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ABSTRACT  
A hexacopter aircraft is a class of helicopter, more specifically 

of multirotors. The hexacopter has several characteristics 

(mechanically simple, vertical takeoff and landing, hovering 

capacities, agile) that give it several operational advantages over 

other types of aircraft. But its beneficts come at a cost: the 

hexacopter has a highly nonlinear dynamics, coupled and 

underactuated which makes it impossible to operate without a 

feedback controller action.  

In this work we present a detailed mathematical model for a 

Vertical Takeoff and Landing (VTOL) type Unmanned Aerial 

Vehicle (UAV) known as the hexarotor. The nonlinear dynamic 

model of the hexarotor is formulated using the Newton-Euler 

method, the formulated model is detailed including aerodynamic 

effects and rotor dynamics that are omitted in many literature.  

Three controls schemes, namely Proportional-Derivative-

Integral (PID) controller, backstepping and sliding mode (SMC), 

have been applied to control the altitude, attitude, heading and 

position of the hexacopter in space. Simulation based 

experiments were conducted to evaluate and compare the 

performance of three developed control techniques in terms of 

dynamic performance, stability and the effect of possible 

disturbances. 

This article focuses on modeling strategy and command of a 

kind hexarotor type unmanned aerial vehicle (UAV). These 

developments are part of the overall project initiated by the team 

(EAS) of the Computer Laboratory, systems and renewable 

energy (LISER) of the National School of Electrical and 

Mechanical (ENSEM).  

Keywords 

Hexacopter; Vertical Takeo-and Landing; Nonlinear control; 

Newton-Euler method; PID;  backstepping; sliding-mode;   

Nomenclature  
 

Symbol Meaning 

RI                      :        The earth inertial frame (RI -frame) 

RB                     :        The body-fixed frame (RB -frame)   

m   R             : Total mass of the hexa-rotor 

g   R              : Gravity constant 

(Φ, θ, ψ)   R3   
: Euler angle of rotorcraft 

ξ    R3                   
: Position of the center of mass in the inertial 

frame 

η    R3                   
:   Position of the orientation in the body frame 

υ    R3            : The translational velocity  

ω   R             : The angular velocity 

Kfa   R3                 
: Propeller drag coefficient         

Ωr   R             : Overall propeller speed (rad/s) 

J   R3                      
: The diagonal inertia matrix 

S( )  R3       : Skew symmetric matrix                                   

J r   R3                   
: Inertia for each rotor 

J xx/yy/zz   R      : The moments of inertia  

l   R               : Distance to the center of gravity 

b   R              : Thrust constant [Ns2] 

d   R              : The drag factor [Nms]. 

(kp, ki ,kd)   R3 :  Proportional, integral and derivative gain 

 

1. INTRODUCTION 
This work will focus on the modeling and control of a hexarotor 

type UAV.  The reason for choosing the hexarotor is in addition 

to its advantages (their increased load capacity and high 

maneuverability.etc.), the research field is still facing some 

challenges in the control field because the hexarotor is a highly 

nonlinear, multivariable system and since it has six Degrees of 

Freedom but only four actuators, it is an under actuated system 

[1]. 

Under-actuated systems are those having a less number of 

control inputs compared to the system's degrees of freedom. 

They are very difficult to control due to the nonlinear coupling 

between the actuators and the degrees of freedom [2]. Although 

the most common flight control algorithms found in literature 

are linear flight controllers, these controllers can only perform 

when the hexarotor is flying around hover, they suffer from huge 

performance degradation whenever the hexarotor leaves the 

nominal conditions or performs aggressive maneuvers [3]. 

The contributions of this work are: deriving an accurate and 

detailed mathematical model of the hexarotor UAV, developing 

linear and nonlinear control algorithms and applying those on 

the derived mathematical model in computer based simulations. 

The work will be concluded with a comparison between the 

developed control algorithms in terms of their dynamic 

performance and their ability to stabilize the system under the 

effect of possible disturbances. 

The paper remainder is organized as follows. In the next Section 

the mathematical formulation and the dynamic model of the 

hexacopter are described, while the applications of three 

different control techniques PID, Backstepping and Sliding-

mode to hexarotor are presented in section III. In section IV, the 

simulation results are given to highlight the proposed method, 

while conclusion is drawn in the last section V. 

2.  DYNAMIC MODEL OF THE 

HEXAROTOR 
The mathematical model of the hexacopter has to describe its 

attitude according to the well-known geometry of this UAV. 

More specifically, this aerial vehicle basically consists of six 

propellers located orthogonally along the body frame. Figure 1 
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shows this configuration. There are three movements that 

describe all possible combinations of attitude: Roll (rotation 

around the X axis) is obtained when the balance of rotors 1, 2 

and 3 (or 6, 5 and 4) is changed (speed increases or decreases). 

By changing the angle, lateral acceleration is obtained; pitch 

movement (rotation around the Y axis) is obtained when the 

balance of the speed of the rotors 1 and 6 (or 3 and 4) is 

changed. The angle change results in a longitudinal acceleration; 

yaw (rotation about the Z axis) is obtained by a simultaneous 

change of speed of the motors    (1, 3, 5) or (2, 4, 6). 

2.1  Hexacopter Kinematics 
This subsection describes the dynamical models of the Six 

Rotor. The schematic structure of the hexacopter and the 

rotational directions of the propellers are illustrated in Figure 1. 

In order to describe the hexacopter motion only two reference 

systems are necessary: earth inertial frame ( -frame) and body-

fixed frame   (RB -frame).   

                                                

Fig 1: The structure of hexarotor and its frames 

 

The orientation of the hexacopter is given by the three Euler 

angles, namely yaw angle ψ, pitch angle θ and roll angle ϕ that 

together form the vector η = [ ϕ, θ, ψ]T. (ϕ and θ   ]- 
 

 
 , 
 

 
 [;  ψ   

]-π ,π [ ) 
The position of the vehicle in the inertial frame is given by the 

vector ξ = [x, y, z ]T.   

So, the transformation related to the position and the angular 

velocity from the body to the inertial frame is obtained 

respectively by: 

 

 

 

 
 

  

      And 

            

       Rr=                                                 where ω= Rr    

  
 

      

2. 2  Applied forces and torques 
The two main forces come from gravity and the thrust of the 

rotors but to make the model more realistic rotor drag and air 

friction is also included.  The UAV rotorcraft system are quite 

complex. Their movements are governed by several effects 

either mechanical or aerodynamic. The main effects on the 

acting hexarotor have been listed in the following table: 

 

Table 1. The main effects on the acting hexarotor 
 

Effects Fountainhead 

Aerodynamics effects Rotating propellers 

Inertiel counter torque Speed change of propellers 

Effect of gravity Position of the center of mass 

Gyroscopic effects Change in the direction of the drone 

L’effet de frottement Tous les mouvements du drone 

 

In order to get equations of motion of entire system, the 

following assumptions have been made: 

 The hexacopter is a rigid body; 

 The hexacopter has a symmetrical structure; 

 Tensions in all directions are proportional to the square 

of the propeller speed. 

To derive the dynamic model of the hexacopter (position and 

attitude); the Newton-Euler formalism is used [4]. Therefore the 

following equations are obtained:  

                                                                                       

 

(1) 
 

     

2.2.1  Forces 
 Gravity force:    Fg = [0 0 -mg]T.  

 Thrust  force: Fp = RI
B
 [0  0 



6

1i

Fi]
T = RI

B
 [0  0 



6

1i

b

2

i
 ]T     

 Rotor drag :    Ft=kft =
33

I [ kftx  kfty  kftz ]
T x       

The vector of the drag forces, kft =diag(kftx, kfty, kftz).  

 Air resistance : Ti= CtρAr2  
  = d

2

i
  

Where A is a blade area, ρ the density of air, r the radius of the 

blade and Ωi the angular velocity of a propeller.   

2.2.2 Torques 

 

Fig 2: Hexacopter Rotor Distances to Center of Gravity 
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 Pitch torque:  My= )(
2

3 2

6

2

4

2

3

2

1
bl  

  

 Yaw torque:  Mz= )(
2

6

2

5

2

4

2

3

2

2

2

1
d  

  
The vector Mf is defined as: Mf = [Mx  My  Mz ]

T 

 

• Torque aerodynamique resistance :   

           Ma =Kfa

2
 = [Kfax

2  Kfay
2  Kfaz

2 ] T 

• gyroscopic effect from Propeller: 

        Mgh = 


6

1i

Ωr   J r  [0  0  (-1)i+1 i ]T  

 Yaw counter torque : Mgh =[ 0 , 0 , Jr   r ]
 T 

      With   r = 654321
  

2.2.3  Hexacopter mathematical model 
The equations of motion, that governs the translational and the 

rotational motion for the hexarotor with respect to the body 

frame are  

2.2.3.1  Translational dynamic    

                          m= ΣF = Fp + Fg + Ft 

 x  = 1/m (  sinsinsincoscos  ) ( 


6

1i

Fi ) - xkftx   /m 

 y = 1/m (  cossinsin sincos  )( 


6

1i

Fi )- ykfty  /m       (2) 

z = 1/m (  cos cos )( 


6

1i

Fi )- zk  ftz  /m   - g     

 

2.2.3.2 Rotational dynamics  

                     J   = - ω   J ω + Mf - Ma- Mgh 
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The hexacopter’s total thrust force and torque control inputs u1, 

u2, u3, u4 are related to the six motor’s speed by the following 

equations: UT=[u1,u2,u3,u4] is the vector of (artificial) input 

variables[5]: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

If the rotor velocities are needed to be calculated from the 

control inputs, an inverse relationship between the control inputs 

and the rotors' velocities is needed, which can be acquired by 

inverting the matrix in (4) to give, 
 

                        
 = 

 

   
(l u1  +2 u2 -

  

 
 u4) 

    
 = 

 

   
(l u1 + u2 -   u3 + 

  

 
 u4) 

    
 = 

 

   
(l u1 - u2 -   u3 - 

  

 
 u4) 

     
 = 

 

   
(l u1 -2 u2 + 

  

 
 u4) 

     
 = 

 

   
(l u1 - u2 +   u3 - 

  

 
 u4) 

     
 = 

 

   
(l u1 + u2 +   u3 + 

  

 
 u4) 

     

 

2.2.3.3 Total system model 
Finally, this derivation provides the 2nd order differential 

equations for the aircraft’s position and orientation in space. 

Applying relation (1) to (5) and rewriting the matrix equation in 

from of system, we obtain the following:  

 = 

xxJ

1
 [  (

yy
J -

zz
J ) - Kfax

2
 - JrΩr + u2].   

 = 

yyJ

1
 [  (

zz
J -
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J ) - Kfay

2
 + JrΩr + u3]. 

 = 

zzJ

1
 [  (

xx
J -
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J )- Kfaz

2
 + u4]                (6) 
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m
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z  - g + 

m

 coscos
u1 

              
                with :       ux =  sinsinsincoscos  .           

                                  uy =  cossinsin sincos  .    

 

The dynamic model presented in equation set (6) can be 

rewritten in the state-space form   x = f(X,U). X   R
12 is the 

vector of state variables given as follows: 
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       [ϕ              θ            ψ            x           y           z        ] 
 

        [ x1     x2     x3      x4     x5     x6    x7     x8     x9     x10    x11    

x12]  
 

x1= ϕ x7= x 

x2=  1=   x8=   7=    

x3= θ  x9= y                             

x4=   3=      x10=   9=    

 x5= ψ   x11= z 

x6=   5=    x12=   11=    

  

  2 =   = a1x4x6 + a2  
  + a3Ωrx4 + b1u2. 

  4 =    = a4x2x6 + a5  
  + a6Ωrx2 + b2u3. 

  6 =    = a7x2x4 + a8  
  + b3u4. 

  8 =    = a9x8 + 
 

 
 uxu1. 

  10 =    = a10x10 + 
 

 
 uyu1. 

  12 =    = a11x12 + 
        

 
 u1 – g. 

 

To simplify, define, 
 

a1=(
yy

J -
zz

J )/ xxJ  a2=- Kfax / xxJ  a9=- Kftx /m 

a4=(
zz

J -
xx

J )/ yyJ  a5=- Kfay/ yyJ  
a10=- Kfty/m 

a7=( xxJ - yyJ )/ zzJ  a8=- Kfaz / zzJ  a11=- Kftz /m 

a3=- Jr/Jxx a6=- Jr/Jyy  

b1= l/Jxx b2= l/Jyy b3= l/Jzz 

 

Rewriting the last equation (7) to have the angular accelerations 

in terms of the other variables (Rotational equation of motion), 
 

             2                     a1x4x6 + a2  
  + a3Ωrx4 + b1u2 

 

             4          =            a4x2x6 + a5  
  + a6Ωrx2 + b2u3 

             6                        a7x2x4 + a8  
  + b3u4 

 

 

With the choice of the control input vector U, it is clear that the 

rotational subsystem is fully-actuated, it is only dependant on the 

rotational state variables x1 to x6 that correspond to  ϕ,   , θ,   , 

ψ,    respectively. 

Rewriting the last equation (7) to have the accelerations in terms 

of the other variables, we get translational equation of motion, 

 

          8                a9x8 + (cosx1cos x5 sin x3 + sinx1sin x5)
m

u1      

         10     =           a10x10 + (cosx1sin x3 sin x5 – sinx1cos x5)
m

u1   

          12                                       a11x12 - g + (cosx1cos x3) 
m

u1   

 

 

It is clear here that the translational subsystem is under_ actuated 

as it dependant on both the translational state variables and the 

rotational ones. 

It is worthwhile to note in the latter system that the angles and 

their time derivatives do not depend on translation components. 

On the other hand, the translations depend on the angles. We can 

ideally imagine the overall system described by (6) as 

constituted of two subsystems, the angular rotations and the 

linear translations, (Fig. 3) 

 

 
 

Fig 3: Connection of the two ideal subsystems of the overall 

dynamical system  

2.2.4 Rotor Dynamics 
The rotors are driven by DC-motors with the well known 

equations:  

                        L
  

  
 = u – Ri - kcωm    and     J 

   

  
 = τm – τd. 

As we use a small motor with a very low inductance, the second 

order DC-motor dynamics may be approximated [5]: 

                 J 
   

  
 = - 

   
 

 
 ωm - τd + 

   

 
u 

By introducing the propeller and the gearbox models, the 

equation may be rewritten: 

      m = - 
 

 τ
 ωm -    

        + 
 

   τ
 u   with 

 

τ
 = 

   
 

    
 

The equation can be linearized around an operation point      to 

the form     m = -Aωm + B u + C. 

 

In this next section, we present the application of two different 

control techniques Backstepping and Sliding-mode to hexarotor. 

3. CONTROL OF  HEXAROTOR 
In this section, a control strategy is based on two loops (inner 

loop and outer loop). The inner loop contains four control laws: 

roll command (ϕ), pitch command (θ), yaw control (ψ) and 

controlling altitude Z. The outer loop includes two control laws 

positions (x, y). The outer control loop generates a desired for 

roll movement (θd) and pitch (ϕd) through the correction block. 

This block corrects the rotation of roll and pitch depending on 

the desired yaw (ψd). The figure below shows the control 

strategy we will adopt Fig.4: 

 
 

Fig. 4. Synoptic scheme of the proposed control strategy 

X
T
 = 

(7) 
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The hexarotor parameters used in the simulations are, 

Table. 2 Parameters Used in the Simulations 
Parameter Description Value 

Jxx MOI about body frame's x-axis 7.5e-3 kg.m2 

Jyy MOI about body frame's y-axis 7.5e-3 kg.m2  

Jzz MOI about body frame's z-axis 1.3e-2 kg.m2 

l Moment arm 0.23 m 

Jr Rotor inertia 6e-5 kg.m2 

m Quadrotor mass 0.650 kg 

Kf Aerodynamic force constant 3.13e-5  N s2 

KM Aerodynamic moment constant 7.5e-7  Nm s2 

Rmot Motor circuit resistance 0.6  Ω 

Kmot Motor torque constant 5.2  mNm/A 

Kt Aerodynamic translation coeff diag(0.1,0.1,0.15)  

Kt Aerodynamic rotation coeff diag(0.1,0.1,0.15)  

3.1  PID Controller for hexarotor   
The classical PID linear controller has the advantage that 

parameter gains are easy to adjust, is simple to design and has 

good robustness. However some of the major challenges with 

the hexarotor include the non-linearity associated with the 

mathematical model and the imprecise nature of the model due 

to unmodeled or inaccurate mathematical modeling of some of 

the dynamics. Therefore applying PID controller to the hexarotor 

limits its performance. 

The purpose of the PID controller is to force the Euler angles to 

follow desired trajectories. The objective in PID controller 

design is to adjust the gains to arrive at an acceptable degree of 

tracking performance in Euler angles. 

After the mathematical model of the hexarotor along with its 

open loop simulation is verified, a PID controller was developed. 

The PID controller generates the desired control inputs for the 

hexarotor. The block diagram for a PID controller is shown in 

Figure 5. 

 
Fig. 5 PID Controller Block Diagram 

3.1.1 Altitude controller 
 

U1 = kp,z (z –zd ) + kd,z (   –  d )+ ki,z  ʃ(z –zd ) dt. 

Where   

 zd  and   d : Desired altitude and altitude rate of change. 

3.1.2   Attitude controller 
The control objective is to maintain the hexarotor in a constant 

altitude (z). The PID controller for the θand ψ dynamics can 

be given as 

U2 = kp,ϕ(ϕd –ϕ) + kd,ϕ(  d –  )+ ki,ϕ  ʃ(ϕd –ϕ) dt    (Roll angle) 

U3 = kp,θ (θd –θ) + kd,θ (  d –   )+ ki,θ  ʃ(θd – θ) dt    (Pitch angle) 

U4= kp,ψ(ψd –ψ) + kd,ψ (  d –   )+ ki,ψ  ʃ(ψd –ψ) dt    (Yaw angle) 

Where   

ϕd and   d :  Desired roll angle and rate of change   s2 

θd and   d  : Desired Pitch angle and rate of change 

ψd and   d : Desired Yaw angle and rate of change 

In order to design the PID controllers, nonlinear rotational 

dynamics of hexarotor are linearized around zero, which are 

given by, 

ϕ(s) = 
 

  
 

   
 2(s);  θ(s) = 

 

  
 

   
U3(s);  ψ(s) = 

 

  
 

   
 4(s)  

 

3.1.3 Position controller 
PID controller is defined for controlling the ex= xd – x and            

ey= yd – y positions. The control objective is to drive both 

values to zero (ex, ex)=(0,0). In this sense, the control laws are: 

  d= kp,x(xd - x) + kd,x(  d -   )+ ki,x  ʃ(xd - x) dt 

  d = kp,y(yd - y) + kd,y(  d -   )+ ki,y  ʃ(yd - y) dt 

 

 
 

Fig. 6.  The PID Control Inputs and Simulation Response 

3.2   Backstepping Controller for Hexarotor 
Backstepping design refers to “step back” to the control input, 

and a major advantage of backstepping design is its flexibility to 

avoid cancellation of useful nonlinearities and pursue the 

objectives of stabilization and tracking, rather than those of 

linearization. Recursively constructed backstepping controller 

employs the control Lyapunov function (CLF) to guarantee the 

global stability [10], [11]. 

In this section, a Backstepping controller is used to control the 

attitude, heading and altitude of the hexarotor. The Backstepping 

controller is based on the state space model derived in (7). Using 

the backstepping approach, one can synthesize the control law 

forcing the system to follow the desired trajectory. Refer to [6] 
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and [7] for more details.  

Considering the following system, 

                                 xid - xi                           i   [3,5,7,9,11] 

                      

                                 x(i-1)d + k(i-1)e(i-1) - xi      i   [4,6,8,10,12] 

                                            with    ki ˃ 0       i   [2,…..,12]   
 

3.2.1 Backstepping Control of the Rotations 

Subsystem 
Using the backstepping approach, one can synthesize the control 

law forcing the system to follow the desired trajectory. Refer to 

[7] and [8] for more details. For the first step we consider the 

tracking-error    ei = x1d - x1 and we use the Lyapunov theorem 

by considering the Lyapunov function Vi positive definite and 

it’s time derivative negative semi-definite: 

                            
 

 
    

                      i   [3,5,7,9,11] 

 

                               Vi-1 +
 

 
    

             i   [4,6,8,10,12]       
                

For the first step we consider the tracking-error: 

        e1 = x1d – x1 = ϕd - x1 

       V1 = 
 

 
    

         and       1 = e1   1= e1(  d – x2) 
                

 

The stabilization of e1 can be obtained by introducing a virtual 

control input x2: 

                            x2 =  d + k1 e1                     1 = - k1   
  ≤ 0. 

 

For the second step we consider the augmented Lyapunov 

function: 

                            e2 =   d + k1 e1 – x2 

                            V2 = 
 

 
    

  + 
 

 
    

       

 

And it’s time derivative is then:        2= e1   1+ e2   2  
 

  2= = e1(-k1e1+e2) + e2(  d + k1  1 - a1x4x6 – a2  
  – a3Ωrx4–b1 

u2) 
      

The control input U2 is then extracted, satisfying: 

 

                             2 = -k1  
  – k2  

   ≤ 0. 

 

U2 = 
 

  
 [-a1x4x6 – a2  

  – a3Ωrx4+  d+ k1(-k1e1+e2)+ k2 e2+ e1] 
 

Following exactly the same steps as the roll controller, the 

control input U3 responsible of generating the pitch rotation and 

U4 responsible of generating the yaw rotation are calculated to 

be, 

 

Roll controller 

 U2 = 
 

  
 [-a1x4x6 – a2  

  – a3Ωrx4+  d+ k1(-k1e1+e2)+ k2 e2+ 

e1]       

Pitch controller 

  U3 = 
 

  
 [-a4x2x6 – a5  

  – a6Ωrx2+  d+ k3(-k3e3+e4)+ k4 e4+ 

e3]     
 

Yaw controller 

    U4 = 
 

  
 [-a7x2x4 – a8  

  +  d+ k5(-k5e5+e6)+ k6 e6+ e5]      

 

  
 

3.2.2 Backstepping Control of the Linear 

Translations  
The altitude control U1 and the Linear (ux,uy) Motion Control  

are obtained using the same approach described in 3.2. 
 

U1= 
 

           
 [g-a11x12+  d + k11(-k11e11+e12)+ k12 e12+ e11] 

ux= (
 

  
) [-a9x8+  d + k7(-k7e7+e8)+ k8 e8+ e7] 

uy= (
 

  
) [-a10x10+  d + k9(-k9e9+e10)+ k10 e10+ e9]. 

The sliding mode control inputs which were derived and 

expressed in equation (8) were applied to the nonlinear model in 

(7) and responses are shown in fig.(7).  

 

 

 
 

Fig. 7. The backstepping control inputs and simulation 

response 

3.3 Sliding-Mode Control of Hexarotor 
Sliding mode control is a well-established nonlinear control 

technique that displays certain degree of robustness against 

uncertainties and disturbances. Its main advantage is that it does 

not simplify the dynamics through linearization and has good 

tracking. Although it is vulnerable to noise and it suffers from 

chattering phenomenon, several approaches have been proposed 

to overcome these difficulties without giving concessions from 

the robustness property of the scheme. The behavior is 

composed of two phases, first the error dynamics is guided 

toward a predefined subspace of the state space, which we call 

ei  = 

Vi= 

(8) 
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the sliding manifold, and the behavior during this phase is called 

the reaching phase. This phase is known for the high magnitude 

control efforts that may undergo saturation sometimes. Second is 

the sliding phase, during which the error vector obeys the 

dynamical implications of the analytic description of the locus 

itself, which is stable by design and the error terminates at the 

origin inevitably. The control scheme takes its name from the 

latter dynamic behavior and is called sliding mode control.   

The hexarotor system was subdivided into the full-actuated and 

under-actuated systems. The under-actuated system, to which 

SMC was applied, was further subdivided into under-actuated 

subsystems. Results showed good stability and robustness of the 

system. Chattering effect of SMC was observed but minimized 

with a continuous approximation of a pre-determined “sign” 

function  

The basic sliding mode controller design procedure is performed 

in two steps. Firstly, choice of sliding surface (S) is made 

according to the tracking error, while the second step consist the 

design of Lyapunov function which can satisfy the necessary 

sliding condition (S   <0) [9][10]. The application of sliding 

mode control to hexarotor dynamic is presented here by 

obtaining the expression for control input. The sliding surface 

are define,  

 

                    Sϕ= e2 + λϕ e1  =   1d – x2 + λϕ( x1d – x1) 

Sθ = e4 + λθ e3 =   3d – x4 + λθ( x3d – x3) 

Sψ = e6 + λψ e5=   5d – x6 + λψ( x5d – x5) 

Sx = e8 + λx e7=   7d – x8 + λx( x7d – x7) 

Sy = e10 + λy e9=   9d – x10 + λy( x9d – x9) 

Sz = e12 + λz e11=   11d – x12 + λz( x11d – x11) 

Such that       

                             ei = xid - xi    
 

                              ei+1 =   i                     i   [1,….,11]       
              

                                λi ˃ 0  

Assuming here that   V(Sϕ) = 
 

 
   

  then, the necessary sliding 

condition is verified and lyapunov stability is guaranteed. The 

chosen law for the attractive surface is the time derivative of 

satisfying ( S   < 0) 

    

     ϕ = - kϕsign(Sϕ) 

          =   2 + λϕ   1 =       -   2 + λϕ(  1d – x2  )   

          = - a1 x4 x6 – a2 x4 Ωr – b1 U2  +   d + λϕ(  d  – x2  ). 
  

U2 = 
 

  
[- a1 x4 x6 – a2 x4 Ωr +   d + λϕ(  d  – x2  ) – kϕsign(Sϕ)]. 

 

The same steeps are followed to extract U3, U4 and U1: 
 

U2 = 
 

  
[- a1 x4 x6 – a2 x4 Ωr +   d + λϕ e2 – kϕsign(Sϕ)]   (Roll) 

 

U3 = 
 

  
[- a3x2 x6 – a4x2 Ωr +  d + λθ e4 – kθsign(Sθ)]     (Pitch) 

 

U4 = 
 

  
[- a5x2 x4– a4x2 Ωr +  d + λψ e6 – kψsign(Sψ)]     (Yaw) 

 

U1= 
 

           
 [ g+   d + λz e8– kzsign(Sz)]               (Altitude) 

 

 ux= (
 

  
)[  d + λx e10– kx sign(Sx)]                    (Linear x Motion) 

 

 uy= (
 

  
)[  d + λy e12– ky sign(Sy)]                   ( Linear y Motion) 

 

The sliding mode control inputs which were derived and 

expressed in equation (9) were applied to the nonlinear model in 

(7) and responses are shown in fig. 9 and fig.10. 

 

 

 
Fig. 9 The sliding Control Simulation Response

  

 
Fig. 10.  The sliding Control Inputs  

 

4. RESULTS AND DISCUTION 
To be able to compare fairly between the three implemented 

control techniques, the response graph of the system under the 

effect of each the three controllers was plotted superimposed on 

one another. Figure. 11 show the altitude response, the attitude 

and heading responses respectively.        

  
 

 
Fig. 11 the altitude, the attitude and heading responses 

4.1 Linear Operation 
In this paper three linear and nonlinear control schemes are used 

to stabilize the attitude of hexarotor UAV. The methods 

considered are PID, SMC, backstepping control. The employed 

controllers developed to control the hexarotor model under 

(9) 

Chattering 
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consideration gave comparable dynamic performances in terms 

of settling time and overshoot when they were deployed in near 

hover stabilization of the hexarotor.  

The PID controller has been successfully applied to the 

hexarotor though with some limitations. The tuning of the PID 

controller could pose some challenges as this must be conducted 

around the equilibrium point, which is the hover point, to give 

good performance. 

The SMC resulted in good stability and robustness of the 

system; but an undesirable Chattering effect of SMC was 

observed which was very notable in the attitude response unlike 

the altitude. It minimized with a continuous approximation of a 

predetermined “sign” function. The presence of the ‘‘sign’’ term 

in the SMC's control law makes it a discontinuous controller.  

Shows that whenever the value of the surface s is positive, the 

control law works to decrease the trajectory to reach the sliding 

surface (s = 0). Ideally it should continue sliding on the surface 

once hitting it, but due to the delay between the change of sign 

and the change in the control action, the trajectory passes the 

surface to the other side. The main drawbacks of chattering are 

that it causes the excitation of unmodeled system dynamics that 

yields a possible instability of the system. In addition to that it is 

associated with a high power consumption and possible actuator 

damage. These drawbacks make the SMC hard to be 

implemented on real systems. Backstepping control is a 

recursive algorithm that breaks down the controller into steps 

and progressively stabilizes each subsystem. Its advantage is that 

the algorithm converges fast leading to less computational 

resources and it can handle disturbances well. The main 

limitation with the algorithm is its robustness is not good. To 

increase robustness (to external disturbances) of the general 

backstepping algorithm, an integrator is added and the algorithm 

becomes Integrator backstepping control. The integral approach 

was shown to eliminate the steady-state errors of the system, 

reduce response time and restrain overshoot of the control 

parameters. Figure 11 show a quantitative comparison between 

the performance of the PID, SMC and Backstepping controllers 

in terms of the settling time and overshoot of the system's 

response respectively. 

4.2 Nonlinear Operation 
When the controllers were used outside of the linear region 

(away from hover), the PID controller failed to stabilize the 

system due to the fact that PID comes out of a family of linear 

controllers. On the other hand, the SMC and the Backstepping 

controller were able to stabilize the system with a good dynamic 

performance. 

In conclusion, PID controller is simple in structure; its 

performance may not be adequate under conditions of severe 

disturbances. SMC is robust against disturbances yet it suffers 

from the chattering phenomenon. Backstepping yield good 

tracking results yet they need the availability of the system 

nonlinearities, which is generally accepted as a drawback. In 

table.3 summarizes the comparison of the various algorithms as 

applied to hexarotors. The performance of a particular algorithm 

depends on many factors that may not even be modeled. Hence, 

this table serves as guide in accordance with what is presented in 

this work. 

Table.3 Comparison of control algorithms (PID, SMC, BS) 

Characteristic PID Sliding mode Backstepping 

Robust A A LN 

Adaptive  LN H H 

Optimal  LN A LN 

Intelligent LN LN LN 

Tracking ability A H H 

 Fast convergence A H LN 

Precision A H A 

Simplicity H A LN 

Disturbance rejection  LN H H 

Noise (signal) H LN LN 

Chattering  LN H LN 

Legend: LN—low to none; A—average; H—high.  

5. CONCLUSIONS AND FUTURE WORKS 
The goal of this work was to derive a mathematical model for 

the hexarotor Unmanned Aerial Vehicle (UAV) and develop 

nonlinear control algorithms to stabilize the states of the 

hexarotor, which include its altitude, attitude, heading and 

position in space and to verify the performance of these 

controllers with comparisons via computer simulations. The 

mathematical model of a hexarotor UAV was developed in 

details including its aerodynamic effects and rotor dynamics 

which we found lacking in many literatures; three control 

techniques were then developed and synthesized; a linear 

Proportional-Integral-Derivative (PID) controller, a nonlinear 

Sliding Mode Controller (SMC) and a nonlinear Backstepping 

controller. A complete simulation was then implemented on 

MATLAB/Simulink relying on the derived mathematical model 

of the hexarotor. The simulation environment was used to 

evaluate the mentioned controllers and compare their dynamic 

performances under different types of input conditions. The 

SMC and Backstepping controllers gave better performance 

outside the linear hovering region due to their nonlinear nature. 

The PID and Backstepping controllers gave better performance 

than all the other controllers when the effect of wind was added 

to the system. The wind effect was modeled as extra forces and 

moments on the hexarotor body. 

As it can be seen from the experimental plots, the controller 

introduced using the sliding-mode approach provides average 

results. This is partly due to switching nature of the controller 

which introduces high frequency, low amplitude vibrations 

causing the sensor to drift. On the other hand, the backstepping 

controller proves the ability to control the orientation angles in 

the presence of relatively high perturbations confirming by the 

way some previous studies on under actuated systems. The SMC 

controller has the problem of chattering. 

An important part of this work was dedicated to finding a good 

control approach for hexarotors. Three techniques were explored 

from theoretical development to final experiments.  

As evident from the review, no single algorithm presents the best 

of the required features. It also been discussed that getting the 

best performance usually requires hybrid control schemes that 

have the best combination of robustness, adaptability, 

optimality, simplicity, tracking ability, fast response and 

disturbance rejection among  other factors.  

The future work is to develop a fully autonomous vehicle with a 

more powerful hybrid flight controller. For example, adding an 

integral action to the developed Backstepping controller 

combined with Frenet-Serret Theory will lead to the formulation 

of an adaptive control algorithm robust to system uncertainties. 

Last but not least, implementing the developed control 
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techniques on real hexarotor hardware to give a more fair 

comparison between their performances. The positive results 

achieved through this development enhance the knowledge of 

this very unstable system and encourages us to continue towards 

full autonomy hexarotor. 
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