules out resource pooling pattern 

strategies that is certainly not measurable. But what about the 

converse? So, what about resource pooling pattern strategies 

that are not ruled out by the procedure above? The main 

proposition in this paper, Proposition 4.6, will show that the 

“surviving” resource pooling pattern strategies are all 

measurable! Hence, the procedure above will always select 

exactly those resource pooling pattern strategies that are 

measurable – not more and not less. 

4.2 Description of the algorithm 
Before we state the algorithm, we first formally necessary and 

sufficient condition the new concepts we described above, 

such as Once-in-a-Lifetime Workload preference limitations, 

what it means for a totally ordered resource pooling pattern 

conjecture to consider an Once-in-a-Lifetime Workload 

preference limitation, and so on. 

Necessary and sufficient condition 4.1 (Once-in-a-Lifetime 

Workload preference limitation). An Once-in-a-Lifetime 

Workload preference limitation for cloud service provider i is 

a pair (ki, Vi) where ki is a resource pooling pattern strategy, 

and Vi a nonempty subset of resource pooling pattern 

strategies. 

The interpretation is that cloud service provider i prefers at 

least one resource pooling pattern strategy from Vi to ki. Now, 

consider a totally ordered resource pooling pattern conjecture 

ψi on K−i, which is simply a TODIS on K−i. From here on, we 

will always assume that such a totally ordered resource 

pooling pattern conjecture ψi has full support on K−i, that is, 

every resource pooling pattern strategy combination in K−i 

receives positive probability in some level of ψi. 

Necessary and sufficient condition 4.2 (Considering a        

Once-in-a-Lifetime Workload preference limitation).A totally 

ordered resource pooling pattern conjecture ψi on K−i consider 

an Once-in-a-Lifetime Workload preference limitation (kj, Vj) 

for cloud service provider j if ψi deems some resource pooling 

pattern strategy in Vj infinitely more likely than kj. 
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This, in a sense, mimics the requirement that cloud service 

provider i must consider j’s resource pooling pattern 

preferences. 

Necessary and sufficient condition 4.3 (Assuming a set of 

cloud consumers’ resource pooling pattern strategy 

combinations). Consider a subset E−i   K−i of cloud 

consumers’ resource pooling pattern strategy combinations, 

and a totally ordered resource pooling pattern conjecture ψi on 

K−i. The totally ordered resource pooling pattern conjecture ψi 

assumes the set E−i if ψi deems all resource pooling pattern 

strategy combinations inside E−i infinitely more likely than all 

resource pooling pattern strategy combinations outside E−i. 

Note that a totally ordered resource pooling pattern conjecture           

ψi= (ψi
1, . . . , ψi

P) on K−i assumes a subset E−i   K−i if and    

only if, there is some level p   {1, . . . , P} such that                    

Uo≤p supp( ) = E−i. Here, supp(ψi
o)denotes the support of the 

probability distribution ψi
o. A randomized resource pooling 

pattern strategy for cloud service provider i is a probability 

distribution γi   θ(Ki).on cloud service provider i’s resource 

pooling pattern strategies. For a subset Vi   Ki, we denote by 

θ(Vi) the set of randomized resource pooling pattern strategies 

that assign positive probability only to resource pooling 

pattern strategies in Vi. For some cloud consumers’ resource 

pooling pattern strategy combination k−i   K−i, let  

xi(γi , k−i) :=    Σ    γi(ki) xi(ki , k−i) 

                                            ki Ki 

denote i’s expected utility from the randomized resource 

pooling pattern strategy γi and the cloud consumers’ resource 

pooling pattern strategy combination k−i. 

Necessary and sufficient condition 4.4 (Weakly dominated 

resource pooling pattern strategy). Let E−i   K−i be a subset 

of the cloud consumers’ resource pooling pattern strategy 

combinations. Resource pooling pattern Strategy ki is said to 

be weakly dominated by randomized resource pooling pattern 

strategy γi on E−i if xi(γi , k−i) ≥ xi(ki , k−i) for all k−i E−i, with 

strict in equality for at least some k−i E−i. 

We are now ready to present the algorithm. The idea is to start 

with the empty set of Once-in-a-Lifetime Workload 

preference limitations for all cloud service providers, and at 

every round to add new Once-in-a-Lifetime Workload 

preference limitations, if possible. For that reason, the 

algorithm is called “iterated addition of Once-in-a-Lifetime 

Workload preference limitations”. 

Algorithm 4.5 (Iterated addition of Once-in-a-Lifetime 

Workload preference limitations). In round 1, begin for all 

cloud service providers i with the empty set of Once-in-a-

Lifetime Workload preference limitations. 

At every further round q ≥ 2, limit for every cloud service 

provider i to those totally ordered resource pooling pattern 

conjecture on K−i that consider all cloud consumers’ Once-in-

a-Lifetime Workload preference limitations generated so far. 

Add a new Once-in-a-Lifetime Workload preference 

limitation (ki, Vi) for cloud service provider i if every such 

totally ordered resource pooling pattern conjecture assumes 

some set E−i K−i on which ki is weakly dominated by some 

γi θ(Vi). 

Since the number of Once-in-a-Lifetime Workload preference 

limitations is finite, this algorithm must end after a finite 

number of rounds. We say that resource pooling pattern 

strategy ki survives the algorithm of iterated addition of Once-

in-a-Lifetime Workload preference limitations if ki is not part 

of any Once-in-a-Lifetime Workload preference limitation (ki, 

Vi) generated by the algorithm. Namely, if ki were to be part of 

an Once-in-a-Lifetime Workload preference limitation (ki, Vi) 

produced by the algorithm, then cloud service provider i 

would prefer at least one strategy in Vi to ki, and hence ki could 

not be optimal. 

4.3 Main Proposition 
Our main proposition states that the algorithm of iterated 

addition of Once-in-a-Lifetime Workload preference 

limitations yields exactly the set of measurable resource 

pooling pattern strategies for every cloud service provider. 

Proposition 4.6 (Algorithm yields precisely the set of 

measurable resource pooling pattern strategies). Consider a 

finite static periodic static scaling. Then, a resource pooling 

pattern strategy ki is measurable, if and only if, ki survives the 

algorithm of iterated addition of Once-in-a-Lifetime Workload 

preference limitations. 

The easier direction is to show that every measurable resource 

pooling pattern strategy survives iterated addition of Once-in-

a-Lifetime Workload preference limitation. So, a measurable 

resource pooling pattern strategy ki can never be part of an 

Once-in-a-Lifetime Workload preference limitation (ki, Vi) 

generated by the algorithm. The more difficult direction is to 

prove that every resource pooling pattern strategy ki that is not 

part of any such Once-in-a-Lifetime Workload preference 

limitation (ki, Vi) is measurable. Hence, we must construct an 

periodic static scaling planning model in which each of this 

resource pooling pattern strategies ki is supported by some 

measurable Once-in-a-Lifetime Workload type. This 

construction is rather delicate. 

From the proposition, we can easily derive the following 

observation: If in a given periodic static scaling no resource 

pooling pattern strategy is weakly dominated, then all 

resource pooling pattern strategies for the cloud service 

providers are measurable. Namely, the algorithm we present 

will only generate Once-in-a-Lifetime Workload preference 

limitations at the first round if there is at least some resource 

pooling pattern strategy that is weakly dominated within the 

full periodic static scaling. Otherwise, the algorithm will not 

generate any Once-in-a-Lifetime Workload preference 

limitation at all, and hence all resource pooling pattern 

strategies would survive the algorithm. 

4.4 A Finite Formulation of the Algorithm 
The algorithm of iterated addition of Once-in-a-Lifetime 

Workload preference limitations as we have formulated it 

proceeds by adding Once-in-a-Lifetime Workload preference 

limitations and deleting totally ordered conjecture at every 

round. More precisely, we start with the empty set of Once-in-

a-Lifetime Workload preference limitations and the full set of 

totally ordered conjecture. At the first round we see whether 

we can add some Once-in-a-Lifetime Workload preference 

limitations. If so, then this would reduce the set of totally 

ordered conjecture, which at the next round could add some 

further Once-in-a-Lifetime Workload preference limitations, 

and so on. 

What is somewhat undesirable from a computational point of 

view is that there are infinitely many possible totally ordered 

conjecture in the periodic static scaling. This would suggest 

that at every round in the algorithm we must scan through 

infinitely many totally ordered conjecture. This, however, is 
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not necessary. What matters for the algorithm is not so much 

the precise probabilities in the totally ordered resource 

pooling pattern conjecture, but the induced “likelihood 

resource pooling pattern ordering” on cloud consumers’ 

resource pooling pattern strategy combinations. More 

precisely, let ψi= (ψi
1, . . . , ψi

P) be a totally ordered resource 

pooling pattern conjecture on K−i. Remember our convention 

that ψi has full support on K−i, that is, every k−i K−i  receives 

positive probability in some level ψi
p. Let Oi= (Oi

1, . . . , 

Oi
Z)be the ordered sequence of disjoint subsets Oi

z   K−i such 

that (a) ψi deems every k−i   Oi
z infinitely more likely than 

every K−i   Oi
z+1 for every z   {1, . . . ,Z − 1},     (b) for every 

m and every k'−i , k−i   Oi
z, the TODIS ψi does not deem k−i 

infinitely more likely than k'−i, nor vice versa, and    (c) the 

union of the sets in Oi is K−i. We call Oi the likelihood 

ordering induced by ψi. Formally, we have the following 

necessary and sufficient condition. 

Necessary and sufficient condition 4.7 (Likelihood 

ordering). A likelihood ordering for cloud service provider i 

on the cloud consumers’ resource pooling pattern strategy 

combinations is an ordered sequence Oi= (Oi
1, . . . , Oi

Z 

)where Oi
1, . . . , Oi

Z are pair-wise disjoint subsets of K−i 

whose union is equal to K−i. 

So, the interpretation is that Oi deems all resource pooling 

pattern strategy combinations in Oi
1 infinitely more likely than 

all resource pooling pattern strategy combinations in Oi
2, 

deems all resource pooling pattern strategy combinations in 

Oi
2 infinitely more likely than all resource pooling pattern 

strategy combinations in Oi
3, and so on. It is clear that there 

are only finitely many likelihood orderings in the periodic 

static scaling, since there are only finitely many resource 

pooling pattern strategies for every cloud service provider. 

We can now easily extend the necessary and sufficient 

condition of “considering an Once-in-a-Lifetime Workload 

preference limitation” and “assuming a set of cloud 

consumers’ resource pooling pattern strategy combinations” 

to likelihood  orderings. Say that a likelihood resource pooling 

pattern      ordering Oi= (Oi
1, . . . , Oi

Z) consider an Once-in-a-

Lifetime Workload preference limitation (kj , Vj) if Oi deems 

some resource pooling pattern strategy in Vj infinitely more 

likely than kj. Also, the likelihood ordering Oi is said to 

assume the set E−i of cloud consumers’ resource pooling 

pattern strategy combinations if Oi deems all resource pooling 

pattern strategy combinations inside E−i, infinitely more likely 

than all resource pooling pattern strategy combinations 

outside E−i. The algorithm of iterated addition of Once-in-a-

Lifetime Workload preference limitations can thus 

alternatively be stated as follows: 

Algorithm 4.8 (Finite version). In round 1, begin for all cloud 

service providers i with the empty set of Once-in-a-Lifetime 

Workload preference limitations. 

At every further round q ≥ 2, limit for every cloud service 

provider i to those likelihood resource pooling pattern 

orderings on K−i that consider all cloud consumers’ Once-in-a-

Lifetime Workload preference limitations generated so far. 

Add a new Once-in-a-Lifetime Workload preference 

limitation  (ki, Vi) for cloud service provider i if every such 

likelihood resource pooling pattern ordering assumes some set 

E−i K−ion which ki is weakly dominated by some γi θ(Vi). 

The advantage of this formulation is that at every round, we 

only have to scan through finitely many objects, as there are 

only finitely many Once-in-a-Lifetime Workload preference 

limitations and likelihood resource pooling pattern orderings 

in the periodic static scaling. Obviously, this algorithm 

generates precisely the same set of Once-in-a-Lifetime 

Workload preference limitations as the original procedure. As 

such, the measurable resource pooling pattern strategies are 

precisely those resource pooling pattern strategies that survive 

this alternative algorithm. 

5. DISCUSSION 
In this section we will discuss some important properties of 

the algorithm. 

5.1 Algorithm as an inductive reasoning 

procedure 
The algorithm is not merely a tool to compute the measurable 

resource pooling pattern strategies in an periodic static 

scaling, but can also be interpreted as an inductive reasoning 

process that can be used by a cloud service provider who 

reasons in the spirit of measurability. Consider namely a fixed 

cloud service provider in the periodic static scaling, say cloud 

service provider i. In round 2, the algorithm would add for 

every cloud consumer j an Once-in-a-Lifetime Workload 

preference limitation (kj, Vj) if kj would be weakly dominated 

on K−j by a mixture on Vj. In that case, cloud service provider i 

would store the Once-in-a-Lifetime Workload preference 

limitation (kj, Vj) in its mind, meaning that he premises that 

cloud service provider j prefers some resource pooling pattern 

strategy in Vj to kj. If i consider j’s resource pooling pattern 

preferences, then it should consequently deem some resource 

pooling pattern strategy in Vj infinitely more likely than kj. 

That is, the Once-in-a-Lifetime Workload preference 

limitations that cloud service provider i would store in its 

mind at round 2 would limit the possible totally ordered 

conjecture it could hold about its cloud consumers’ choices. 

Moreover, if cloud service provider i premises that its cloud 

consumers reason similarly, then cloud service provider i can 

actually deduce the possible totally ordered conjecture that its 

cloud consumers may hold at this round. 

In the next round of its reasoning procedure, cloud service 

provider i would then ask for every cloud consumer j: Given 

its limited set of conjecture, would cloud service provider j 

always assume some set E−j   K−j on which some resource 

pooling pattern strategy kj would always be weakly dominated 

by a mixture on Vj? If yes, then cloud service provider i will 

store (kj , Vj) as a new Once-in-a-Lifetime Workload 

preference limitation in its mind. By doing so, cloud service 

provider i would then further limit the possible totally ordered 

conjecture it could hold about its cloud consumers. Cloud 

service provider i could continue this inductive reasoning 

procedure until no new Once-in-a-Lifetime Workload 

preference limitation could be added, and hence its possible 

totally ordered conjecture could not be limited any further. 

So we see that the algorithm may serve very well as an 

intuitive reasoning procedure for cloud service providers that 

will eventually lead them to the measurable resource pooling 

pattern strategies in the periodic static scaling. What is crucial 

in this reasoning procedure is that a cloud service provider 

only needs to keep track of Once-in-a-Lifetime Workload 

preference limitations, which substantially simplifies matters 

compared to the original necessary and sufficient condition of 

measurability. In that light, our main proposition thus says 

that in order to find the measurable resource pooling pattern 

strategies in an periodic static scaling, it is sufficient for a 
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cloud service provider to think in terms of Once-in-a-Lifetime 

Workload preference limitations, and to reason in accordance 

with the algorithm. 

In the periodic static scaling  literature [1], there are other 

algorithms that can nicely be interpreted as intuitive reasoning 

procedures. Take, for instance, the concept of common 

resource pooling pattern conjecture in measurability and the 

associated algorithm of iterated elimination of strictly 

dominated resource pooling pattern strategies. Here, the 

algorithm can be seen as a reasoning procedure in which a 

cloud service provider successively deletes cloud consumers’ 

resource pooling pattern strategies, since they can no longer 

be optimal. At every round, this would then limit the cloud 

service provider’s possible conjecture as it must assign 

probability zero to these resource pooling pattern strategies. 

These additional limitations on the cloud service providers’ 

conjecture could then induce further resource pooling pattern 

strategies that can be deleted, and so on. So, in that procedure 

the cloud service providers’ possible (non-totally ordered) 

conjecture are limited further and further by deleting resource 

pooling pattern strategies, whereas in our procedure the 

(totally ordered) conjecture are limited further and further by 

adding new Once-in-a-Lifetime Workload preference 

limitations. 

A similar story can be told for the concept of iterated 

assumption of measurability within a complete Once-in-a-

Lifetime Workload type structure and the associated algorithm 

of iterated elimination of weakly dominated resource pooling 

pattern strategies. Here, the algorithm reflects a reasoning 

procedure in which a cloud service provider with totally 

ordered conjecture iteratedly deletes weakly dominated 

resource pooling pattern strategies from its mind. At every 

round of this procedure, the cloud service provider will then 

deem all surviving resource pooling pattern strategies 

infinitely more likely than all deleted resource pooling pattern 

strategies, thus limiting the possible totally ordered conjecture 

it can hold. So also in this procedure, the cloud service 

provider’s possible conjecture is limited in every round by 

deleting resource pooling pattern strategies. 

5.2 Order Independence 
For the algorithm, it can be shown that the order and speed in 

which we add preference restrictions does not matter for the 

eventual result. That is, it does not matter whether in every 

round we add all preference restrictions that can possibly be 

generated, or only some of these. 

To see this, let us compare two procedures, Procedure 1 and 

Procedure 2, where in the first we always add all possible 

Once-in-a-Lifetime Workload preference limitations at every 

round, and in the second we only add some of the possible 

Once-in-a-Lifetime Workload preference limitations every 

time. Then, first of all, Procedure 1 will at every round 

generate at least as many Once-in-a-Lifetime Workload 

preference limitations as Procedure 2. Namely, at round 2 

Procedure 1 generates as least as many Once-in-a-Lifetime 

Workload preference limitations, by necessary and sufficient 

condition. Therefore, at round 3 Procedure 1 limits to a 

smaller set of totally ordered conjecture than Procedure 2. But 

then, under Procedure 1 it will be “easier” to generate new 

Once-in-a-Lifetime Workload preference limitations at round 

3 than under Procedure 2. Hence, at round 3 Procedure 1 will, 

again, generate at least as many Once-in-a-Lifetime Workload 

preference limitations as Procedure 2, and so on. So, 

eventually, Procedure 1 will generate at least as many Once-

in-a-Lifetime Workload preference limitations as Procedure 2. 

The key argument here was that a larger set of Once-in-a-

Lifetime Workload preference limitations will lead to a 

smaller set of possible totally ordered conjecture, and a 

smaller set of possible totally ordered conjecture will in turn 

lead to a larger set of induced Once-in-a-Lifetime Workload 

preference limitations. So, the algorithm is monotone in this 

sense. 

On the other hand, it can also be shown that every Once-in-a-

Lifetime Workload preference limitation generated by 

Procedure 1 will also eventually be generated by Procedure 2. 

Suppose, namely, that Procedure 1 would generate some 

Once-in-a-Lifetime Workload preference limitation that 

would not be generated at all by Procedure 2. Then, let p be 

the first round at which Procedure 1 would generate an Once-

in-a-Lifetime Workload preference limitation, say (ki, Vi), not 

generated by Procedure 2 at all. By construction of the 

algorithm, every totally ordered resource pooling pattern 

conjecture for cloud service provider i that consider all Once-

in-a-Lifetime Workload preference limitations generated by 

Procedure 1 before round p, must assume some set E−i on 

which ki is weakly dominated by some γi   θ(Vi). By our 

assumption, all these Once-in-a-Lifetime Workload 

preference limitations generated by Procedure 1 before round 

p are also eventually generated by Procedure 2, let us say 

before round z ≥ p. But then, every totally ordered resource 

pooling pattern conjecture for cloud service provider i that 

consider all Once-in-a-Lifetime Workload preference 

limitations generated by Procedure 2 before round z, assumes 

a set E−i on which ki is weakly dominated by some γi   θ(Vi). 

Hence, Procedure 2 must add the Once-in-a-Lifetime 

Workload preference limitation (ki, Vi) sooner or later, which 

is a contradiction since we assumed that Procedure 2 does not 

generate Once-in-a-Lifetime Workload preference limitation 

(ki, Vi) at all. We thus conclude that every Once-in-a-Lifetime 

Workload preference limitation added by Procedure 1 is also 

finally added by Procedure 2. As such, Procedures 1 and 2 

eventually generate exactly the same set of Once-in-a-

Lifetime Workload preference limitations. So, indeed, the 

order and speed in which we add Once-in-a-Lifetime 

Workload preference limitations is irrelevant to the algorithm. 

6. CONCLUSION AND FUTURE SCOPE 
In this section we conclude, stating that the algorithm of 

iterated addition of Once-in-a-Lifetime Workload preference 

limitations selects exactly the set of measurable resource 

pooling pattern strategies in the periodic static scaling. For our 

conclusion, we recall the necessary and sufficient condition of 

a likelihood resource pooling pattern ordering induced by a 

TODIS. Consider a TODIS ψi = (ψi
1, . . . , ψi

P)on K−i. 

Remember our convention that ψi has full support on K−i, that 

is, every k−i K−i receives positive probability in some level 

ψi
p. Let Oi= (Oi

1, . . . , Oi
Z )be the ordered sequence of disjoint 

subsets Oi
z   K−i such that (a) ψi deems every k−i   Oi

z 

infinitely more likely than every k'−i   Oi
z+1, for every  z   {1, 

. . . ,Z − 1},(b) for every z and every k−i , k'−i   Oi
z, the TODIS 

ψi does not deem k−i infinitely more likely than k'−i, nor vice 

versa, and(c) the union of the sets in Oi is K−i. We call Oi the 

likelihood resource pooling pattern ordering induced by ψi. 

Our conclusion characterizes, for a given resource pooling 

pattern strategy ki and set Vi   Ki, those likelihood resource 

pooling pattern orderings on K−i that admit an TODIS under 

which ki is weakly preferred to all resource pooling pattern 

strategies in Vi. Despite the progress on our interpretation is 
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made the following three open problems are available for 

further research. 

Open Problem 6.1 Let ψi be a TODIS on K−i, let ki be a 

resource pooling pattern strategy and Vi   Ki a subset of 

resource pooling pattern strategies.(a) If under the TODIS ψi, 

resource pooling pattern strategy ki is weakly preferred to all 

resource pooling pattern strategies in Vi. Does ψi assume any 

E−i K−i on which ki is weakly dominated by a mixture on Vi? 

(b) If ψi does not assume any E−i K−i on which ki is weakly 

dominated by a mixture on Vi. Does some TODIS ϕi, inducing 

the same likelihood resource pooling pattern ordering as ψi, 

under which ki is weakly preferred to all resource pooling 

pattern strategies in Vi? 

Open Problem 6.2 Let ti be a measurable Once-in-a-Lifetime 

Workload type. Does ti’s totally ordered resource pooling 

pattern conjecture on K−i consider every Once-in-a-Lifetime 

Workload preference limitation in F∞
−i? 

Open Problem 6.3 (Property of Once-in-a-Lifetime Workload 

preference limitations not generated by the algorithm). For 

every cloud service provider i, let Fi
not be the set of Once-in-a-

Lifetime Workload preference limitations not generated by the 

algorithm. Does for every (ki, Vi)   Fi
not is there an TODIS ψi 

on K−i such that (1) under ψi, resource pooling pattern 

strategy ki is weakly preferred to all resource pooling pattern 

strategies in Vi, and (2) for every cloud consumer’s resource 

pooling pattern strategy kj, the pair ((kj, Vj
−(kj, ψi)) is in Fj

not? 
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