

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.7, September 2015 – www.ijais.org

7

Auto Conversion of Serial C Code into Cuda-C-Code for

Faster Execution Utilizing GPU

Dipak V. Patil
Department of Computer Engineering

G.E.S’s R.H. Sapat College of Engineering,
Management and Research, Nasik, M.S., India

ABSTRACT
The primary accusative of this implementation is to expand the

use of NVIDIA Graphics Processing Units (GPUs) to accelerate

the all-purpose applications outside the graphics arena. CUDA is

a programming language particularly designed for parallel

computation to work. Now a day, C programming is glaringly

used in industries to develop general purpose applications.

Normally, a C program instruction executes sequentially and do

not support data parallel computation, it increases the time

complexity of a program. CUDA renders C like interface,

configured for programming NVIDIA GPU which supports

parallel computation of different parts of same instructions on

different cores of GPU. For ordinary programmers it is very

sticky to write CUDA programs because it involves various

irksome tasks. Today, most of the machines come with NVIDIA

graphics card which contains GPU having numerous processing

cores. It is mainly used during execution of gaming, graphics and

image processing kind of applications. It remains otiose during

execution of general-purpose applications which results into

surplus time. To properly employ the potential of available GPU

cores on graphics cards for accelerating execution of applications

outside graphics domain, the system implemented here provides

an automatic tool that converts the directive based sequential C

program and generates equivalent parallel CUDA program which

will significantly enhance the speed of execution of program

with help of parallel processing support. The C programmers can

use this tool to enhance the speed of execution of their

applications by transforming their directive based C code to

CUDA C code. This tool provides simple user interface and helps

to enhance the performance of the system.

Keywords
Parallel Computing, Serial Computing, CUDA, GPU, HPC

1. INTRODUCTION
Compute Unified Device Architecture (CUDA) is a parallel

computing system and API designed and developed by NVIDIA.

It permits to use a CUDA-enabled graphics cards (GPU) for all

purpose processing a methodology recognized as GPGPU.

Basically graphics card contains GPU having multiple processing

units are used for performing computer graphics related

applications like computer gaming, animation and playing

movies.

The GPU [1] remains idle during running of general purpose

applications. To enhance the system performance, the computing

capability of the GPU available can get properly utilized during

execution of applications outside the graphics domain. Brook [2]

supports simple data-parallel statements and promotes the use of

the GPU as a co-processor. GPUs have recently increased beamy

popularity among investigators and creators as accelerators for

applications outside the domain of conventional Computer

Graphics [3]. This evolution, known as General-Purpose

computing on the GPU or GPGPU, Largely outcomes from the

big improvements in GPU programmability. Everyone is

interested to get the fast response from computer for this purpose

evolution of HPC is needed. Immediate outcome is the need of

society whenever large amount of data processing taken place. A

emblematic GPU is a multi-core architecture with each core

capable of running thousands of threads concurrently. Hence, an

petition with a large quantity of parallelism can use GPUs to

understand essential performance benefits. GPUs have recently

appeared as almighty platform for general purpose high

performance computing. Programming for GPU is a complex

task as compared to programming CPU and parallel

programming models such as shared memory[4].

The CUDA is a programming language specifically designed to

program NVIDIA GPUs. It is an enlargement to C, CUDA has

rapidly become popular and drawn more and more non-graphics

computer programmer to port existing applications to

CUDA[5,6].

However, experience shows that the porting process is highly

challenging task. In specific, CUDA places on the coder the

burden of packaging GPU code in isolated functions of explicitly

carry off data transfer between the host memory and several GPU

memories, and of manually optimizing the utilization of the GPU

memory. The experiment involve different schemes of

partitioning computation among GPU threads, of optimizing

single-thread code, and of utilizing the GPU memory. As a

outcome, the coder has to make important code alterations,

perhaps many times, before attaining coveted performance.

Practically this operation is very irksome and error prone. Many

of the tasks entangled are mechanical and can be automated by a

this system, system is an attempt to attain such automation. In

this work, research introduces methods for transfer the load from

CPU to GPU for HPC[7][8].

Hardware accelerators, such as GPGPUs, are probable parallel

platforms for HPC. While a GPGPU renders a inexpensive,

highly parallel method to application coders, its programming

complexity poses an essential challenge for programmer. Even

though the CUDA[9] programming model, recently novice by

NVIDIA, offers a more user friendly interface, programming

GPGPUs is tough and error prone, compared to programming

CPUs and parallel programming models such as OpenMP[10].

GPGPUs have lately appeared as compelling conveyance for

general purpose High Performance Computing. CUDA

programming framework [13,14] from NVIDIA offers improved

programmability for common computing, hence, the manual

development of high performance codes in CUDA is more

participating than in other parallel programming [15] models

such as OpenMP. Manual procedure places burden on

programmer to port computation on processors. It is not bendable

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.7, September 2015 – www.ijais.org

8

to change with programs, input problem sizes and software or

hardware design[11,12]. There are some systems available in that

programmer have to specify manually the region of code to make

parallel.

2. EXISTING SYSTEM
Amlpe of work has been done in enhancing the software support

for GPGPU programming. The first group extends CUDA

support to other programming languages [1], such as PyCUDA

for Python, jCUDA[26] for Java and CUDA Fortran [19] to be

jointly developed by PGI and NVIDIA.

The second group of related work provides high level abstraction

of CUDA programming terms of compiler directives,[10]

propose a compiler framework for translating an OpenMP

program to a CUDA program. The main contributions of this

work include an interpretation of OpenMP semantics under the

CUDA model and a set of transformations that optimize global

memory accesses.

PGI has released a directive-based Accelerator Programming

Model [11] for CPU + Accelerator systems, and the latest PGI

Fortran and C compiler supports this model on CUDA-enabled

NVIDIA GPUs. Compared to hiCUDA[1], OpenMP is a standard

API that many programmers are already familiar with and many

existing applications are programmed in OpenMP. However, both

the OpenMP and the Accelerator model are not specific to the

CUDA architecture, and therefore, lack the support of important

concepts like shared memory and thread block. Creating an

abstraction that closely matches the CUDA model is exactly the

reason to design a new and simpler set of directives.

The third category of work that is related to proposed system by

S. Ryoo et al. [3] which focuses on helping the programmer to

optimize a CUDA application.

As per research mentioned in the paper of Tian Yi David Han and

Tarek S.Abdelrahman[1] authors mentioned that, GPUs can be

used to accelerate applications outside the graphics domain. It is

hard to write program in CUDA for average programmer. CUDA

puts load on the programmer

 To package GPU code in separate functions called

kernel.

 Need to explicitly manage data transfer between host

memory and GPU memory.

 Manual optimization of GPU memory is required.

 Authors have designed hiCUDA[1], a high level directive based

language for CUDA programming.

The hiCUDA presents programmers with a

computation model and a data model. Computation Model allows

the programmer to identify code regions that are intended to be

executed on the GPU and specify how they are to be executed in

parallel. hiCUDA provides four directives in its computational

model kernel, loop_partition, singular and barrier. Data Model

allows programmers to allocate memory on the GPU and move

data back and forth between the host memory and GPU memory.

hiCUDA provides four directives in its data model: Global,

constant, texture and shared.The global directive says the data

gets stored in global memory of GPU. It takes more time to

access the data. Constant and Texture directives indicates that the

variables which are declared with these directives

3. SYSTEM ARCHITECTURE
The implemeted systems block diagram is shown in Fig.1. It

contains input, output and basic system block. This

implementation is based on techniques prposed by Tian Yi David

Hans work[1,17]. The input to this system is a sequential C

program and output is an equivalent parallel program in CUDA

for given sequential C program.The proposed system provides an

automated tool to convert sequential C program to the parallel

CUDA program.

Fig. 1: System Block Diagram

Fig.2: Process to convert C program to CUDA C Program

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.7, September 2015 – www.ijais.org

9

Fig. 3: Graphical representaion comparing time required on CUDA C code as compared to conventional serial C code with

nine input sizes indicating low groth in required time for parallel Program

An automated tool works in two passes: pass1 and pass2. In

first pass, it analyses the C program, identifies parallelizable

portions in the given C program and mark them with

appropriate start and end indicators. Finally this pass

generates intermediate file containing source code along with

parallel block of code marked with #pragma kernel_start and

#pragma kernel_end. In second pass, it creates resultant .cu

file to store generated code. The tool reads intermediate file

line by line. If parallelizable portion of code found, it

configures the grid required to execute the code on the GPU

cores. It maintains this code in separate function called kernel

function. These functions are written in a resultant file and

calls to these functions are make at appropriate places in main

function. Other code is just normally copied to the resultant

file operation. At the end of pass2, resultant .cu file contains

parallel CUDA program equivalent to given C program. The

Fig.2 shows detailed process of the conversion of C program

to parallel CUDA program.

4. RESULT ANALYSIS
Initially the vector addition program was tested on above

mentioned configuration. For testing, the C programs are

converted in parallel CUDA programs. The resulting CUDA

enabled parallel program was executed on GPU with variable

input size. The time requred for execusion of these program

were noted and were compared with serial execution of the

same programs with same input size. The system is

implemented using the below mentioned experimental

platforms setup for execution of the program.

 Processor: Intel Core i5-4200U, 1.60 GHZ X 4

 RAM: 4 GB

 OS: 64 bit, Ubuntu 14.04 LTS

 NVIDIA graphics card: GeForce 840 GT, 384

CUDA Cores

 CUDA 6.5 (SDK, Toolkit, Drivers)

Table 1:Experimental results presenting time required for

excecution of Vector Addition program with conventional

C code and parallel CUDA code with varied input size

Sr.

No.

Input

 Size
Tc Tp %SP

1 10000 290.00 115.10 60.31

2 20000 585.00 225.72 61.41

3 30000 888.00 337.63 61.98

4 40000 1194.00 448.44 62.44

5 50000 1480.00 560.44 62.13

6 60000 1783.00 671.16 62.36

7 70000 2076.00 784.44 62.21

8 80000 2368.00 893.47 62.27

9 90000 2664.00 1086.00 59.23

Average 1480.89 569.16 61.59

Table 1 presents experimental results for computation of

initialization and addition operation of vector addition

program in serial and parallel for given input sizes and it

shows time required for serial code and CUDA code in

microseconds. Let Tc be a time required by conventional serial

program to exceute and Tp be a time required by Parallel

program to exceute. Table1 presents thse reults. Here it is

observed that computation time taken by serial program more

as compred to parallel for the same vector addition program.

Let the % speedup be represented as % SP. The % speedup

obtained is calculted by equation 1.

 %SP = (((Tc - Tp)/ Tc)*100) (1)

Results table show that speedup is around 60% in all cases

irrespective of input size for vector addition program. The

results are graphically represented in Fig. 3.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9

Time for execution Serial Code CUDA-C-CODE

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.7, September 2015 – www.ijais.org

10

5. CONCLUSION
The implemeted system is an automated tool which generates

an equivalent parallel CUDA program for given sequential

program in C language without manual involvement of user in

the parallelization process. It is observed that the generated

parallel CUDA programs are correct. The validation of the

correctness of the output for parallel converted CUDA

programs were validated by testing the results of the program.

It was found that the outputs were correct. This tool provides

simple and user friendly user interface. The user doesn’t

required to have knowledge of CUDA programming to use the

tool for conversion of serial C programs to parallel CUDA

programs.

To validate the the working of this sytem serial C programs

was converted to parallel CUDA programs and were tested on

NVIDIA graphics cards. As per results obtained it is observed

that the computation time required to perform same

computation serially on CPU takes more time than on GPU in

parallel. Generally GPU’s are used for executing graphics

applications. The system helps to utilize the NVIDIA graphics

cards available in the computer system to accelerate the

general purpose applications and thus enhances the system

performance by reducing the time complexity of an

application. A programmer who doesn’t have knowledge of

hi-CUDA and CUDA programming can also take benefits of

CUDA programming. On average around 60% speedup is

obtained.

6. REFERENCES
[1] Tian Yi David Han, Tarek S. Abdelrahman, hiCUDA:

High- Level GPGPU Programming, IEEE Transactions

on Parallel and Distributed Systems, Vol. 22, No. 1,

January 2011.

[2] I. Buck et al., GPUs: Stream Computing on Graphics

Hardware, Proc. ACM SIGGRAPH, 2004.

[3] S. Ryoo et al., Optimization Principles and Application

Performance Evaluation of a Multithreaded GPU Using

CUDA, Proc. Symp. Principles and Practice of Parallel

Programming, pp.73-82, 2008.

[4] C. Liao et al., Effective Source-to-Source Outlining to

Support Whole Program Empirical Optimization, Proc.

Int’l Workshop Languages and Compilers for Parallel

Computing, Oct. 2009.

[5] NVIDIA,NVIDIA GeForce 8800 GPU Architecture

Overview, Nov. 2006

[6] NVIDIA, NVIDIA CUDA C Programming Guide v4.2,

CUDA-C Programming Guide.pdf, April. 2012.

[7] S.Z. Ueng et al., CUDA-lite: Reducing GPU

Programming Complexity, Proc. Int’l Workshop

Languages and Compilers for Parallel Computing, pp. 1-

15, 2008.

[8] J. Fabri, Automatic Storage Optimization, Proc. Symp.

Compiler Construction, pp. 83-91, 1979.

[9] The Portland Group, CUDA Fortran Programming Guide

and Reference, Release 2012.

[10] S. Lee, S.J. Min, and R. Eigenmann, OpenMP to

GPGPU: A Compiler Framework for Automatic

Translation and Optimization, Proc. Symp. Principles

and Practice of Parallel Programming, 2009.

[11] The Portland Group, PGI Fortran and C Accelerator

Programming Model, Dec 2008.

[12] C.K. Luk, S. Hong, and H. Kim, Qilin: Exploiting

Parallelism on Heterogeneous Multiprocessors with

Adaptive Mapping, Proc. Int’l Symp. Microarchitecture,

pp.45-55, 2009.

[13] M.M. Baskaran et al., A Compiler Framework for

Optimization of affine loop Nests For GPGPUs, 2008.

[14] Leonardo Dagum and Ramesh Menon, OpenMP: An

industry standard API for shared memory programming,

IEEE Computational Science and Engineering, January-

March 1998.

[15] Stone, J.E., Gohara, D., Guochun Shi, OpenCL: A

Parallel Programming Standard for Heterogeneous

Computing Systems, Computing in Science and

Engineering, Vol. 12, Issue 3, pp. 66-73, May 2010.

[16] NVIDIA, CUDA Programming Model Overview,

NVIDIA Corporation, 2008

[17] Tian Yi David Han, Directive-Based General-Purpose

GPU Programming, master’s thesis, Univ. of Toronto,

Sept. 2009.

