
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 9 – No.8, October 2015 – www.ijais.org 

 

25 

Euler and Quaternion Parameterization in VTOL UAV 

Dynamics with Test Model Efficiency 

 
Redouane Dargham  

Doctoral Student in Computer 
Engineering National Higher 

School of Electricity and 
Mechanics 

 (EAS, LISER, ENSEM) 

 

Adil Sayouti 
 PhD Professor, 

National Higher School of 
Electricity and  

Mechanics 
 (ENSEM, EAS, LISER) 

 

Hicham Medromi 
 PhD ,Professor and Director 

National Higher School of 
Electricity and  

Mechanics 
(ENSEM, EAS, LISER) 

 

ABSTRACT 

The Vetical Take Off And Landing Unmanned Aerial Vehicle      

( VTOL UAV)  has seen unprecedented levels of growth over 

the past 20 years with military applications dominating the 

field and the civilian applications tending to follow. Further, 

the use of UAVs has become a favored solution for important 

tasks requiring air operations as aerial photography, 

surveillance, inspection, search and rescue or mapping .For 

these applications to emerge, motion control algorithms that 

guarantee a good amount of stability and robustness against 

state measurement/estimation errors are needed. This paper 

describes: The dynamical equation  of rigid bodies can be 

gathered from the classical Newton-Euler differential 

equations, which commonly make use of the Euler angles 

parametrization and its limits after the description of motion  

in terms of quaternions formulation instead of the Euler one 

and its benifits. This kind of analysis, proved by some 

numerical results presented, has a great importance due to the 

applicability of quaternion to drone control. An illustration of 

this study will be given in an application of control of an 

autonomous hexacopter developed by the team architecture 

of systems, in the national engineering school of electricity 

and mechanic in Casablanca in Morocco. 
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1. INTRODUCTION 
The growing interest for the flying robots research community 

is partly due to the numerous applications that can be 

addressed with such systems like surveillance, inspection, or 

mapping. Recent technological advances in sensors, batteries 

and processing cards, allow embarking on small vehicles all 

components necessary for autonomous flights at a reasonable 

cost, but constituting also a favorable factor to help raising 

several issues particularly how to fly nicely without slamming 

into obstacles and without having weird oscillations. The first 

order of business to overcome in most of these links is 

focusing to find out an interesting way to study the motion 

control and the stability of those aerial robots. This requires 

efficient model that can be used for designing a robust 

controller.  

Among the multicopter typology, the four rotors, also called 

quadrotor, have been widely chosen by many researchers as a 

very promising vehicle for indoor and outdoor navigation. 

Nowadays, the design of multicopter with more than four 

rotors, i.e. hexacopter and octocopter, is offring the possibility 

of managing one or more engine failures and to increase the 

total payload. In this paper a hexacopter is considered whose 

six-rotors are located on vertices of a hexagon and are 

equidistant from the center of gravity; moreover, the 

propulsion system consists of three pairs of counter-rotating 

fixed-pitch blades (Fig.1).  

 

Fig.1.ENSEM hexacopter   

The aircraft dynamic behavior is here presented by the 

mathematical model, by considering all its external and 

internal influences. Assuming the hexacopter as a rigid body, 

the differential equations describing its dynamic behavior can 

be derived from the Newton-Euler equations, leading to 

equivalent mathematical models. Euler angle parameterization 

of three-dimensional rotations contains singular points in the 

coordinate space that can cause failure of both dynamical 

models and control. These singularities are not present if the 

three-dimensional rotations are parameterized in terms of 

quaternion.  

In this optic the outline of this paper is as follows: Part 2 

concerns the mathematical model of the hexacopter in term of 

Newton-Euler equations and its limitation then in part 3, the 

quaternions parameterization and its benefits are introduced; 

finally, the Matlab simulation test for model efficiency is 

shown in part 4.  

2. THE MATHEMATICAL MODEL 

NEWTON-EULER EQUATIONS 
Two coordinate systems are needed to describe the motion of 

a hexarotor: an earth fixed frame E and a body fixed frame B. 

This section deals with the coordinate systems and the 

reference frames chosen to describe the hexacopter dynamics. 
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First of all, the classical Euler parameterization is treated; in 

other words, the angular orientation of the aircraft's body is 

described by three Euler angels that represent an ordered set 

of sequential rotations from a reference frame to the body a 

frame.  

 

 

 

 

 

 

 

Fig. 2: The two coordinate systems that are used to 

describe the hexarotor’s motions 

The earth fixed frame, E ,uses NED (North, East, Down) 

coordinates. Its origin, denoted   , is fixed on the earth’s 

surface in the hexarotor’s starting position. Since the earth 

fixed frame acts as an inertial frame the hexarotor’s absolute 

linear position can be defined in this frame. The axes are 

denoted XE, YE and ZE  respectively and their directions are 

shown in Figure.2.The body fixed coordinate system, B, is 

fixed in the centre of the hexarotor’s airframe and its origin is 

  . Consequently, the body fixed frame moves relative to the 

earth fixed frame when the hexarotor moves. The body fixed 

x-axis points in the forward direction, the y-axis points to the 

right and the z-axis points downwards. These axes are denoted  

  ,    and    respectively [1].  

The position of the body fixed frame in the earth fixed frame 

is defined as            and the body frame’s 

orientation in relation to the earth frame is described by the 

vector                 where the angles             are 

called roll, pitch and yaw respectively. These angles are the 

Euler rotation angles. 

The linear velocities of the hexarotor in the body frame is 

defined               
   and its angular velocities are 

defined as   =          . 

In flight mechanics, the Euler angles are often used for 

transformations between coordinate systems. These 

transformations are achieved with rotation matrices which 

consist of terms of Euler angles. A multiplication of a rotation 

matrix and a vector in one coordinate system transforms that 

vector to another coordinate system. This part will present the 

rotation matrices that transform linear quantities between the 

two coordinate systems E and B. 

Consider that the hexarotor has changed its roll, pitch and yaw 

angle in relation to the earth fixed frame. To describe this 

rotation each angle rotation is treated successively.      
              is the rotation matrix that transforms a linear 

quantity from earth fixed coordinates to body fixed 

coordinates[2], [3], [4].  

 
  
  
  

      
  
  
  

  

   

           

                          

                          
  

  
  
  

  

 The inverse of     yields the rotation matrix     that 

transforms linear quantities from body fixed coordinates to 

earth fixed coordinates (Note that the notation c is used for 

cos, s for sin and t for tan). Since     is orthogonal its inverse 

is given by its transpose, which gives: 

        
  

    
   

                           
                          
            

  
  
  
  

  

The translational velocities of the body frame are linear. The 

transformation of these velocities from the body frame to the 

earth frame is thus described by: 

          

The transfer matrix that transforms the time derivatives of the 

Euler angles in the earth fixed frame to the angular velocities 

in the body fixed frame that ensure the relationship between 

the angular of velocity    and     is given: 

    

       

           

            

           

Where : 

     
     
       
        

  

Inversion of       gives     : 

     

         
      

 
  

  

  

  

  

which relates     and      as : 

          

It is important to observe that      
can be defined if and only 

if       
 

 
              the main effect of Euler 

formulation that leads to the gimbal lock, typical situation in 

which a degree of freedom is lost. To solve this problem, it is 

possible to consider a different representation for the 

hexacopter orientation in space. The aircraft rotation from one 

frame of reference to another will be identified by four 

parameters, known as quaternions, whose general structure is 

briefly summarized afterwards. The advantages of an 

approach based on quaternions consist not only in the absence 

of singularities but also in the simplicity of computation. 

3. THE QUATERNIONS MODEL 
In the above section, the Euler angles can be available 

representation for the rotation of a rigid body in space; 

however, the problem of singularity leads to adopt a new 

parameterization, the quaternions, with the purpose to 
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describe the orientation of the UAV with respect to the earth 

fixed frame . The quaternions [5], [6] were first proposed by 

Hamilton in 1843  and further studied by Cayley and Klein. A 

unit quaternion has the form: 

                              
  

Where   ,  ,      are real numbers satisfying            
  

  
    

    
    and called constituents of the quaternion q, 

and i, j, k are imaginary units that satisfy 

            

                                   

The quaternions had already proved their efficiency in several 

applications, such as computer game development and 3D 

virtual worlds, but also as a method for rigid body rotation in 

three-dimensional space. The quaternion representation is 

based on the Euler's rotation theorem which states that any 

rigid body displacement where a point is fixed is equivalent to 

a rotation:  if   is the rotation angle about the unit vector u = 

          , it is possible to define a quaternion as   
            ,with   =    ( / ),   =        ,   = 

    
 

 
    and         

 

 
   [7]. Unlike Euler angles, 

quaternion rotations don’t require a set of predefined rotation 

axes because they can change its single axis continuously. 

Due to the fact that the method of rotating around an arbitrary 

direction has only one axis of rotation, degrees of freedom 

can’t be lost; therefore gimbal lock can’t occur. Body rotation 

in the earth frame can be represented with quaternions for 

each rotation about each axis. There is a connexion between 

the quaternion and the Euler angles.It can be shown with the 

following expression [8]: 

   

  
  
  
  

  

 

 
 
 
 
 
 
  
 

 
    

 

 
   

 

 
     

 

 
    

 

 
   

 

 
   

  
 

 
    

 

 
   

 

 
    

 

 
    

 

 
   

 

 
  

  
 

 
    

 

 
   

 

 
    

 

 
    

 

 
   

 

 
 

  
 

 
    

 

 
   

 

 
    

 

 
    

 

 
   

 

 
  

 
 
 
 
 
 

 

Similarly, a conversion from quaterions to Euler angles is 

given by: 

 
   
   
 

  

 

 
 
 
        

            

   
     

   
 

                     

      
            

   
     

    

 
 
 

 

The transformation from the body reference frame B to the 

earth reference frame E is done with the matrix:  

   

  

   
     

                           

               
    

               

                           
    

   

  

and from earth  reference frame E to body reference frame B 

as: 

       
 

  

   
     

                           

               
    

               

                           
    

   

  

The transformation of the translational velocities 

representation from the body frame to the inertial one can be 

expressed by            . 

As the matrix R,     is orthogonal; therefore, it is    
     .  

As the angular velocities concerns, the involved 

transformation can be written as       where the matrix S 

depends on quaternion components as follows: 

  
 

 
 

         
       
       
       

  

On the other hand, it is possible to consider the transformation 

matrix depending on the angular velocity components, 

obtaining the link between quaternions and their derivatives 

with respect to time, that are: 

   

 

 

  
   
   
   

 

 

  
 

 
 

       
     
     
     

   

  
  
  
  

  

The quaternion approach is fully equivalent to the Euler one, 

but it is more easy and efficient from a computational point of 

view and  it does not exhibit the gimbal lock issues. 

The aim consists in describing the motion of   hexacopter, 

with three pairs of counter-rotating propellers arranged on 

vertices the hexagon. Supposed the drone as a rigid body, its 

dynamics is deduced from the classical Newton - Euler 

equations but in terms  of quaternions as shown in [9]. Taking 

into account all the internal and external influences, the 

translational and rotational components of the motion  read: 

             

   
 

  
     

in which m is the mass of the drone, ξ =          represents 

its position vector with respect to the inertial frame,    is the 

gravitational force,     is the total thrust,     is the 

orthogonal transformation matrix from the body frame to the 

inertial one, S  is the velocity transformation matrix and 

              is the angular velocity solution of  

                           

where I is diagonal inertial matrix,    represents the 

gyroscopic effects and             
 
 the roll, pitch and yaw 

moment torque vector. Given an initial condition, the 

mathematical model is sufficient to describe the evolution of 

the aircraft, but it does not give information on the final 

position of the drone. It is therefore essential to associate with 

the mathematical model a control technique enabling to 

maneuver the drone, to manage the flight and to decide in 

advance which position will occupy the aircraft.  

4. SIMULATION TEST FOR MODEL 

EFFICIENCY 
A lot of experimental testing has been performed to validate 
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the efficiency of the quaternion parameterization and to proof 

that the quaternions [10] are computationally more efficient, 

simple to compute with both linearity and lack of singularities 

characteristics. The purpose of these features is reflected in a 

gain of time that is significant in real flight simulations. Fig. 2 

shows the execution time versus the number of points in 

which the temporal interval is divided: dashed line is related 

to the Euler formulation, while the continuous line to the 

quaternions formulation. It is evident the gain of time with 

increasing the number of points, despite the system counts 

two more equations with respect to the system using the Euler 

parametrization.  

 
Fig. 2. Comparison of execution time between Euler 

(dashed) and quaternion (continuous) formulation 

Moreover, while Euler formulation suffers from the gimbal 

lock, quaternion parametrization does not encounter it: as 

shown in Fig. 3, when pitch angle is close to θ, roll and yaw 

angles exhibit a jump. 

 
Fig.3. Evolution of Euler angles 

In Figure 4 quaternion component are continuous and smooth 

in time.           

 
Fig.4. Evolution of quaternion 

5. CONCLUSION 
In this work a comparison between Euler and quaternion 

approach has been driven, highlighting the efficiency of the 

second method from a computational point of view. This 

application will be used in describing and controlling a small 

UAV (Hexacopter). The small computational time with free 

gimbal lock error in integration provide good answers in real 

flight simulations for an easier drone management and 

maneuverability. 

The advantage in considering the quaternion reference is 

twofold because it avoids critical positions and, it offers a 

model with the linearity of the coefficients of the 

transformation matrix, it is also numerically more efficient 

and stable compared to traditional rotation formulation. 

By the way the quaternion parameterization is taken into 

account because of its simplicity for computation and its 

numerical stability which allows more efficient and fast 

algorithm implementation. In this vision a .real applications 

using the quaternions with good control system will be 

implemented in an autonomous hexacopter developed by 

Team of architecture and systems in the national 

engineering school of electricity and mechanic (ENSEM) 

as practice result for concrete use.   
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