International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA

Volume 10 - No. 8, April 2016 - www.ijais.org

Advanced SQL Query To Flink Translator

Yasien Ghallab Gouda
Full Professor
Mathematics and Computer Science Department
Aswan University, Aswan, Egypt

ABSTRACT

Information in the digital world, data play an important role in
most of Computer Engineering applications. The increasing of data
has been more difficult to store and analyze data using the tradi-
tional database. Apache Flink is a framework to Big Data Ana-
lytics in the large cluster. SQL-likes Query set of rules for make
an interface between the user and big database, so very need to
SQL To Flink translator that allow the user to run Advanced SQL
Query top Flink without need writing JAVA code to reach their
request, and also, Complex SQL Query in Flink is limited scal-
ability. 2. In this paper, the system is devolved to run top Flink
without changing in Flink framework. This system calls, Advanced
SQL Query To Flink Translator This proposed system receives Ad-
vanced SQL Query from the user then generate Flink Code for exe-
cuting this Query. Finally, it returns the results of Query to the user.

General Terms:

SQL Query, Apache Flink

Keywords

Big data, Flink, SQL Translator, Hadoop, Hive, Advanced SQL
Query

1. INTRODUCTION

The size of data in the world has been exploding, and analyzing
large data sets so-called Big Data.

The Big Data is huge and complex datasets consisting of a dif-
ferent structured and unstructured data which becomes difficult
to store and analysis using traditional techniques database [8].
Big Data requires frameworks to analyze and process datasets
such as Hadoop, MapReduce, and Flink.

The Apache Hadoop is open-source software for reliable, scal-
able, distributed computing runs on distributed cluster. It is de-
veloped by Google MapReduce framework [2]]. Hadoop consists
of HDFS and MapReduce that have a good Load Balance Tech-
nique [13}[9].

MapReduce is a programming model for processing large data
sets in distributed cluster implementation by Google in 2004
which provides an efficient solution to the data analysis chal-
lenge.

The MapReduce framework requires that users implement their
applications by coding their map and reduce functions. While
this low-level hand coding offers a high flexibility in program-
ming applications, it increases the difficulty in program debug-
ging [3,112].

Apache Flink is an open source framework for distributed stream
and batch data processing run on distributed cluster. Flink core
is a streaming data flow engine that provides data distribution,
communication, and fault tolerance for distributed computations
over data streams. Flink also builds batch processing on top of
the streaming engine, overlaying native iteration support, man-
aged memory, and program optimization [1].

Apache Flink has some features the faster than Hadoop, provide
input and output of Hadoop and can run Hadoop programming.

Hager Saleh Mohammed
Researcher

Computer Science Department

Aswan University, Asawn, Egypt

Mohamed Helmy Khafagy
Assistant Professor
Computer Science Department
Fayoum University, Egypt

SQL-likes Query is some of the rules for makes interface be-
tween user and database and helps user for manages and retrieves
data from the big database. There are some translators provide
SQL Query that translator run above Hadoop such as Hive [16],
YSmart[12], S2mart [7]], and Qmapper [17].

So the translator is built run above Flink for executing Advanced
SQL Query because Advanced SQL Query in Flink is limited
scalability

The proposed system run above Flink without any change in
Flink structure. The proposed system translates Advanced SQL
Query to Flink Code for executing Advanced SQL Query on
Flink. The proposed system handles Query that contains some
keywords such as Where clauses contain (BETWEEN, AND,
OR), Sub Query in Where clauses contains IN, JOIN Types, OR-
DER BY operation, TOP operation, COUNT Aggregation and
Nested Query. Also proposed Technique facilitate many Algo-
rithms and technique to run above Flink [[15 5} 11} 16} [10]

The rest of the paper is organized as follows: Section 2 in-
troduces the related works of relevant systems. Section 3 de-
scribes the proposed system architecture and the proposed sys-
tem methodology. Section 4 represents the results of performed
experiments and comparison between the proposed system and
Hive. Finally, Section 5 concludes and the brief introduction to
future work.

2. RELATED WORK

In this section, an overview is introduced of related work pre-
sented so far:

2.1 Hive

Hive, is an open-source data warehousing solution built on top
of Hadoop. Hive supports queries expressed in an SQL-like
language called HiveQL. HiveQL transforms SQL query into
MapReduce jobs that are executed using Hadoop. HiveQL al-
lows users to create customs MapReduce scripts into queries.
HiveQL has same features in SQL [[16].

2.2 S2MART

Smart SQL to Map-Reduce Translators, Smart transforms the
SQL queries into Map-Reduce jobs besides the inclusion of
intra-query correlation by building an SQL relationship tree to
minimize redundant operations and computations and build a
spiral modeled database to store and retrieve the recently used
query results for reducing data transfer cost and network trans-
fer cost. S2MART applies the concept of views in a database to
perform parallelization of big data easy and streamlined [7]].

2.3 QMAPPER

A QMapper is a tool for utilizing query rewriting rules provides
a cost-based plan evaluator to choose the optimized equivalent
and MapReduce flow evaluation and enhanced the performance
of Hive significantly [17].

11

Foundation of Computer Science FCS, New York, USA

I‘ International Journal of Applied Information Systems (IJAIS) ISSN : 2249-0868

Volume 10 - No. 8, April 2016 - www.ijais.org

2.4 SQL TO FLINK Translator

SQL To Flink Translator is a tool built above Apache Flink with-
out effect in Flink structure to support simple SQL Queries. SQL
TO Flink Translator receives SQL Query from the user.Then
generates the equivalent code for this query that it can be run
on Flink. This translator has some limitations such as that SQL
to Flink translator cannot translate Advanced Query and can not
improve the performance for executing SQL Query [14].

3. ADVANCED SQL QUERY TO FLINK
TRANSLATOR

3.1 System Architecture

The central feature of the proposed system is executing the Ad-
vanced Query on Flink without write Java Code for executing
this Query on Flink. The system architecture is illustrated in Fig-
ure[T]that is divided into five phases:

The first phase, The proposed system receives SQL Query from
the user. Then Query parser checks SQL Query is correct.

The second phase, the proposed system extracts tables and
columns name from the input Query then recalls Java class
dataset for each table has only extracted columns.

The third phase, the proposed system extract some keywords
from SQL Query such as Where Clauses contain (BETWEEN,
AND, OR) keywords,Sub Query in Where clauses contains IN,
JOIN Types, ORDER BY operation, TOP operation, COUNT
Aggregation and detects Nested Query.

The fourth phase, the proposed system generates Flink Code that
executes the input Query.

The last phase, the proposed system executes the Flink Code and
returns the result to the user.

Where Clauses Contains |5
BETWEEN Operator
Where Clauses Contain | |
Extracts Table and AND\& OR Operators
Query Parser I
columns name SubQueryinWhere | |
Clauses Contains IN
saL —>| JOIN Types > Generate the Flink
Query] Code
Recalls Java Class _)l ORDER BY Keyword >l
each
—)| TOP Clause >
—)| COUNT Aggregation]
_>| NESTED Query >

Query Result Execute the Flink
Code

Fig. 1. System Architecture

3.2 Methodology

The proposed system translates Query from a user if Query has
Where clauses contain (BETWEEN, AND, OR) operators, Sub
Query in Where clauses contains IN, JOIN Types, ORDER BY,
TOP Clause, COUNT Aggregation and Nested Query.

Each case is explained to view how the proposed system is han-
dled each case.

3.2.1 Where Clauses Contains BETWEEN Operator. The BE-
TWEEN operator filter values within range. When the Query
Parser finds Where Clauses contains BETWEEN operator in in-
put Query such as (see Figure[2). Then the proposed system gen-
erates Flink Code by calling Filter function to executing input
Query and returns the result from it, (see Figure 3).

SELECT C_CUSTKEY, C_ADDRESS ,C_CITY FROM Customers
WHERE C_CUSTKEY BETWEEN 1 AND 50;

Fig. 2. SQL Query Contains BETWEEN Operator

DataSet<Customer3>
customer=getCustomerDataSet(env,mask);
customer = customer.filter(new FilterFunction<Customer>()
{ @Override
public boolean filter{(Customer c) {
return c.f0 >= 1 && c.f0 <= 50;}});

Fig. 3. BETWEEN Operator Flink Code

3.2.2 Where Clauses Contain AND & OR Operators . The
AND operator filters a dataset if all condition is true. The OR
operator filters a dataset if one condition is true. When the Query
Parser finds Where Clauses contains AND & OR operators in
input Query such as (see Figure f). Then the proposed system
generates Flink Code by calling Filter Function to executing in-
put Query and returns the result from it, (see Figure[5).

Customers WHERE C_MKTSEGMENT="AUTOMOBILE" OR

SELECT C_ADDRESS, C_CITY , C_MKTSEGMENT FROM
C_ADDRESS="MG9kdTD2WBHm" ;

Fig. 4. Query Contain OR operator

DataSet<Customer>
customer=getCustomerDataSet(env,mask);

customer = customer.filter{new FilterFunction<Customer>()
{ @Override public boolean filter(Customer c) {
if(logicoperation.get(0).toString().equals("and")) return
c.getField(1).equals("MG9kdTD2WBHmM") &&
c.getField(2).equals("AUTOMOBILE");

else return c.getField(1).equals("MG9kdTD2WBHm") | |
c.getField(2).equals("AUTOMOBILE");}});

Fig. 5. AND & OR Operators Flink Code

3.2.3 Sub Query in Where Clauses Contains IN Keyword. The
IN operator allows a user to add multi-values in Where Clauses.
When the Query Parser finds Sub Query in Where Clauses con-
tains IN in the input Query such as (see Figure[6).Then the pro-
posed system generates Flink Code by calling coGroup Function
and IN_Operator Custom Function to executing input Query and
returns the result from it, (see Figure[7).

Customers WHERE C_CUSTKEY IN (SELECT O_CUSTKEY from

SELECT C_CUSTKEY,C_NAME,C_MKTSEGMENT FROM
Orders);

Fig. 6. Sub Query in Where Clauses Contains IN Keyword

12

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 10 - No. 8, April 2016 - www.ijais.org

DataSet<Customer> customer=
getCustomerDataSet(env,maskcustomer); DataSet<Order>
order =getOrderDataSetsubquery(env,maskorder);

DataSet<Result> result =
customer.coGroup(order).where(0).equalTo(0) .with(new
IN_Operator());

Fig. 7. IN Keyword Flink Code

3.2.4 JOIN Types. SQL JOIN uses to combine rows from the
multi-table. There is Types of JOIN handles in the proposed sys-
tem.

—LEFT OUTER JOIN.

LEFT OUTER JOIN returns all rows from the left table with
matching rows in the right table and returns null values in the
right table if not match rows with the left table. When the
Query Parser finds LEFT OUTER JOIN in the input Query
such as (see Figure [§). Then the proposed system generates
Flink Code by calling CoGroup function and JoinType() cus-
tom function to executing input Query and returns the result
from it, (see Figure[9).

SELECT C_NAME, O_ORDERKEY,0_ORDERSTATUS FROM
Customers RIGHT LEFT JOIN Orders ON
Customers.C_CUSTKEY=Orders.O_CUSTKEY;

Fig. 8. LEFT OUTER JOIN Query

DataSet<Customer> customer =getCustomerDataSet(env,
maskcustomer);

DataSet<Orders> order=getOrdersDataSet(env,maskorder);
DataSet<Result> result =
order.coGroup(customer).where(0).equalTo(0)

.with(new JoinType());

Fig. 9. LEFT OUTER JOIN Flink Code

—RIGHT OUTER JOIN.
RIGHT OUTER JOIN returns all rows from the right table
with matching rows in the left table and returns null values in
the left table if not match rows with the right table. When the
Query Parser finds RIGHT OUTER JOIN in the input Query
(see Figure [I0). Then the proposed system generates Flink
Code by calling CoGroup function and custom function Join
Type() to executing input Query and returns the result from it,

(see Figure[TT).

SELECT C_NAME, O_ORDERKEY,0_ORDERSTATUS FROM
Customers RIGHT OUTER JOIN Orders ON
Customers.C_CUSTKEY=Orders.O_CUSTKEY;

Fig. 10. RIGHT OUTER JOIN Query

DataSet<Customer> customer =getCustomerDataSet(env,
maskcustomer);

DataSet<Orders> order=getOrdersDataSet(env,maskorder);
DataSet<Result> result =
order.coGroup(customer).where(0).equalTo(0)

.with(new JoinType());

Fig. 11. RIGHT OUTER JOIN Flink Code

3.2.5 ORDER BY Keyword. ORDER BY is used to sort results
by one column or multi-column, it sorts results in ascending or
descending order. When the Query Parser finds ORDER BY in
the input Query such as (see Figure[T2). Then the proposed sys-
tem generates Flink Code by calling sortPartion(Fileds number,
Order type) to executing input Query and returns the result from
it, (see Figure[T3).

SELECT C_CUSTKEY , C_ADDRESS , C_MKTSEGMENT FROM
Customers WHERE C_MKTSEGMENT="AUTOMOBILE" ORDER
BY C_CUSTKEY DESC;

Fig. 12. Query Contains ORDER BY Keyword

ﬁataSet<Customer> \
customer=getCustomerDataSet(env,mask);
customer = customer.filter(new
FilterFunction<Customer3>()
{ @Override public boolean filter(Customer c) {
return c.f2.equals("AUTOMOBILE") ;}});
customer= customer.sortPartition(0,

Qrder.DESCENDING).setParaIIeIism(l); /

Fig. 13. ORDER BY Keyword Flink Code

3.2.6 TOP Clause. TOP Clause is used to return the specified
number of rows. When the Query Parser finds TOP Clause in the
input Query such as (see Figure[T4). Then the proposed system
generates Flink Code by calling the first() function to executing
input Query and returns the result from it, (see Figure[T3).

SELECT TOP 10 C_CUSTKEY , C_ADDRESS , C_MKTSEGMENT
FROM Customers WHERE C_MKTSEGMENT="AUTOMOBILE";

Fig. 14. Query Contains Top Clause

13

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

DataSet<Customer3>

customer=getCustomerDataSet{env,mask);

customer = customer.filter(new

FilterFunction<Customer3>()

{ @Override public boolean filter(Customer3 c) {
return c.f2.equals("AUTOMOBILE") ;}});

customer=customer.first(10);

Fig. 15. Top Clause Flink Code

3.2.7 COUNT Aggregation. COUNT Aggregation used to re-
turn the number of rows in the result. When the Query Parser
finds COUNT Aggregation in the input Query such as (see Fig-
ure[T6). Then the proposed system generates Flink Code by call-
ing the count() function to executing input Query and returns the
result from it,(see Figure[T7).

SELECT COUNT C_CUSTKEY , C_ADDRESS , C_MKTSEGMENT
FROM Customers WHERE C_MKTSEGMENT="AUTOMOBILE;

Fig. 16. Query Contains COUNT Aggregation

6ata$et<€ustomer> \

customer=getCustomerDataSet(env,mask);
customer = customer.filter(new
FilterFunction<Customer3>()

{ @Override public boolean filter(Customer c) {
return c.f2.equals("AUTOMOBILE") ;}});

Long number_of_coulmn=customer.count();
System.out.printin(number_of_coulmn);

/

Fig. 17. Count Aggregation Flink Code

3.2.8 NESTED Query. When Query Parser finds sub-select in
the input query such as (see Figure[I8).Then the proposed system
generates Flink code to executing sub-select (see Figure[I9) and
then the proposed system generates Flink code to executing top
select depends on returns values from sub-select (see Figure [20).

SELECT C_CUSTKEY,C_NAME
FROM Customers WHERE C_MKTSEGMENT=(SELECT
C_MKTSEGMENT from Customers WHERE C_CUSTKEY<=20);

Fig. 18. Query Contain Sub Query

DataSet<Customer2> customer2
=getCustomerDataSetsubquery(env,mask1);
customer2 = customer2.filter(new
FilterFunction<Customer2>()

{@Override public boolean filter(Customer2 c) {
return c.fO <= 20 ;}});

Fig. 19. Sub-select Flink Code

DataSet<Customerl>
customerl=getCustomerDataSet(env,mask);
DataSet<Result> resultl =
customerl.join{customer2).where(2).equalTo(1)

.with(new JoinFunction<Customerl, Customer2,Result>() {
@Override

public Result join(Customerl c1, Customer2 c2) {

return new Result(c1.f0,c1.f1,c1.f2,c2.f0,c2.f1);}});

Fig. 20. Top-select Flink Code

4. EXPERIMENTAL RESULTS
4.1 DATA SET AND QUERIES

Using dataset and Queries from TPC-H Benchmark. This bench-
mark illustrates decision support systems that provides large vol-
umes of data, execute complexity queries, and give answers to
critical business questions [4].

Every dataset is split to a different size for executing TPC-H
Queries on this dataset.

4.2 ENVIRONMENT SETUP

—A Hadoop Single Node, Ubuntu 9.0.3 virtual machines, and
each one running Java(TM) SE Runtime Environment on Net-
beans IDE. Hadoop versionl.2.1 is installed, and one Na-
menode, and 2 Datanodes are configured. The Namenode and
Datanodes have 20 GB of RAM, seven cores, and 100GB disk.
Also, Hive 1.2.1 is installed on the Hadoop Namenode and
Datanodes.

—Flink 9 is used, Flink cluster is installed, and one Master Node
and two Work Nodes are configured. The Master Node and
Worker Node have 20 GB of RAM, seven cores, and 100GB
disk.

4.3 Result

Comparison between Advanced SQL Query To Flink Translator
and HiveQl when run TCP-H Query 4 and TCP-H Query 13 on
different data size.

4.3.1 TCP-H Query 4. In this system, TCP-H Query 4 (see
Figure [21) is used because it contains cases that handle in the
proposed system.

select o_orderpriority, count(*) from orders

where o_orderdate >='12/1/1996' and o_orderdate <
10/23/1995' and IN (select * from lineitem where |_orderkey
= o_orderkey and |_commitdate < |_receiptdate)

group by o_orderpriority

order by o_orderpriority;

Fig. 21. TCP-H Query 4

IN Figure[22]show a comparison between Advanced SQL Query
to Flink translator and HiveQl when run TCP-H Query 4. Also,
Advanced SQL Query To Flink translator enhances performance
by average 21%.

14

Foundation of Computer Science FCS, New York, USA
Volume 10 - No. 8, April 2016 - www.ijais.org

K\

100
S0
B0
70
60
50
40
30
20 +
10 -~

W Hive

Time

M Advanced SOL Query TO Flink
Translator

10GB 20GB 30GB 40GB

Data Size

Fig. 22. Compare Between Advanced SQL Query To Flink and HiveQl
When run TCP-H Query 4 Using Different Size of Data

4.3.2 TCP-H Query 13. In this system, TCP-H Query 13 (see
Figure 23) is used because it contains cases that handle in the
proposed system.

select c_name

from (select c_name,c_custkey,count(o_orderkey) from
customer left outer join orders on c_custkey = o_custkey)
group by c_name

order by c_name;

Fig. 23. TCP-H Query 13

IN Figure 24 show a comparison between Advanced SQL Query
to Flink translator and HiveQl when run TCP-H Query 13. Also,
Advanced SQL Query To Flink translator enhances performance
by average 29%.

10 H Hive

Time

8

& B Advanced 5QL QueryTO Flink
1 Translator
2

0

10GB 20GB 30GB 40GB

Data Size

Fig. 24. Compare between Advanced SQL Query To Flink and HiveQl
When run TCP-H Query 13 Using Different Size of Data

S. CONCLUSIONS AND FUTURE RESEARCH

Execution of Advanced SQL Query on Flink without write Java
Code is very necessary, so developed system that can execute
Advanced SQL Query on Flink that has three main stages. First,
receiving Advanced SQL Query from the user. Second, gener-
ates Flink Code for executing this Query. Third, verified the cor-
rectness of system by performing various experimental results
using different Queries. Finally, achieve efficiency in all the ex-
perimental results. In the future work, build system to executing
Advanced SQL Query on Flink in the short time.

International Journal of Applied Information Systems (IJALIS) ISSN : 2249-0868

6. REFERENCES

(1]

(2]
(3]
(4]
(5]

(6]

(7]

[8

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Apache flink, 2 2016.
https://ci.apache.org/projects/flink/flink-docs-master/.

Apache hadoop, 2 2016. http://hadoop.apache.org/.

Mapreduce, 2 2016. https://cloud.google.com/appengine/docs/python/dat:

Tpc-h, 2 2016. http://www.tpc.org/tpch/.

Marwah N Abdullah, Mohamed H Khafagy, and Fatma A
Omara. Home: Hiveql optimization in multi-session envi-
ronment. In 5th European Conference of Computer Science
(ECCS’14), volume 80, page 89, 2014.

Hussien SH. Abdel Azez, Mohamed H. Khafagy, and
Fatma A. Omara. Joum: An indexing methodology for im-
proving join in hive star schema. International Journal of
Scientific & Engineering Research, 6:111-119, 2015.

Narayan Gowraj, Prasanna Venkatesh Ravi, V Mouniga,
and MR Sumalatha. S2mart: smart sql to map-reduce trans-
lators. In Web Technologies and Applications, pages 571—
582. Springer, 2013.

Katarina Grolinger, Michael Hayes, Wilson Akio Hi-
gashino, Alexandra L’Heureux, David S Allison, Miriam
Capretz, et al. Challenges for mapreduce in big data. In Ser-
vices (SERVICES), 2014 IEEE World Congress on, pages
182-189. IEEE, 2014.

Hesham A Hefny, Mohamed Helmy Khafagy, and M Wah-
dan Ahmed. Comparative study load balance algorithms for
map reduce environment. International Journal of Com-
puter Applications, 106(18):41-50, 2014.

Mohamed Helmy Khafagy. Index to index two-way join al-
gorithm. International Journal of Digital Content Technol-
ogy and its Applications, 9(4):25, 2015.

Mohamed Helmy Khafagy. Indexed map-reduce join algo-
rithm. International Journal of Scientific & Engineering
Research, 6(5):705-711, 2015.

Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yonggiang
He, and Xiaodong Zhang. Ysmart: Yet another sql-to-
mapreduce translator. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pages
25-36. IEEE, 2011.

Ebada Sarhan, Atif Ghalwash, and Mohamed Khafagy.
Queue weighting load-balancing technique for database
replication in dynamic content web sites. In Proceedings
of the 9th WSEAS International Conference on APPLIED
COMPUTER SCIENCE, pages 50-55, 2009.

Fawzya Ramadan Sayed and Mohamed Helmy Khafagy.
Sql to flink translator. IJCSI International Journal of Com-
puter Science Issues, 12(1):169, 2015.

Mina Samir Shanoda, Samah Ahmed Senbel, and Mo-
hamed Helmy Khafagy. Jomr: Multi-join optimizer tech-
nique to enhance map-reduce job. In Informatics and
Systems (INFOS), 2014 9th International Conference on,
pages PDC-80. IEEE, 2014.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: a warehousing so-
lution over a map-reduce framework. Proceedings of the
VLDB Endowment, 2(2):1626—-1629, 2009.

Yingzhong Xu and Songlin Hu. Qmapper: a tool for sql
optimization on hive using query rewriting. In Proceedings
of the 22nd international conference on World Wide Web
companion, pages 211-212. International World Wide Web
Conferences Steering Committee, 2013.

15

	Introduction
	Related Work
	Hive
	S2MART
	QMAPPER
	SQL TO FLINK Translator

	Advanced SQL Query To Flink Translator
	System Architecture
	Methodology
	Where Clauses Contains BETWEEN Operator
	Where Clauses Contain AND & OR Operators
	Sub Query in Where Clauses Contains IN Keyword
	JOIN Types
	ORDER BY Keyword
	TOP Clause
	COUNT Aggregation
	NESTED Query

	Experimental Results
	DATA SET AND QUERIES
	ENVIRONMENT SETUP
	Result
	TCP-H Query 4
	TCP-H Query 13

	CONCLUSIONS AND FUTURE RESEARCH
	References

