
International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Combating Kernel Rootkits on Linux Version 2.6
(Analysis of Rootkit Prevention, Detection and

Correction)

T.J. Anande
University of Agriculture, Makurdi

Department of Electrical and Electronics Engineering
Benue State, Nigeria

T.K. Genger
University of Agriculture, Makurdi

Department of Electrical and Electronics Engineering
Benue State, Nigeria

J.U. Abasiene
Federal Polytechnic, Ede

ICT Directorate
Ede, Nigeria

ABSTRACT
Rootkits are a major security concern for smartphones today.
They have always been around, though largely operational on
desktops and PCs. On the mobile platform, their presence was
not very popular until the advent of smartphones and advanced
mobile devices. The rapid developments and trends recorded on
smartphones today make them highly vulnerable to rootkit at-
tacks. Smartphone operating systems now come highly sophisti-
cated and packaged with advanced functionality to keep record of
users’ diary, sensitive personal and security details, among oth-
ers. These features make them a prime choice for attacks from
rootkit authors, who explore all available avenues to exploit and
extract this information for malicious purposes. Cases of rootkit
attacks have continued to increase with more of such attacks tar-
geted at popular smartphone operating systems like Android. In
this research, we discuss rootkits, illustrating their operational ar-
chitecture and operation with a design of a kernel rootkit for
the Linux kernel 2.6. We explore possible measures to combat
rootkits on the mobile platform, using Android as a case study

General Terms:
Rootkit, Android

Keywords
Linux, Smartphone, Kernel, Kernel Freeze, Backdoor

1. INTRODUCTION
Rootkits are traced back to the UNIX Systems where operat-
ing system tools (Kit) were used to stealthily gain undetected
privileged access (Root) into the computer system. According to
Sirag, H. et al and Kim, S et al, a rootkit is software that main-
tains privileged access in a target system while evading detection
from the administrator by altering or modifying functions in the
operating system [19][38]. Lacombe, E et al in [20] defines them
as a set of modifications that enable an attacker fraudulently and
continuously control an information system using a combination
of various malware techniques. Even though they are not harm-
ful or malicious, they enable attacks from other malware like
viruses, worms or Trojans, who use rootkit techniques to gain
access into and infect the target systems via backdoors [12][36].
Backdoors are secret paths into secured systems - operating sys-
tems.
Panda Security [35] classifies rootkits as persistent or non-
persistent; Persistent rootkits replicates valid registry files and
are automatically activated each time the operating system starts

up while the non-persistent rootkit is disabled once the operating
system is restarted. According to Shetty, P, rootkits thoroughly
examine their target’s system as soon as they gain access. While
examining the system, they collect all relevant information about
the system to enable it identify possible vulnerabilities. As soon
as weak points are identified, the attacker strategizes and attacks
while concealing its tracks and presence in the system [36]. This
essentially highlights its operational stages prior to and during
an attack.
Rootkits are primarily deployed at the User Mode or the Ker-
nel Mode. Other types include Memory based rootkits, Firmware
rootkits, Boot rootkits and Hypervisor rootkits [19][23].

Kernel-Level Rootkits:. Presumably more dangerous and diffi-
cult to detect, this kind of rootkit attacks the nucleus of the OS
(as shown in Figure 1). As soon as it gains access into the sys-
tem kernel, it modifies and replaces kernel data structures. This
rootkit type goes as far as hooking kernel Application Program
Interfaces (APIs) using various hooking methods including Sys-
tem Service Descriptor Table (SSDT) Hooking, Interrupt De-
scriptor Table (IDT) Hooking, Direct Kernel Object Manipula-
tion (DKOM), Inline Function Hooking (IFH) and Jump Tem-
plate Technique (JTT) [19].
Kernel rootkits use SSDT Hooking to access and modify mem-
ory address functions and running processes through system
despatch and parameter tables while it remains undetected. IDT
Hooking enables rootkits obtain and manipulate software or
hardware interrupts. This empowers it to control hardware and
software responses to user commands. DKOM, unlike most
hooking methods, is not based on execution codes. Attackers use
DKOM to directly modify kernel-level data. With IFH, rootkits
gain control over a specific function in the system memory by
inserting malicious codes called unconditional jump in the body
of the function [19]. The JTT is used when multiple functions
are targeted; rootkit functions are initially executed followed by
the original function code while the default function result is re-
turned.

User-Level Rootkits. These run alongside basic application pro-
grams. They modify and replace APIs, registry values, system bi-
naries and kernel utilities. User-level rootkit basically hook and
conceal itself in APIs by substituting and inserting its code into
the API’s process address space [14] [36]. They are not as dan-
gerous as the Kernel-level rootkits as they are not able to access
and manipulate kernel structure but only manipulate APIs and
user-level programs (as shown in Figure 1). They use Dynamic-
Link Library (DLL) injection technique to insert their code into
other processes which enable them execute inside, and spoof

1

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Fig. 1. Rootkit’s position in a compromised system.

target processes [19]. DLL injection can be deployed in three
ways; via registry, hooking function or remote thread. The other
method is to overwrite the target application memory provided it
has the required privileges [19].

1.1 Rootkit on the Linux Kernel
As earlier mentioned kernel rootkits are known to attack and sub-
vert the core of the OS. According to [1], these rootkits are the
most malicious type and could easily evade detection as they
run alongside core kernel processes giving them the ability to
subvert syscalls and generate false detection results for any anti-
rootkit tool that is run on the system. Now most kernels are sim-
ilar though not entirely the same. The Linux kernel (our subject
kernel), like every other system kernel, serves as an intermediary
that facilitates interaction between the user mode and the hard-
ware. This interaction is made possible through system libraries
(Native libraries as in the case of Android) via syscalls and func-
tions [1]. Linux kernel rootkits run in the core layer of the OS
generally referred to as ring 0 (where they have access to the
system’s highest privilege), modify the Loadable Kernel Module
(LKM), and target these syscalls by subverting them.

1.2 Kernel Rootkit Analysis
In this section, we take a detailed analysis of a Linux Kernel
Rootkit architecture stack and module stages. We also consider
the design principle and processes. This section is based on an
experiment on kernel-mode rootkit on the Linux-based system
conducted by Lacombe, E, Raynal, F and Nicimette, V [20].
Other researchers have also experimented on kernel rootkits, but
we use because it particularly relates to and expounds our subject
Linux kernel rootkits.

1.3 A Functional Rootkit Architecture
As earlier stated, the primary goal of a rootkit is to stealthily
compromise a system’s defence system by intruding into the
system, evading detection, and creating backdoors for continu-
ous attacks from other malware. It is also important to note that
these backdoors are also relevant to ensure constant communica-
tion with the rootkit authors (that is, if the rootkits are not local).
Rootkit architecture is engineered in modules as shown in(Fig-
ure 2)

Module 1. This module implements the first and primary stage
of the Linux kernel rootkit. Also called the Injector, it serves
as the rootkit activator and injects the rootkit codes in the ker-
nel modules. Whatever the purpose of the attacker is or vulner-
abilities the system has the injector or activator must be imple-
mented for the attacker to gain access into the system. Once the
codes are injected, the kernel modules are compromised, and the
rootkit immediately re-structures the kernel system to suit its op-

Fig. 2. The Functional Rootkit Stack.

erations. Different injection techniques can be employed depend-
ing on the kernel version; our focus is on Linux Kernel version
2.6. One injection method for this kernel is to dynamically in-
clude malicious kernel modules to the Linux kernel [41]; this is
possible hence Linux kernel module (LKM) support is active.
Alternatively, the /dev/kmem (a device interface driver or charac-
ter device used to access kernel memory via virtual addressing)
is used to access, compromise and subvert the kernel [22]. An-
other approach is to bye-pass the operating system (or processor)
and directly accesses the system’s memory management. Inject-
ing the code through /dev/kmem could disable the LKM as well
as disable execution of core system programs.

Module 2. This is the Rootkit Protection Module. As shown in
Figure 3, it is responsible for ensuring the
rootkit is robust, resistant, persistent and sturdy. Basically, the
attacker employs and combines different strategies to achieve
this. Whatever strategy is employed, the attacker must ensure
the rootkit is invincible and actively running along with the sys-
tem. Persistent rootkits would inject part or all of their code in
the kernel and remain active even when the system is restarted.
One way these kinds of rootkits defend themselves against anti-
rootkit measures (especially when detected) is by giving the user
or administrator the impression that removing them could cause
more harm than good. By disguising their operations (that is,
processes, files and network sockets), they would manipulate,
modify and even erase event log files, hook system call table or
virtual file system, or other system functions.

Module 3. As soon as rootkits establish their presence in a sys-
tem, they would proceed to create Backdoors to enable unlim-
ited and sustained access to and control over the system by the
attacker. Figure 4 shows that with Backdoors, the attacker would

2

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Fig. 3. Various strategies employed at the rootkit protection module.

Fig. 4. Communication process before and during rootkit deployment.

continue to exploit and extract sensitive information from the
user. This Backdoor, activated by its actuator (a mechanism that
automatically activates it), serves as the interacting channel that
connects the attacker and the rootkit operation in the compro-
mised system. The interactive channel communication connects
the attacker’s device or system to the compromised system at
one end, and provides a pathway for the rootkit to execute in-
structions from the attacker on the compromised system at the
other end.

Module 4. Once the Backdoor mechanism is set and running,
the rootkit proceeds to deliver its services in the compromised
system. Services (see Figure 5) such as spying on conversa-
tions, keylogger (surveillance mechanism that registers e-mails,
keystrokes, passwords, instant messages, and contacts) [45], and
other such activities are classified here as passive services while
active rootkit services include DoS, terminating application or
system processes, corrupting file systems, intruding other sys-
tems. The attacker would usually use passive services to steal
information from the compromised system, and employ active
services to disrupt the system or kernel operations.

2. THE KERNEL ROOTKIT DESIGN
OBJECTIVE

This rootkit is design for deployment on Linux Kernel version
2.6 (based on x86 architecture). This section details the architec-
tural modules for the design, starting from the subversive method
employed followed by the protection mechanism, creating the
backdoor, and finally deploying the rootkit services. The objec-
tive is to subvert a process (thread) - system call 0, and ensure all

modifications made are hidden from other active processes [20].
System call (syscall) is a mechanism used by user-land processes
to request OS managed services such as process management,
network, memory and storage, from the kernel [11]. System call
0 (syscall 0) runs in the x86 architecture’s highest privilege level,
and is required by the kernel when restarting interrupted system
calls. These interrupted system calls would usually store their
address in their process descriptor; accessing and modifying this
temporarily stored address is the main goal of this kernel rootkit.

2.1 The Kernel Rootkit Design
[21] creates two separate codes; the first code modifies syscall 0
such that it is able to call kernel functions, and the second code
serves as a backup to enable [20] deploy functions other than
the available kernel functions. These codes could be deployed
locally by modifying syscall 0 sequences and launching them
from within the compromised system. [20] could alternatively
deploy the codes remotely by modifying the syscall 0 sequences
which then connive with the kernel backdoor to execute com-
mands from the [20]’s system onto the compromised system.
Code Injection: [20] initiates installation by accessing and open-
ing the /dev/kmem, and proceeds to locate get-zeroed-page
primitive address (obtained from a physical memory page) us-
ing /dev/kmem’s pattern matching mechanism. get-zeroed-page
primitive is part of kernel memory allocator’s very low level call.
The next step is to locate the process stack and descriptor. Based
on kernel version (Linux 2.6), [20] proceeds to identify the value
of the esp stack pointer to be able to get the process’ kernel
stack. This is done in kernel mode, during the process execution.
[20] also accesses the descriptor’s reference within the thread-

3

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Fig. 5. Malicious rootkit’s Active and Passive services.

info structure at the lower part of the kernel stack (see Figure 6).
Thread-info is one of Linux’s two data structures used for each
(individual) process, and the esp is the stack pointer register; it is
configured with the eip (that is, the instruction pointer register)
to compile loadable set values deployed for registers during sys-
tem initialisation and switch system processors to kernel mode
(otherwise referred to as ring 0) [8].
Now, as soon as the processors switch to ring 0, the esp value
of the particular scheduler stored within the tss-struct is loaded
with the esp. At the completion of the sysenter execution, esp
register loads revealing the stack address of the executed pro-
cess; hence it loads with the structure’s address. Note that sysen-
ter is executed from user space. Sysenter is an upgraded system
call mechanism that optimizes and boosts processor performance
when switching to ring 0 by determining eip, esp and other such
registers based on OS set values [11]. The tss-struct is a structure
reference type in x86 architecture used to build up the Task State
Segment (TSS). After locating the process kernel stack and pro-
cess descriptor, [20] proceeds to inject the code (code 1) to sub-
vert syscall 0, by replacing the called function’s address with an
address from code 1 (the injected code). This allows the injected
code run in kernel mode and obtains its memory page address
allocated by the kernel. [20], further, uses /dev/kmem to inject a
second code (code 2) in the memory page to enable any kernel
function execute from user space; this replaces the allocated ad-
dress (used by syscall 0 and referencing the injected code inside
the kernel) with the address of code 2 (newly injected code). By
these modifications, syscall 0 semantic is altered such that when-
ever syscall 0 is called, code 1 address (rather than the default
function’s address) runs in ring 0 while code 2 collects what-
ever command or parameters transmitted between the process
kernel’s stack and syscall 0. Once these parameters are met, the
required function can be called, paving the way for [20] to in-
filtrate the compromised system’s user space with the rootkit’s
schema.

Concealing The Kernel Rootkit. Two methods - online or offline,
can be employ to conceal this rootkit; however, [20] focuses on
online (while the system is connected and running) techniques
in this work as the subject systems (smartphones) are mostly on-
line. Two approaches can be used for this method; subverting
virtual memory allocation (VMALLOC) which is enforced in
Linux based on memory management unit (MMU), or alterna-
tively, to modify MMU Control Bits. [20] dwells more on sub-
verting VMALLOC as the essence is to basically demonstrate
how this rootkit can be concealed in the compromised system.
Subverting VMALLOC: Linux uses VMALLOC as a dynamic
memory allocation function for virtual memory allocation [24].
[20], by this approach, enter the kernel space, and allocate and
loads malicious code into a memory page using VMALLOC
non-contiguous memory allocator. Now, MMU holds process ad-
dresses that come with Page Global Directory (PGD). A mech-
anism called Context Switching individually loads these ad-
dresses during every context switch process, thereby separating
processes such that they do not interact with each other. X86
architecture basically reserves about 4GB interval in ring 0 for
kernel linear address space which are linked to the same physical
addresses, irrespective of the process; note that there is a unique

address space for every process. The memory page that holds
the malicious code also has a linear address, and it is stored in
an area allocated for VMALLOC address space. Between adja-
cent or immediate pages of the linear address space and physical
pages in this area, linear addresses must not match a correspond-
ing physical address unlike the rest of the address space in the
kernel. Thus, [20] uses VMALLOC to book two physical mem-
ory pages. One of the pages is loaded with malicious code while
the other is left empty. We will assign lm as linear address for the
malicious page, and pm as its physical address. We will also as-
sign le as linear address for the empty page, and pe as its physical
address. Now, [20] triggers this process to allocate the memory
pages by accessing the primary PGD, searches for lm so as to
acquire pm. The same process is repeated for le and pe. As soon
as pm and pe are acquired, the process switches them (pm with
pe) in the primary PGD entry, and modifies its own PGD to syn-
chronise with the updated primary PGD (see Figure 7)This gives
the process exclusive and uninterrupted access to the malicious
page.
Activating The Backdoor: Even though this rootkit is a kernel
rootkit, [20] does not necessarily require root privileges to exe-
cute it as it can be implemented from user space. Two backdoors
can be implemented for the rootkit; one for local deployment
and the other for remote deployment. Local Backdoor: [20] ac-
tuates the backdoor by disconnecting and concealing the kernel
thread, so it becomes hidden in /procfilesystem’s thread list, and
further remain undetected by any system activity tool. [20] uses
signals in user to interact with the kernel thread, which means the
thread is referenced in a hash table - this hash table is used dur-
ing inter-process communication; hence its concealment is only
partial. Using a set signal handler, the thread is able to respond
to any signal transmitted from the user space by locating its cor-
responding transmitter within the list of user processes, and up-
dating system call 0’s address to code 2 address. Alternatively,
[20] can block communication between the thread and the hash
table and set it to non-permanent sleep mode in the processes
lists. This way, user space is not able to communicate with the
thread anymore, and because the sleep mode is also periodic, the
thread occasionally scans and locates the corresponding process
descriptor among a set of process descriptors, then updates sys-
tem call 0’s address with code 2’s address, and loads code 2 into
the process. Remote Backdoor: Much of the conniving and con-
cealing process is implemented within the compromised system.
This does not imply that [20] cannot deploy a backdoor that fa-
cilitates remote access to the system; this mechanism, however,
may require some form of authentication. The rootkit logic is re-
motely processed on [20]’s system and deployed on the compro-
mised system via syscall-proxy (a command that enables system
call execution over the network [42]); syscall-proxy is loaded
in a compromised local process. Alternatively, [20] can employ
a mechanism called mobile parasitism. This parasitic algorithm
is stealthily executed in the compromised system via kernel pro-
cesses or threads. [20] loads malicious code into the kernel mem-
ory of the compromised system. The loaded code modifies the
memory to make the thread execute this code, and infest the ker-
nel threads or processes with some parasitic loop. This mech-
anism is further developed, but we do not extend our research

4

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Fig. 6. Process kernel stack and process descriptor location.

Fig. 7. VMALLOC subversion process in the MMU.

beyond this point. Deploying Services: With the aid of the back-
door, [20] is empowered by the rootkit to infiltrate the compro-
mised system in so many ways without detection. Disconnecting
processes and threads from core kernel structures as illustrated
in the local backdoor limits system kernel - thread interaction,
which further conceals [20]’s malicious activity in the kernel of
the compromised system. With mobile parasitism mechanism,
[20] is able to remotely maintain stealthy malicious deployment
using the loop algorithm thereby extending the infestation pro-
cess on kernel threads.

2.2 Limitation of this Design
As earlier stated, this design is aimed at basically demonstrat-
ing one of the many ways a kernel rootkit can be conceived, de-
ployed and concealed. Other authors would implement their de-
sign with more sophistication, depending on what their motive
and objective is. This design, though operational, does not come
without limitations. The kinds of limitations in every design also
depend largely on the sophistication of the design.

One way this rootkit presence can be compromised is through
monitoring the user space - kernel process interaction. System
call 0 is a core kernel process, but [20] calls it from user space
which is not normal system behaviour. As long as the system
administrator can trace this behaviour, there is a chance that
this rootkit will be compromised.

Linux kernel 2.6 comes in different versions; this design may not
be compatible with the kernel structure of some (especially
newer or updated) versions.

The technique employed to subvert VMALLOC (using its non-
contiguous memory allocator) can be time consuming and
equally strain the processor.

These backdoors can only work when [20] is actively in the sys-
tem or remains connected to the system.

Corrupting multiple kernel processes or threads (as done by mo-
bile parasitism) risks exposing this rootkit presence.

The Linux kernel rootkit experiment demonstrated here is an in-
dication that Android (which is based on Linux kernel) could
also be vulnerable to this rootkit. As mentioned earlier, the de-
sign is particularly deployed on Linux kernel V2.6 - same kernel

with Android. In the next section, we discuss possible ways of
preventing or mitigating these rootkits.

3. ROOTKIT PREVENTION, DETECTION AND
CORRECTION

Rootkits, in all their complexity and sophistication, do not exist
without a fight from operating system owners and anti-malware
producers. As the trend shifts from conventional to more so-
phisticated rootkit operation techniques, mobile operating sys-
tem manufacturers also seek out more improved and advanced
ways of securing their operating systems from imminent and/or
potential attacks. OHA’s Android, one of the leading mobile op-
erating systems in use today, is constantly reviewed and updated
to beat the increasing security challenges faced today [6][17][9].
Anti-malware producers like McAfee, Kaspersky and Anti-Virus
Guard (AVG), among others, have continued to explore all pos-
sible system vulnerabilities and rootkit attack techniques with a
view to update their databases as well as offer maximum pro-
tection to system (especially smartphones) users via their anti-
malware solutions. While absolute protection from attacks is
never guaranteed, anti-malware software in use today are also
empowered to mitigate the harm rootkits can cause on a compro-
mised system. Despite these efforts, attackers are still able to find
vulnerabilities as a result of the increasing complexity that comes
with every operating system upgrade. The operational techniques
of rootkits make them a very big challenge on compromised sys-
tems because they become very difficult to detect and mitigate or
remove. In this section, we consider possible ways of preventing
rootkit attacks, as well as techniques of detecting and correcting
attacks on a compromised system - with emphasis on Android.

3.1 Prevention
According to Jack Wallen, prevention is possibly the best protec-
tion against rootkits [43]. Schultz and Ray in [34] maintain that
preventive measures ensure optimal protection for the system as
a compromised system will be subjected through detective and
corrective measures; which do not always restore the system’s
integrity. We discuss various possible methods to ensure maxi-
mum prevention of rootkit attacks. These methods are grouped

5

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

into Manufacturer and Developer roles, User roles, and Third
Party roles.

3.2 Developer Roles
Developer here include OS developers, developers of Applica-
tions (third party applications not included), and developers of
security infrastructure (such as Google). These are responsible
in ensuring the operating system is as secured as possible before
it is released into the market. From the technical point of view,
Android Team has continued to follow-up on their product with
constant improvements. Much, however, remains to be done on
their governing policies.

Ownership And Control. Rootkits largely rely on the user’s ac-
tion to activate themselves on a smartphone. Normally, they
would attach themselves to applications (usually applications
that run with major system privileges) and prompt the unsus-
pecting user for activation. As soon as the user enables or in-
stalls the application, the rootkit becomes active in the device.
Android operates an open policy which gives the end-user a lot
of privileges. This enables the user make major decisions and
changes on their system, including what application to activate.
A lot of these decisions and changes, unknown to the user, have
security implications. With such control by the user, the Android
Team can only exert absolute control over their product prior to
it getting into the hands of the end-user. Once it gets to the user,
Android Team’s control becomes subject to the user’s consent.
Even though, this seems to be a deliberate attempt by Google to
ensure Android is more user friendly, it has not really guaranteed
the user’s safety. Google sometimes uses Remote Kill Switch to
remotely revoke and disable or uninstall malicious applications
on android powered devices [3], this technique may have little or
no effect as the rootkit would have already achieved its intended
objective on the smartphone. We therefore propose that by reduc-
ing some of these privileges, Google will be able to gain more
control over their product even when it is out in the market, and
reduce the increasing incidences of rootkit attacks. This can be
achieved by withdrawing most of the privileges available to users
and allowing users only have access to privileges that have less
security implications.

User Awareness And Orientation. According to Toyssy and He-
lenius [40], malwares (including rootkits) largely spread via so-
cial engineering. The user accepts and installs malwares dis-
guised as games or other applications without knowing it. Toyssy
and Helenius suggest that educating users on the risks associated
with installing suspicious applications would reduce the spread
of mobile malware. This, however, is only being researched and
not yet implemented. On the technical side, Android Security
Team and Google’s Information Security Engineering Team are
each saddled with individual responsibilities to monitor Android
for possible vulnerabilities before and when it is already released
into the market. While this system helps OHA maintain a close
check on attacks, it still does not prevent attacks from happening.
This strategy from OHA does not really prevent rootkits from
attacking Android smartphones as attacks still largely depend on
the user’s permission [40]. OHA can create special programmes
targeted at educating their users on the dangers of rootkits, ways
they use in attacking, and what the user needs to do to avoid be-
ing vulnerable, both organisations would achieve more in secur-
ing the user as well as their products. This programme would in-
form users on safe surfing habits, common techniques employed
by attackers, common rootkit behaviour in a compromised sys-
tem. This approach does not guarantee an end to rootkit attacks;
however it can help the user protect guard against imminent at-
tacks. Unfortunately, the average user wants to explore the ca-
pabilities offered by the smartphone with little attention to the
security implications associated with these features. Thus, both

companies may want to explore the best approach to get users to
subscribe to this programme.

Admission Control. As earlier mentioned, rootkits conceal
themselves in applications and attack as soon as the user acti-
vates the application on their device. While it is difficult for such
applications to go through Android Market Place without being
detected, it does not prevent the user from having access to them.
Installing third party applications on smartphones can be moni-
tored and checked by ensuring that all third party applications
are subjected through a standard vetting system that checks for
digital signature conformity and application source [3]. This sys-
tem could be incorporated as a function into the operating system
and/or enforced during the process of download.

Kernel Freeze. Deep Freeze is created by Faronics and is
presently available for Microsoft, Mac and Linux powered com-
puter systems. It is designed to enable systems revert to pristine
configuration after restart, thus securing the core and configura-
tion files of operating systems. This means whatever changes that
are made on the system including installations, whether done in
error or intentionally, is only temporal [7].
We propose that a similar operational technique called Kernel
Freeze be incorporated into mobile OS kernel; especially for An-
droid kernel. By our proposal, Kernel Freeze (see Figure 1.7)
will be a function in the kernel, and will require the operating
system to restart after every new installation on the system. Af-
ter the restart, whatever changes that were made in the kernel
will revert to the original configured state. This way, both the
system kernel and the application sandbox will remain immune
to changes made during installations; any kernel rootkit installed
during application installation will be erased as soon as the Ker-
nel Freeze function restarts the system. This function will only
work at the kernel level as implementing it at the user level may
result to loss of user’s personal data and information.

3.3 User Roles
Like the operating system manufacturer and application devel-
opers, the users also have responsibilities in preventing rootkit
attacks. The user, according to [40], largely determines the suc-
cess of rootkit attacks as he or she must consent either con-
sciously or unconsciously. While the manufacturer is expected
to educate the user on the dangers of and ways to avoid rootk-
its, the user is required to apply precautionary measures. Social
Engineering: Rouse, M [30] defines social engineering as non-
technical means of invasion that largely depend on social inter-
action and is based on deception that results in compromising
security standards. Through social media networks, smartphone
users are deceived into exposing their private and confidential in-
formation; the attacker takes advantage of their natural vulnera-
bilities to gain their trust and exploit them. Heary, J. in [15] iden-
tified popular social engineering techniques employed by attack-
ers to include familiarity with potential victims, hostile attitude
to evade interrogation, facts about the target to capture their at-
tention, reading and exploiting the target’s body language. While
a lot of security experts recommend social awareness and train-
ing on social engineering techniques for users, we also suggest
personal discipline and discretion towards personal privacy at all
times. Users need to realise the value and worth of the kind of
information they reveal via smartphones, and the consequences
of having such information compromised. This training could
focus on such areas as those highlighted in the next topic (In-
stallations). The challenge with social engineering, however, is
more due to human nature rather than a technical issue; which
makes it quite difficult to tackle as human beings tend to react
differently based on their intuition and instincts. Social engineer-
ing definitely cannot be stopped, but with a better understanding,
users would apply more discretion towards the kind of informa-
tion they reveal over their smartphones and whom they reveal

6

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

Fig. 8. Kernel Freeze revert system kernel to the pristine state after restart.

the information to. Installations: Android users are more secured
when they download applications from the Android market Place
than using external sources. This is because the user may not
be able to identify trusted or secured sites. During installations,
users may also need to be careful about the permission requests
they approve as some have security implications [28]. Users need
adequate knowledge about any third-party application before in-
stalling it on their smartphone. It is the user’s responsibility to
have a good anti-rootkit solution running on their smartphone.
Popular anti-rootkit producers today include Kaspersky, AVG
and Panda, among others.

3.4 Third Party Roles
There is a need for a controlled third-party application market
that acts as a vendor repository where third party applications
(including extensions) are subjected through a vetting process
before they are admitted [3]. This means smartphone applica-
tion vendors, especially for Android, will be required to adhere
to secure coding principles [27] and privacy policies [28]. OHA
control policy does not include exerting total control over the ap-
plication market as it may affect Android’s scalability, this comes
at the cost of user security as the policy relies on the end-user to
perform the vetting through his/her interaction with third-party
developers.

3.5 Detection and Correction
Butler and Hoglund in [16] observed that the same preven-
tion mechanisms employed against rootkits are also available
to rootkit developers and so, blocking an attack does not nec-
essarily mean completely preventing intrusions as in the end, it
depends on who (between the rootkit and the prevention mech-
anism employed) gains access to the system first. And because
today’s rootkits are constantly increasing in sophistication, de-
tection and correction have become somewhat an uphill task.
There is no known best method for correcting a rootkit at-
tack because, somehow, every method has a form of weakness
that rootkit authors always seem to find their way around. Ker-
nel level attacks, for instance, may best be corrected by com-
pletely re-installing the smartphone’s operating system; but this
may also render the device useless especially when not prop-
erly done. Several approaches have been employed (and more
still been researched and proposed) to detect and remove rootkits
from compromised systems. Butler and Hoglund in [16] further
group these approaches as Rootkit Presence-based Detection and
Rootkit Behaviour-based Detection. We will discuss them in the
following sections.

3.6 Presence-Based Detection
This approach involves searching the operating system for
rootkit images as earlier rootkits based their attacks on the op-
erating system files. With rootkits advancing their attacks from
file systems to hardware such as BIOS and system memory,
there was a need to upgrade from just offering software-based

detection to including hardware-based detection as well [16].
Presence-based detection is employed when an intrusion is con-
firmed. Such methods as File Integrity Checks, Memory/Kernel
Debugging, and offline checks are either combined or used indi-
vidually in identifying and isolating the rootkit.

Offline Checks. Butler and Hoglund believe that offline checks
produce the best results in detecting rootkits on a compromised
system [16]. The ability of a rootkit to remain immune and un-
detected is only possible when the host (operating system) is
running; thus, shutting the operating system down is the best
way to compromise the rootkit’s immunity [26]. The compro-
mised system is switched off and re-booted via an alternative but
trusted source such that the ’victim system’ is accessed as a sec-
ondary system or inactive device (slave). This way, the rootkit is
rendered inactive as the operating system where it resides is no
longer running, and the operating system or file system is then
examined to determine the extent of the damage as well as possi-
ble restoration. This method may not be suitable for smartphones
as users always need them on; shutting them down could result
to denial of service because their ability to communicate at that
moment will be grounded. Performing this diagnosis on them
while they are still running is possible but may result in com-
promising the trusted system as the rootkit will still be active
and so, could evade detection, and attack and compromise the
system. More so, smartphones are usually connected to such sys-
tems (in this case, computer systems) via USB ports which limits
access to some of the phone’s configuration files especially the
kernel’s dynamic file system [4]. While smartphone users may
be more concerned with access to both service and communi-
cation, security should be a priority as a compromised system
cannot guarantee secured access. The success of this method,
however, depends on the type of rootkit attack; it may not be a
viable solution for kernel level rootkits. Memory/Kernel Debug-
ging: This method involves diagnosing the system memory or
kernel memory (depending on the attack level) through system
memory or kernel memory dumps. Memory Dump refers to the
visual display and backup of memory contents to enable diag-
nosis in the event of system or application failure [18]. Foren-
sic analysis, testing and debugging is performed on the system
files, or kernel to reveal memory data and code (including pass-
words), and other activities including any malicious existence
in the memory [25]. System memory dump is either complete
include the entire physical memory contents, or mini includes
loaded device drivers, current processes, parameters, among oth-
ers. Kernel memory dump only contains read/write pages in the
kernel-mode [13]. Generally, memory dump enables the system
administrator access vital information about the system and in-
stalled programs in a previously pristine state [18]. This enables
specialists diagnose and identify existing rootkits. Due to the
complexity of this method, it is best performed offline and by
specialists; this may also result in denial of service when applied
on smartphones hence this method best works when the system
is offline. However, [37] reveal that another approach to detect
such rootkit (especially if they reside in the hardware) while the

7

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

system is still running, and not having to reboot the system af-
terwards, is by bypassing the upper layers including the kernel,
and examining the underlying hardware itself.

File Integrity Checks. This method requires a Personal Com-
puter (PC) and is time consuming. Basically, a rootkit detec-
tion and file synchronization software is installed on the PC and
initiated to access and carry out file integrity checks on con-
nected smartphones by navigating through and manipulating the
phone’s file system [10]. This allows the software on the PC to
download and scan the files on the smartphone for malicious
codes, and isolate compromised files which are either restored or
deleted (depending on the level of infection). Compromised files
are identified by comparing hash functions form codes in their
pristine state created and stored on the PC with the hashes from
the downloaded files from the smartphones [10]. Both hashes are
compared to determine if any modifications have been made on
the file downloaded from the phone. This process may consume
battery life due to the amount of time involved in downloading
and scanning all files, however, this can be minimized if the soft-
ware only downloads and scans only modified files. This method
may not be very effective against a kernel-level rootkit as such
rootkit has the tendency to disguise itself as the operating system
thereby manipulating hash queries to evade any detection.

3.7 Behavior-Based Detection
This is a cautionary approach employed to monitor system per-
formance against rootkit-like activity in smartphones. It is very
powerful as it exposes the rootkit in its disguised state as well
as its attack objective [16]. Such methods as Heuristics De-
tection, Signature-Based Detection and Analysis Detection are
behaviour-based.

Signature-Based Detection. This is a major method employed
by most anti-rootkit solutions in detecting rootkit behaviour on
compromised systems. Most anti-malware solution vendors keep
an updated database of coded signatures of known malware, in-
cluding rootkits. During a system scan, the anti-rootkit software
cross-indexes its database signatures with those of the system
files to check for similarities or regular patterns [30]. Files whose
signature codes match are marked as suspected or compromised
files, and are either quarantined or disinfect or deleted. The chal-
lenge with this method is the new trend where rootkit authors
now use polymorphic and metamorphic codes to evade such
detection [5]. Polymorphic codes come in two parts; the orig-
inal algorithm remains unchanged at the background while the
other code part mutates whenever it runs. Metamorphic codes,
on the other hand, dynamically change during every iteration
making them appear as different programs running while it is
actually one program appearing as many. Both codes, especially
metamorphic codes, have increased the complexity of emerging
rootkit thereby making it more difficult for them to be easily de-
tected by anti-malware solutions. To combat such complexity,
Rouse in [30] recommends the use of Heuristic Analysis - an
advanced method that involves Virtual Systems and Generic De-
cryption. Graph isomorphic test, another detection method ap-
plied for polymorphic codes, is able to detect polymorphic code
structures even when executed at different times and levels (in-
cluding system kernel) especially because the original algorithm
holding its structure does not change [29].

Heuristic Analysis. Signature-based detection is only effective
against malware whose signature codes match those in the anti-
malware solution database [33]. Due to this weakness with
signature-based detection, anti-malware authors added a proac-
tive feature commonly referred to as Heuristic Analysis tech-
nique which enables anti-malware programs detect previously
unknown malware threats (even if it is not found in their
databases). Heuristic Analysis in use today largely depend on

rule-based mechanisms - a system that compares extracted file
rules with malicious code rules and triggers when it identifies
matched rules [39]. However, an older weight-based mecha-
nism (an approach that calculates and measures detected weight
against a standard threshold) is sometimes used or combined for
better results [32][31]. This technique can be implemented via
Virtual Systems and Generic Decryption. We discuss these im-
plementation methods below.
Virtual Systems: The use of virtual machine based rootkit detec-
tion is gradually gaining prominence especially as it promises
efficient rootkit detection for smartphones. This method offers
an isolated environment running concurrently with the authen-
tic operating system on the same smartphone. Anti-rootkit so-
lutions run on the virtual environment and, occasionally access
and scan/analyse the smartphone’s memory for malicious activ-
ity and file structure integrity. This process is quite intensive and
drains battery life which is why solutions like Gibraltar rootkit
detection system that frequently collects and scans kernel mem-
ory snapshots for advanced rootkits via kernel data structure
modifications can be re-configured to reduce its scan frequency;
this, of course, does not guarantee better security even though
battery life is improved [2][4]. Generic Decryption: Generic de-
cryption is generally employed for polymorphic and/or meta-
morphic malware. This process is deployed via a scanner that
uses generic encryption methods to monitor and analyse sys-
tem files in an isolated and controlled virtual environment [44].
This way, any malicious program infecting a file is exposed to
the scanner as it decrypts during the file execution. Earlier ver-
sions of generic decryption had speed limitations; however, the
reviewed version is heuristic-based. Rather than scan and analyse
all files, it checks for inconsistencies and variations in programs
and file behaviour; programs or files exhibiting such behaviour
are isolated, monitored and analysed in the controlled virtual en-
vironment until the decrypt exposing the malware [44].

4. CONCLUSION
We explored the evolution and operational techniques of mobile
rootkits. At the user space, mobile rootkits could be easily con-
tained due to the application processes isolation mechanism im-
plemented on Android. On the other hand, kernel rootkits are
presumably very dangerous and destructive. Because they are
able to manipulate and change the kernel structure, their presence
in any system compromises the core of the operating system. We
further demonstrated the architecture and design of a mobile ker-
nel rootkit designed for deployment on Linux 2.6 kernel. In the
design (extracted from [20]), we showed how, with two sepa-
rate codes, [20] could inject and run a rootkit in the kernel mode
from the user space. By subverting the VMALLOC, the rootkit
was able to manipulate the system?s memory management ad-
dressing scheme to enable it conceal itself. We also showed how
[20] created local and remote backdoors to facilitate sustained
connection with [20]’s system (whether locally or remotely), as
well as deployment of the rootkit services on the compromised
system. Though operational, we identified limitations in this de-
sign which could enable the system administrator or users detect
and compromise the rootkit presence. Among such limitations
was the fact that the rootkit ran from the user space, and con-
straint with different kernel versions. We also discussed protec-
tive measures against these rootkits for smartphone users, high-
lighting roles for developers (both OS and Application develop-
ers), Operator Equipment Manufacturers and users in the fight
against rootkits. Reducing privileges available to users, enforc-
ing user awareness and orientation systems, guarding against so-
cial engineering methods, using anti-malware solutions, and per-
sonal discipline, are ways users can be secured from these at-
tacks. Our proposed kernel freeze system, if implemented, would
secure the OS kernel from any rootkit installation. Enforcing
proper admission control over third-party developers, the An-

8

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

droid market place would also limit infiltration of rootkit deploy-
ment from malicious developers. Preventing a rootkit attack is
always the most secure protective measure, but considering the
increasing complexities that accompany emerging rootkits as re-
lating to mobile OS upgrades, it is not always possible to prevent
such attacks. Due to this fact, we explored detective measures
for incidences of infections or as proactive steps against attacks.
Popular measures like offline and file integrity checks, mem-
ory/kernel debugging, heuristic analysis, and signature-based de-
tection have been employed in detecting rootkits on systems;
though some are not very efficient on mobile platforms. Thus,
the possibility of overcoming the rootkit menace is largely de-
pendent on the ability of industry players, including developers
and OEMs, to adhere to required operational standards and insti-
tuted security policies. There has to be a compromise on financial
gain for a more secured environment where the end-user’s safety
and trust are the priority. This will not stop rootkit authors from
releasing more rootkits though, but it will minimize the success
rate of their attacks.

5. RECOMMENDATION
The rootkit demonstration in section 3, as earlier stated, is aimed
at basically showing how it can stealthily attack and compro-
mise a system’s kernel. More complex rootkits would not only
subvert the system call 0 from the user space, but directly run in
the kernel space. This is more dangerous and difficult to detect.
Thus, there is a greater need to secure the kernel (in this case, the
Linux kernel) from any form of rootkit attack, whether locally or
remotely. Kernel freeze mechanism will not only restore the ker-
nel to its pristine state, but will also ensure that the core of the
OS remains in its default mode. Attackers will definitely want to
compromise the restore mechanism by attacking the freeze func-
tion. Thus, we recommend that further research be carried out on
how to restrict access to the freeze mechanism from developers.
During our investigation, we discovered that very little or no re-
search focused on implementing this mechanism on the mobile
kernel has been done. Thus, we also recommend that implement-
ing the results on the Linux kernel be the focus of this research.
This requires the inclusion of the freeze function in the kernel;
either by OEMs or developers (especially Android developers).
User awareness and orientation programmes that enlighten users
on the consequences that accompany their control and decisions
made on their smartphones will not only make them more con-
scious of their security needs, but will also help them apply these
privileges wisely. As part of the device activation process, an in-
teractive session (basically titbits) on the user’s role in ensuring
maximum security on the device can be included to run while the
user activates the device.

6. REFERENCES

[1] Rootkit Analytics. Kernelland rootkits. Available at
http://www.rootkitanalytics.com/kernelland/
linux-kernel-rootkit.php (2013/12/09).

[2] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Detect-
ing kernel-level rootkits using data structure invariants. De-
pendable and Secure Computing, IEEE Transactions on,
8(5):670–684, 2011.

[3] David Barrera and Paul Van Oorschot. Secure software
installation on smartphones. IEEE Security & Privacy,
(3):42–48, 2010.

[4] Jeffrey Bickford, Ryan O’Hare, Arati Baliga, Vinod Gana-
pathy, and Liviu Iftode. Rootkits on smart phones: at-
tacks, implications and opportunities. In Proceedings of the
eleventh workshop on mobile computing systems & appli-
cations, pages 49–54. ACM, 2010.

[5] A. Bridgewater. What is signature based detection.
Available at http://www.blogs.avg.com/business/
signature-based-detection/ (2013/09/30).

[6] Andriod Community. Security. Available at http:
//www.source.android.com/security/index.html
(2016/02/20).

[7] Faronics Corporation. Faronics deep freeze enterprise:
User guide. Available at http://www.faronics.com/
assets/DFE_Manual.pdf (2013/09/12).

[8] P Bovet Daniel and Cesati Marco. Understanding the linux
kernel. Sebastopol, CA, US, OReilly, pages 500–800, 2005.

[9] Nokia Developer. Windows phone platform security.
Available at http://www.developer.nokia.com/
Community/ (2013/08/28).

[10] Bryan Dixon and Shivakant Mishra. On rootkit and mal-
ware detection in smartphones. In Dependable Systems and
Networks Workshops (DSN-W), 2010 International Confer-
ence on, pages 162–163. IEEE, 2010.

[11] Manu Garg. Sysenter based system call mechanism in linux
2.6, 2006.

[12] Hoglund Greg and B James. Rootkits: subverting the win-
dows kernel. H. Greg, & B. James, Rootkit Detection, pages
295–312, 2005.

[13] C.C. Hameed. Understanding crash dump files.
Available at http://www.blogs.technet.
com/b/askperf/archive/2008/01/08/
understanding-crash-dump-files.aspx
(2013/09/26).

[14] Jie Hao, Yu-Jie Hao, Zhi-Jian Ding, and Lin-Tao Song. A
methodology to detect kernel level rootkits based on de-
tecting hidden processes. In Apperceiving Computing and
Intelligence Analysis, 2008. ICACIA 2008. International
Conference on, pages 359–361. IEEE, 2008.

[15] J. Heary. Top 5 social engineering exploit techniques.
Available at http://www.pcworld.com/article/
182180/top_5_social_engineering_exploit_
techniques.html (2013/09/13).

[16] Greg Hoglund and James Butler. Rootkits: subverting the
Windows kernel. Addison-Wesley Professional, 2006.

[17] IDC. Idc press release. Available at http://www.
idc.com/getdoc.jsp?containerId=prUS24108913
(2013/08/01).

[18] C. Janssen. Memory dump. Available at http://www.
techopedia.com/definition/20663/memory-dump
(2013/09/26).

[19] Sungkwan Kim, Junyoung Park, Kyungroul Lee, Ilsun You,
and Kangbin Yim. A brief survey on rootkit techniques in
malicious codes. Journal of Internet Services and Informa-
tion Security, 3(4):134–147, 2012.

[20] Eric Lacombe, Frédéric Raynal, and Vincent Nicomette.
Rootkit modeling and experiments under linux. Journal in
Computer Virology, 4(2):137–157, 2008.

[21] H. Lang. Freebsd kernel rootkit design howtos -
4 - kernel and user space transitions. Available
at http://www.old.hailang.me/2012/06/10/
freebsd-kernel-rootkit-design-howtos---4---kernel-and-user-space-transitions/
(2013/08/27).

[22] Anthony Lineberry. Malicious code injection via/dev/mem.
Black Hat Europe, page 11, 2009.

[23] B. Martin. Types of rootkit viruses pre-
ventive measures. Available at http://www.
dailytipsndtricks.blogspot.com/2013/02/
types-of-rootkit-viruses-preventive.html
(2013/07/15).

9

http:// www.rootkitanalytics.com/kernelland/linux-kernel-rootkit.php
http:// www.rootkitanalytics.com/kernelland/linux-kernel-rootkit.php
http:// www.blogs.avg.com/business/signature-based-detection/
http:// www.blogs.avg.com/business/signature-based-detection/
http:// www.source.android.com/security/index.html
http:// www.source.android.com/security/index.html
http:// www.faronics.com/assets/DFE_Manual.pdf
http:// www.faronics.com/assets/DFE_Manual.pdf
http:// www.developer.nokia.com/Community/
http:// www.developer.nokia.com/Community/
http:// www.blogs.technet.com/b/askperf/archive/2008/01/08/understanding-crash-dump-files.aspx
http:// www.blogs.technet.com/b/askperf/archive/2008/01/08/understanding-crash-dump-files.aspx
http:// www.blogs.technet.com/b/askperf/archive/2008/01/08/understanding-crash-dump-files.aspx
http:// www.pcworld.com/article/182180/top_5_social_engineering_exploit_techniques.html
http:// www.pcworld.com/article/182180/top_5_social_engineering_exploit_techniques.html
http:// www.pcworld.com/article/182180/top_5_social_engineering_exploit_techniques.html
http:// www.idc.com/getdoc.jsp?containerId=prUS24108913
http:// www.idc.com/getdoc.jsp?containerId=prUS24108913
http:// www.techopedia.com/definition/20663/memory-dump
http:// www.techopedia.com/definition/20663/memory-dump
http:// www.old.hailang.me/2012/06/10/freebsd-kernel-rootkit-design-howtos---4---kernel-and-user-space-transitions/
http:// www.old.hailang.me/2012/06/10/freebsd-kernel-rootkit-design-howtos---4---kernel-and-user-space-transitions/
http:// www.dailytipsndtricks.blogspot.com/2013/02/types-of-rootkit-viruses-preventive.html
http:// www.dailytipsndtricks.blogspot.com/2013/02/types-of-rootkit-viruses-preventive.html
http:// www.dailytipsndtricks.blogspot.com/2013/02/types-of-rootkit-viruses-preventive.html

International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

[24] Naveen. Embedded linux. Available at http://www.
naveengopala-embeddedlinux.blogspot.co.uk/
2012/01/linux-kernel-programmingmemory.html
(2013/11/13).

[25] Nixcraft. Top 8 tools for search memory un-
der linux/unix [forensics analysis]. Available at
http://www.cyberciti.biz/programming/
linux-memory-forensics-analysis-tools/
(2013/09/26).

[26] PC Plus. How to discover hidden rootkits. Available
at http://www.techradar.com/news/computing/
pc/how-to-discover-hidden-rootkits-1095174
(2013/09/25).

[27] OWASP Mobile Security Project. Android. Available at
http://www.owasp.org/index.php/ (2013/09/17).

[28] Srikanth Ramu. Mobile malware evolution, detection and
defense. EECE 571B, Term Survey Paper, 2012.

[29] Rizwan Rehman, GC Hazarika, and Gunadeep Chetia.
Malware threats and mitigation strategies: A survey. Jour-
nal of Theoretical and Applied Information Technology,
29(2):69–73, 2011.

[30] M. Rouse. Social engineering. Available at
http://www.searchsecurity.techtarget.com/
definition/social-engineering (2013/09/23).

[31] M. Rouse. Trojan horse. Available at http://www.
searchsecurity.techtarget.com/definition/
Trojan-horse (2013/10/23).

[32] Imtithal A Saeed, Ali Selamat, and Ali MA Abuagoub. A
survey on malware and malware detection systems. Inter-
national Journal of Computer Applications, 67(16), 2013.

[33] Markus Schmall. Heuristic techniques in av solutions: An
overview. SecurityFocus. com, http://www. securityfocus.
com/infocus/1542,(Feb. 2002), 2002.

[34] E Eugene Schultz and Edward Ray. Rootkits: The ultimate
malware threat. Information Security Management Hand-
book, 2:175, 2008.

[35] Panda Security. Spam. Available at http://www.
pandasecurity.com/homeusers/security-info/
cybercrime/spam/ (2013/10/22).

[36] P. Shetty. Rootkits: Both sides of the backdoor. Available at
http://www.scf.usc.edu/~shettyp/rootkits.pdf
(2013/07/15).

[37] Tyler Shields. Survey of rootkit technologies and their im-
pact on digital forensics, 2008.

[38] Hamza Sirag, Nihant Bondugula, and Rishabh Gupta. Ad-
vanced persistent attacks: Bios rootkit-mebromi. 2011.

[39] T. Thomas. What is heuristic antivirus detection? Available
at http://www.internet-security-suite-review.
toptenreviews.com/premium-security-suites/
what-is-heuristic-antivirus-detection-.html
(2013/09/30).

[40] Sampo Töyssy and Marko Helenius. About malicious
software in smartphones. Journal in Computer Virology,
2(2):109–119, 2006.

[41] Truff. Infecting loadable kernel modules. Available
at http://www.linux-box.nl/~roeland/doc/
phrack61.pdf (2016/02/15).

[42] Unmarshal. Syscall-proxy. Available at http:
//www.github.com/unmarshal/Syscall-Proxy
(2013/11/15).

[43] J Wallen. Five tips for dealing with rootkits. Available at
http://www.techrepublic.com/blog/five-apps/
five-tips-for-dealing-with-rootkits/
(2013/09/02).

[44] Merrill Warkentin. Enterprise Information Systems Assur-
ance and System Security: Managerial and Technical Is-
sues: Managerial and Technical Issues. IGI Global, 2006.

[45] Webopedia. What is keylogger?

10

http:// www.naveengopala-embeddedlinux.blogspot.co.uk/2012/01/linux-kernel-programmingmemory.html
http:// www.naveengopala-embeddedlinux.blogspot.co.uk/2012/01/linux-kernel-programmingmemory.html
http:// www.naveengopala-embeddedlinux.blogspot.co.uk/2012/01/linux-kernel-programmingmemory.html
http:// www.cyberciti.biz/programming/linux-memory-forensics-analysis-tools/
http:// www.cyberciti.biz/programming/linux-memory-forensics-analysis-tools/
http:// www.techradar.com/news/computing/pc/how-to-discover-hidden-rootkits-1095174
http:// www.techradar.com/news/computing/pc/how-to-discover-hidden-rootkits-1095174
http:// www.owasp.org/index.php/
http:// www.searchsecurity.techtarget.com/definition/social-engineering
http:// www.searchsecurity.techtarget.com/definition/social-engineering
http:// www.searchsecurity.techtarget.com/definition/Trojan-horse
http:// www.searchsecurity.techtarget.com/definition/Trojan-horse
http:// www.searchsecurity.techtarget.com/definition/Trojan-horse
http:// www.pandasecurity.com/homeusers/security-info/cybercrime/spam/
http:// www.pandasecurity.com/homeusers/security-info/cybercrime/spam/
http:// www.pandasecurity.com/homeusers/security-info/cybercrime/spam/
http:// www.scf.usc.edu/~shettyp/rootkits.pdf
http:// www.internet-security-suite-review.toptenreviews.com/premium-security-suites/what-is-heuristic-antivirus-detection-.html
http:// www.internet-security-suite-review.toptenreviews.com/premium-security-suites/what-is-heuristic-antivirus-detection-.html
http:// www.internet-security-suite-review.toptenreviews.com/premium-security-suites/what-is-heuristic-antivirus-detection-.html
http:// www.linux-box.nl/~roeland/doc/phrack61.pdf
http:// www.linux-box.nl/~roeland/doc/phrack61.pdf
http:// www.github.com/unmarshal/Syscall-Proxy
http:// www.github.com/unmarshal/Syscall-Proxy
http:// www.techrepublic.com/blog/five-apps/five-tips-for-dealing-with-rootkits/
http:// www.techrepublic.com/blog/five-apps/five-tips-for-dealing-with-rootkits/

	INTRODUCTION
	Rootkit on the Linux Kernel
	Kernel Rootkit Analysis
	A Functional Rootkit Architecture

	THE KERNEL ROOTKIT DESIGN OBJECTIVE
	The Kernel Rootkit Design
	Limitation of this Design

	ROOTKIT PREVENTION, DETECTION AND CORRECTION
	Prevention
	Developer Roles
	User Roles
	Third Party Roles
	Detection and Correction
	Presence-Based Detection
	Behavior-Based Detection

	CONCLUSION
	RECOMMENDATION
	References

