

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

1

String Searching with DFA-based Algorithm

Preye Ejendibia
Department of Computer Science

University of Port Harcourt

Barileé B. Baridam
Department of Computer Science

University of Port Harcourt

ABSTRACT
Searching for information in large depositories or the Internet

employs the concept of string searching. With the world-wide

web expanding with databases from diverse fields it has

become a growing concern for database curators to find an

efficient searching algorithms for the task. In comparative

terms, the power of an algorithm over another is in its time-

complexity and efficiency of operation. A lot of algorithms

have been designed for the task of string searching. Also,

some of the fast string searching algorithms were developed

based on the Deterministic Finite Automata (DFA), which

prompts the need to thoroughly research and investigate how

this principle is applied. This paper analyses and compares the

searching power of DFA and brute-force searching

algorithms. The DFA approach is used to overcome the

problem of backtracking, which is faced with the brute-force

approach thereby improving the time complexity, the speed

and efficiency of search based on results obtained.

General Terms

Pattern Searching, Algorithms, Automata.

Keywords

Brute-force, DFA, Algorithms, String Searching.

1. INTRODUCTION
One of the most common problems involving strings is that of

searching for occurences of a given pattern as a substring of a

larger text string [5]. Text is one of the most widely used

media datatypes [6], in research and development for

information retrieval and data mining; because of the wealth

of work done in the area of searching patterns in text files.

When information or data is been searched in large

depositories or the internet, the string searching concept is

said to have been employed. String searching algorithms are

algorithms that are designed to search for occurrences of

strings in a larger body of strings and these algorithms differ

in their time-complexities and efficiency of operation.

There are quite a number of string searching algorithms[10]

and they are of importance in areas such as data processing,

information retrieval, text-editing, word-processing, linguistic

analysis, and also in areas of molecular biology such as

genetic sequence analysis. Before the advent of the classical

string searching algorithms such as Knutt-Morris-Pratt,

Boyer-Moore, Karp-Rabin etc. The Brute force algorithm was

in use and was found to be very slow and inefficient as timing

constraints is a major consideration when talking about

algorithms. The advantage an algorithm has over another is in

its time-complexity and efficiency of operation. There was a

need to deduce more efficient algorithms which work in

linear-order time as compared to the quadratic-order of time

the Brute force algorithm employed.

This project provides the computational method of automata-

based string searching algorithm and gives a comprehensive

analysis of how strings are searched, by building and running

automata as many of the efficient algorithms used in

searching for information, create finite automata to effectively

search for strings.

2. RELATED WORK
According to S. Mitra and T. Acharya [6], String searching is

a very important area of research for successful development

of data mining systems, particularly for text databases and in

mining of data through the Internet by a text-based search

engine. G. A. Stephens [5] defined string searching as a

process of seeking a set of string (substring or subsequence)

within a larger body of string. String matching algorithms

with linear-order computational complexity are very useful in

many practical text-based applications such as edit, search and

retrieval of text, and development of search engine, and

therein lies its possible influence in text data mining. The

essence of developing a linear-order string matching

algorithm with finite automata, to tackle the problem of

buffering due to backtracking in the text string when a

mismatch is encountered.

In a brute force manner [5][6], the string matching algorithm

compares a pattern character by character in each and every

location of the text. Starting at the beginning of the text string,

the characters of the pattern is compared one after another

with the corresponding characters in the text, until a mismatch

is found or the complete pattern is searched exhaustively. If

the pattern is exhausted, then, a match is said to have been

found at the beginning of the text. If a mismatch of character

is detected before the pattern is exhausted, then the pattern

does not occur at the beginning of the text. The matching is

started all over again at the next character in the text, and the

same procedure is continued repeatedly. The brute force

approach requires the input text string to be buffered, because

the text needs to be backtracked whenever there is an

unsuccessful match with a character in the pattern. The

computational complexity of the algorithm is O(m.n) in the

worst case.

In 1956, just a few years after the invention of ENIAC,

Stephen C. Kleene proved [8] the equivalence between finite

automaton and regular expressions, which lead to solving the

string searching problem in time linear in order, O(m + n). For

a long time, many string pattern recognition problems were

formulated in terms of finite automata. This approach reduced

the string matching problem to a language recognition

problem.

In 1970, Morris and Pratt, [9] came up with the first linear-

time algorithm to solve the string matching problem which

preprocessed the pattern in O(m) time and searched the text

string in O(n+m) time. This algorithm is able to skip

comparisons by studying the internal structure of the pattern.

Seven years later , in 1977, Knuth, Morris and Pratt [9]

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

2

enhanced that algorithm. Although they achieved the same

time complexity, their algorithm works much better in

practice. Their algorithm is the oldest and one of the most

popular classical algorithms for string matching. During the

search process, all the characters in the text are read forward

sequentially one after another.

In 1977, around the same time that Knuth, Morris, and Pratt

came out with their algoritmn, Boyer and Moore [11]

proposed an algorithm that preprocessed the pattern in O(m +

|∑|) where |∑| is the alphabet size, it used n/m number of

comparisons and searched the text in O(m + n) in the worst

case. During the sarch operation of this algorithm the pattern

symbols are matched starting from the last symbol which

allows the pattern to shift in large jumps through the

information gained and in most cases not all of the first text

symbols are inspected. This algorithm is very much used in

practice because of it’s good performance.

The key insight of the Boyer-Moore algorithm is that some of

the characters in the text can be skipped entirely without

comparing them with the pattern, because it can be shown that

they can never contribute to an occurrence of the pattern in the

text. In Boyer-Moore algorithm, although the text is scanned

left to right, comparisons of the pattern and the text are done

backwards right to left along the search window while reading

the longest suffix of the search window that is also a suffix of

the pattern. This is a significant performance improvement as

compared to prefix comparison-based Knuth-Morris-Pratt

algorithm. In 1990, Sunday suggested using the symbol in the

text immediately following the one that caused a mismatch to

address the occurrence-heuristic table of the Boyer-Moore

algorithm [14][15]. Using this approach, three variants, such

as the Quick Search (QS), the Maximal Shift (MS), and the

Optimal Mismatch (OM) algorithms were developed, with

differences in the manner the order of the symbol comparisons

between the pattern and the current text-substring is

determined in each case. The QS algorithm, performes

comparisons from left to right, while the MS algorithm orders

the comparisons such that the distance to the next pattern

position in the event of a mismatch is maximised. And the

OM algorithm compares statistically rarer symbols first.

In 1980, Horspool [12] brought forward an algorithm which

showed that search speed can be enhanced by comparing first

the character in the search pattern that occurs least frequently.

Standard search algorithms use the first letter in the pattern to

compare first and the Boyer-Moore algorithm starts

comparing with the last letter in the search pattern employing

only a single auxiliary table indexed by the mismatching text-

symbols and results in performance comparable to that of the

original version.

In 1987, Karp and Rabin [13] published an algorithm that

ameliorates the comparison step by computing finger prints of

the pattern and the text. Their approach is similar to that of

brute force searching, but rather than directly comparing the

pattern symbol strings at successive text positions, their

respective signatures are compared. In Karp-Rabin algorithm,

instead of directly comparing the pattern characters with the

text characters, the text is first pre-processed (with a

preprocessing time of O(m)) to map into a sequence of

integers. Here each character position in the text is mapped

into an integer, and this sequence of numbers is then

compared with a fixed integer representing the pattern. The

algorithm is not restricted to string matching and may be

extended to multi-dimensional pattern matching. It’s worst-

case running time is quadratic O(m . n), but when set up

properly, its average case is linear O(m + n).

B. Wellner and M. Dant wrote [1] that ‘Grep’- a Unix utiity is

an application used to look for a string search pattern in one or

more text files that also displays the lines that contain the

desired pattern. The first grep was developed by Ken

Thompson which used a non-deterministic finite automaton.

In 1976, Al Aho implemented a more powerful (in terms of

search patterns) grep and called it ‘Egrep’ which utilized a

deterministic finite automaton [1].

In 2012, N. Singla and D. Garg wrote [4] about applications

of string searching algorithms and their areas of optimal

performance and The algorithm of choice for text editors,

digital library and search engines is the Boyer-Moore

algorithm.

The Boyer-Moore-Horspool [12] algorithms achives best

results when used with medical tests. The most preferred

algorithm for multimedia and computational biology is the

Needleman Wunsch and Smith Waterman algorithm.

According to Eric Gribkoff [3], DFA is used in protocol

analysis, video game character behavior, text parsing, security

analysis, natural language processing, CPU control units, and

speech recognition. Additionally, many mechanical devices

are frequently designed and implemented using DFAs.

Example of such are elevators, vending machines, and traffic-

sensitive traffic lights. System which must maintain an

internal definition of state naturally uses DFAs.

3. THE STRING SEARCHING

PROBLEM
Given a pattern p = p1p2...pm of length m and a text t = t1t2...tn

of length n are two strings formed over the same finite

alphabet ∑ such that m < n. The pattern p occurs in text t at

the beginning of text location k if 1 ≤ k ≤ n — m and tk+i-1 = pi

for 1 ≤ i ≤ m. The string matching problem is the problem of

finding all the text locations where the given pattern p occurs

in the given text t.

For example, let text t = ‘c b b a b a b a a b a b a c a b a’ and

a pattern p = ‘b a b a’ over the finite alphabet ∑ = {a, b, c}.

The pattern ‘b a b a’ can be found in text locations 3, 5, and

10, respectively. A string searching algorithm has the task to

efficiently locate the pattern within the text in minimal time

with minimal usage of storage.

3.1 Brute Force String Searching Algorithm
The brute force string matching algorithm compares a pattern

symbol by symbol in each and every location of the text.

Starting at the beginning of the text string, we compare the

symbols of the pattern one after another with the

corresponding symbols in the text, until a mismatch is found

or the complete pattern is exhausted. If the pattern is

exhausted, we claim to have found a match at the beginning of

the text. If a mismatch of symbol is detected before the pattern

is exhausted, then the pattern does not occur at the beginning

of the text. Then matching is started all over again at the next

symbol in the text, and continue the same procedure.

The Algorithm

Compare pattern to text while pattern symbols is less than text

symbols.

1. If first symbol of pattern is same as first symbol of text,

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

3

i. Increment pattern and text to next symbol of pattern

and next symbol of text respectively and check

again whether they match.

ii. Continue 1(i) as long as successive increment of

pattern matches successive increment of text until

end of pattern is reached and announce match

success.

2. If first symbol of pattern is not same as first symbol of

text ,

i. Shift pattern down text to the right by one position

so that first symbol of pattern is aligned with next

symbol of text and check again whether they match.

ii. Continue 2(i) as long as subsequent shifts of pattern

does not match successive increment of text until

text is exhausted and announce match failure.

3.2 DFA String Searching Algorithm
A finite automata search algorithm follows certain steps such

as, constructing a DFA for the pattern, performing the search -

each character in the text is examined just once, in sequential

order; when searching is done, a state transition table for the

automaton is created to represent the state transition

function[2][7][16].

Given a text t = t1t2t3...tn where i represents the index of the

text symbols such that 1 ≤ i ≤ n and pattern p = p1p2p3...pm

where j represents index of pattern symbols such that 1≤ j ≤ m

(m < n where m and n are the lengths of pattern and text

respectively).

The Algorithm
1. Construct a DFA for the pattern:

i. A DFA constructed for the pattern will be one state

longer than the length of pattern so the DFA takes

m+1 states which ranges from 0,1,2...m. (Let k

represent the index of states such that 0 ≤ k ≤ m).

ii. Initialize start state to be 0 and final state to be m.

iii. Initialize start and last index of text to be 1 and n

respectively (Let i represent the index of text such

that 1 ≤ i ≤ n).

iv. Initialize start and last index of pattern to be 1 and

m respectively (Let j represent the index of pattern

such that 1 ≤ j ≤ m).

2. Performing the search:

i. Starting at state k, read each text symbol against

first occurences of pattern symbol to check for

match. If match, increment k to knext and read the

next text symbol. (The DFA will be in kth state if ith

symbol(s) of text have been matched with jth

symbol(s) of pattern).

a. If the next ith text symbol matches the

corresponding jth pattern symbol, then the

automaton will transit to the next kth state i.e δ(

kcurrent, ti = pj) = knext.

b. Otherwise it remains in the current kth state,

moves to the start state or other states not

exceeding the current kth state i.e δ(kcurrent, ti

pj) = { 0 ≤ kcurrent }.

ii. If all jth pattern symbols were found in sequential

order in any ith location of text (i.e k = m, final state

has been reached), then announce match success.

iii. If all jth pattern symbol couldn’t be found in any ith

location of text (i.e text is exhausted), then

announce match failure.

3. Creating the transition table:

i. Create table for all states (0 ≤ k ≤ m) from the

transition function. i.e δ(kcurrent, ti = pi) = knext for

each and every element ti = pi in the ∑.

Linear-order string matching algorithms are usually

constructed with finite automata. This is mostly because

finite-automata string searching helps to avoid the problem of

buffering due to backtracking in the text to be searched.

4. EXPERIMENTAL RESULTS AND

ANALYSIS

4.1 The Brute Force Algorithm
Given the text t = “ababbaabaaab” and pattern p = “abaa”.

Initially, the pattern is alligned with the text from text postion

1-4. The first three symbols of pattern matches with the text at

positions 1, 2 and 3 and a mismatch occurs at the position 4.

At this point we shift the pattern by one position to the right of

text and check for match, the first pattern symbol does not

match the text at position 2 so we shift the pattern again. At

the second shift, the first two pattern symbols matches with

the text at positions 3 and 4 and mismatches at position 5. We

shift again the third time and the first pattern symbol

mismatches the text at position 4 and so we carry out the

fourth shift. At this shift, the first pattern does not match the

text at postion 5. Shifting for the fifth time, the first pattern

symbol matches with the text at position 6 and second pattern

symbol does not match the text at position 7. At the sixth

shift, we see that all pattern symbols matches the text from

position 7-10 which implies a successful match of pattern has

occured . We continue shifting, at the seventh shift, first

pattern symbol does not match text at position 8 and shifting

for the 8th and last time, the first pattern symbol matches and

mismatches the text at position 9 and 10 respectively. At this

point, the text has been exhausted and searching is terminated.

The brute force search procedure is shown in Table 1.

The underlined symbols in the text column as indicated in

Table 1 shows where test symbols match pattern symbols

while the italicised symbols in any given position indicate that

pattern does not match text at that position. Bold and

underlined symbols at the 7th row in text column represents

successful match. Running the brute-force algorithm on the

sample data above generates 9 steps with 19 pattern-text

comparisons. The result is found at the 7th position of the

sample text.

A comparison of this output will be made with that of the

DFA.

4.2 The DFA Algorithm
Given the text = “ababbaabaaab” and pattern = “abaa”. The

DFA is defined by the quintuple: (Q, ∑, ∆, q0, F), where Q =

{ 0, 1, 2, 3, 4 }, ∑ = { a, b }, q0 = 0, F = 4, ∆ = Q ∑ → Q:

δ(kcurrent, σ) = knext. k and σ represent state and transition

(input symbol) respectively.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

4

Firstly, a DFA is constructed for the given pattern as in Figure

The remaining steps then follow:

Table 1. Tabular representation of Brute force search on the sample data(pattern)

Steps Text Match/mismatch position Number of

pattern-text

comparison

1 ababbaabaaab Mismatch: 4th position 4

2 ababbaabaaab Mismatch: 2nd position 1

3 ababbaabaaab Mismatch: 5th position 3

4 ababbaabaaab Mismatch: 4th position 1

5 ababbaabaaab Mismatch: 5th position 1

6 ababbaabaaab Mismatch: 7th position 2

7 ababbaabaaab Match: 7th position (Success) 4

8 ababbaabaaab Mismatch: 8th position 1

9 ababbaabaaab Mismatch: 10th position 2

Performing the search

In the automaton diagram shown in Figure 1, pattern

preprocessing is carried out as each text symbol is scanned

once against the pattern symbols. The text is scanned from the

shortest prefix(λ) of the pattern through to the longest prefix

(abaa). Unless we get to state 4 the pattern is yet to be found.

Here, the automaton remains in state 0 which is the empty

string(λ) prefix of the pattern. At state 0, we input the first

symbol of text a and it matches pattern prefix of length one a,

so we can move to state 1. If we put b as the input, the

automaton would still remain in state 0. At state 1, we input

the next text symbol b and it matches the pattern prefix of

length two ab and it moves to state 2 or remains in state 1 if a

is entered as input. At state 2, a which is the next text symbol

is entered and it matches the pattern prefix of length three aba

and it moves to state 3. If b is eneterd it moves back to state 0.

At state 3, the next text symbol b does not match the pattern

prefix of length four so the automaton moves back to state 2.

At state 2, we enter b which is the next symbol of text and it

moves to state 0 since it still does not match pattern prefix of

length two. Again at state 0, we input a and the automaton

moves to state 1 and still remains in state 1 since the next text

symbol entered is a. Now, we enter b, a and a from the text

symbols which allows the automaton to transit to state 2, state

3 and state 4 respectively. At state 4 where pattern prefix of

length four abaa has been matched, we can announce match

success since the final state has been reached but searching

continues until the whole text symbols are exhausted. At state

4 again, if we input a the autoamton moves to state 1 and if

we input the next symbol b, the automaton moves to state 2.

This whole process continues until the text is exhaustively

searched. Table 2 illustrates the automaton search explained

above. A transition table is created for the data as is required

in DFA searching algorithm (Table 3).

In Table 2 the underlined symbols in the text column represent

text symbols that match pattern prefixes while the italicised

symbols indicate the current text symbol that is being

compared with the pattern. The bold and underlined symbols

at the 11th row in the text column signify where match is

successful.

Applying the DFA on the same sample data as the Brute-force

algorithm as indicated, there were 12 steps involved with 12

pattern-text comparison.

0 1 2 3 4

b

a

b

a

a b a a

b

text(t): ababbaabaaab

pattern(p): abaa

∑ = {a, b}

b

4
λ

Fig 1: String matching automaton for pattern ‘abaa’

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

5

Table 2. Tabular representation of DFA search for the pattern

Steps

Text

Transition

Number of

pattern-text

comparisons

1 ababbaabaaab State 0 → state 1 1

2 ababbaabaaab State 1 → state 2 1

3 ababbaabaaab State 2 → State 3 1

4 ababbaabaaab State 3 → State 2 1

5 ababbaabaaab State 2 → State 0 1

6 ababbaabaaab State 0 → State 1 1

7 ababbaabaaab State 1 → State 1 1

8 ababbaabaaab State 1 → State 2 1

9 ababbaabaaab State 2 → State 3 1

10 ababbaabaaab State 3 → State 4 1

11 ababbaabaaab State 4 → State 1 1

12 ababbaabaaab State 1 → State 2 1

Table 4 clearly shows that the DFA algorithm performs a

search with lesser number of pattern-text comparisons.

However, the time required to perform the comparisons

actually tell which algorithm performs better. That brings to

question the computational complexity of the algorithms.

4.3 The Computational Complexity
4.3.1 Brute-Force Algorithm
From the experiment performed, the brute force approach

requires the input text string to be backtracked whenever

there is an unsuccessful match with a symbol in the pattern.

This problem of backtracking raises the computational time

of the algorithm. Backtracking is the phenomenon where text

string jumps to the next position whenever a mismatch

occurs at the current text position. Whenever the pattern is

shifted to the right as a result of a mismatch, it can otherwise

be said that it is the text that has been shifted to the left so

that the next text symbol can be compared with the pattern.

Evidently, the computational complexity of the algorithm is

O(m.n) in the worst case. This is a quadratic-order time

implying that the brute force algorithm is slow.

4.3.2 DFA Algorithm
On construction of the state diagram (or the state transition

table) of the finite automaton of a pattern, we can scan the

text to search for the pattern by comparing each text symbol

only once not requiring any backtrack when there is a

mismatch. Hence we can find all the occurrences of the

pattern in the text of length n in O(n) time. This is the

significant difference of the DFA string searching method

compared to the brute force approach. Although, there is an

overhead for preprocessing the pattern which requires

O(m.|∑|) time to:

1. Construct the state diagram or the state transition

table for the pattern and

2. Store the table in the memory for pattern matching.

Hence total computational complexity for string matching

using the the DFA method becomes O(n + (m.|E|)).

However, m is usually much smaller compared to n.

Therefore for small alphabet ∑ the computational

complexity, on the average, becomes linear in order.

Table 5 gives a summary of the complexity of both

algorithms.

Table 3. State-transition table for the sample data

 Transition

State

a

b

0 1 0

1 1 2

2 3 0

3 4 2

4 1 2

Table 4. Results obtained between Brute force and DFA

search

 Algorithm

Observations

Brute-

force

DFA

Text

ababbaabaaab

Pattern

abaa

Text position of match

success

7

Number of steps employed

9

12

Number of pattern-text

comparisons

19

12

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.8, October 2015 – www.ijais.org

6

Table 5. Tabular comparison between Brute force and

DFA algorithms

Algorithm

Computational

complexity

Preprocess

time

Search

time

Brute-

force

No

preprocessing

O(m.n)

DFA

O(m.|∑|)

O(n)

5. CONCLUSIONS
It has been shown from the experiments in this paper that the

brute-force approach to string searching is very slow and

inefficient. This approach when employed reduces the

searching speed when users make use of text processing

applications. The brute-force performs search in O(m.n) time

which is a great setback in comparison to most efficient

algorithms available for accessing information in a quick and

efficient manner. It therefore hinders the usability and

functionality of applications designed to seek for contents

from a larger database. Also, backtracking is one major

constraint facing the brute-force algorithm. Although, the

brute-force method is still utilized in a case where the length

of pattern and text are relatively short and also where the

alphabet has relatively less number of distinct elements, it

falls flat where the pattern and the text are longer, as in today

databases.

A solid conclusion can be made from the analysis in this

paper that the most efficient solutions for the string matching

problem are based on finite automata. The ability of the finite

automata to eliminate the probem of the text backtracking

has influenced the development of the first linear-order string

searching algorithm (the Knuth-Morris-Pratt algorithm)

because it also preprocesses pattern in O(m) time and runs a

search in O(n) time.

The DFA is today used as a tool for string searching because

of its efficiency. Among these are the Knuth-Morris-Pratt

(mentioned above) and Boyer-Moore algorithms which are

based on DFAs.

6. REFERENCES
[1] Ben Wellner (471 13 0453 7) and Michael Dant (390 80

0003 1) The Unix “GREP” utility, “CS520 –

Introduction to Formal Models”

http://pages.cs.wisc.edu/~mdant/cs520_4.html

[2] J. Kaur, B. Chauhan and J. K. Korepal “Implementation

of Query Processor Using Automata and Natural

Language Processing” International Journal of Scientific

and Research Publications, ISSN: 2250-3153 Volume 3,

Issue 5, pp. 1- 5, May 2013.

[3] E. Gribkoff “Applications of Deterministic Finite

Automata” ECS 120 UC Davis, Spring 2013.

[4] N. Singla, D. Garg “String Matching Algorithms and

their Applicability in various Applications”

International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume 1, Issue

6, pp. 218 – 222, January 2012.

[5] G. A. Stephen, “String Searching Algorithms”

Singapore: World Scientific, Chapter 2, pp. 5-37, 2001.

[6] S. Mitra, T. Acharya “Data Mining: Multmedia, Soft

Computting and Bioinformatics” New Jersey: Wiley-

Interscience, Chapter 4, pp. 143-169, 2003.

[7] J. D. Ullman, Video Lecture “Informal Introduction to

finite automata” Stanford University, May 2012,

www.coursera.com

[8] J. E. Hopcroft, R. Motwani and J. D. Ullman “Finite

Autmata and Regular Expression” Introduction to

automata theory, languages and computation, New

York: Addison Wesley, pp. 13-45, 2006.

[9] D. Knuth, J. Morris and V. Pratt “Fast pattern matching

in strings” SIAM journal of Computting, Volume 6, pp.

323-350, 1977.

[10] A.V. Aho, M.J. Corasick “Efficient string matching: an

aid to bibliographic search” Communications of the

ACM, Volume 18, No. 6, pp. 333-340, June 1975.

[11] R. S. Boyer, J. S. Moore “A fast string searching

algorithm” Communications of the ACM, Volume 20,

No. 10 pp.762-772, October 1977.

[12] R. N. Hoorspool “Practical fast searching in strings”

Software – Practice and Experience, Volume 10 No. 6,

pp. 501-506, 1980.

[13] R. M. Karp and M. O. Rabin “Efficient randomized

pattern matching algorithms” IBM Journal of Research

and Development, Volume 31, No 6, pp. 249-260, 1987.

[14] D. M. Sunday “A very fast substring searchalgorithm”

Communications of the ACM, Volume 33, No. 8, pp.

132-142, August 1990.

[15] A. V. Aho and J. D. Ullman “Patterns, Automata and

Regular expressions” Foundations of Computer Science,

New York: W. H. Freeman & Company, pp. 530-571.

[16] M. V. Lawson “Introduction to finite automata; Non-

deterministic automata; Kleene’s Theorem” Finite

Automata, 1 ed. New York: Chapman and Hall/CRC,

pp.1-14, pp. 53-60, 2003.

